
Alternation Elimination by Complementation?

Christian Dax and Felix Klaedtke

ETH Zurich, Computer Science Department, Switzerland

Abstract. In this paper, we revisit constructions from the literature
that translate alternating automata into language-equivalent nondeter-
ministic automata. Such constructions are of practical interest in finite-
state model checking, since formulas of widely used linear-time temporal
logics with future and past operators can directly be translated into alter-
nating automata. We present a construction scheme that can be instanti-
ated for different automata classes to translate alternating automata into
language-equivalent nondeterministic automata. The scheme emphasizes
the core ingredient of previously proposed alternation-elimination con-
structions, namely, a reduction to the problem of complementing non-
deterministic automata. Furthermore, we clarify and improve previously
proposed constructions for different classes of alternating automata by re-
casting them as instances of our construction scheme. Finally, we present
new complementation constructions for 2-way nondeterministic automata
from which we then obtain novel alternation-elimination constructions.

1 Introduction

Alternating automata are a powerful tool in finite-state model checking. Here,
they serve as a glue between declarative specification languages like LTL [26]
and PSL [1] and simple graph-like structures such as nondeterministic Büchi
automata, which are well suited for algorithmic treatment, see e.g., [31]. By
establishing translations from alternating automata to nondeterministic Büchi
automata, one reduces the model checking problem for finite-state systems to
a reachability problem on simple graph-like structures, see e.g., [13]. Similarly,
such translations can be used to solve the satisfiability problem for declarative
specification languages like LTL and PSL.

Translations of declarative specification languages into alternating automata
are usually rather direct and easy to establish due to the rich combinatorial
structure of alternating automata. Translating an alternating automaton into
a nondeterministic Büchi automaton is a purely combinatorial problem. Hence,
using alternating automata as an intermediate step is a mathematically elegant
way to formalize such translations and to establish their correctness. Another
more practical advantage of such translations is that several automata-based
techniques are applicable to optimize the outcome of such translations, e.g.,
simulation-based reduction techniques [9, 10].

? Supported by the Swiss National Science Foundation (SNF).

2 Christian Dax and Felix Klaedtke

Different classes of alternating automata are used for these kinds of trans-
lations depending on the expressive power of the specification language. For
instance, for LTL, a restricted class of alternating automata suffices, namely
the so-called very-weak alternating Büchi automata [21, 27]. These restrictions
have been exploited to obtain efficient translators from LTL to nondeterministic
Büchi automata, see [11]. For more expressive languages like the linear-time µ-
calculus µLTL [2,28], one uses alternating parity automata, and for fragments of
the standardized property specification language PSL [1], one uses alternating
Büchi automata [5]. If the temporal specification language has future and past
operators, one uses 2-way alternating automata instead of 1-way alternating au-
tomata, see, e.g., [12,15,30]. Due to the immediate practical relevance in finite-
state model checking, different constructions have been developed and imple-
mented for translating a given alternating automaton into a language-equivalent
nondeterministic automaton like the ones mentioned above.

In this paper, we present a general construction scheme for translating al-
ternating automata into language-equivalent nondeterministic automata. In a
nutshell, the general construction scheme shows that the problem of translating
an alternating automaton into a language-equivalent nondeterministic automa-
ton reduces to the problem of complementing a nondeterministic automaton. We
also show that the nondeterministic automaton that needs to be complemented
inherits structural and semantic properties of the given alternating automaton.
We exploit these inherited properties to optimize the complementation construc-
tions for special classes of alternating automata.

Furthermore, we instantiate the construction scheme to different classes of al-
ternating automata. Some of the constructions that we obtain share similar tech-
nical details with previously proposed constructions as, e.g., the ones described
in [11, 17, 22]. Some of them even produce the same nondeterministic Büchi
automata modulo minor technical details. However, recasting these known con-
structions in such a way that they become instances of the construction scheme
increases their accessibility. In particular, correctness proofs become modular
and less involved. Another benefit of utilizing the construction scheme is that
differences and similarities between the translations for the different classes of
alternating automata become apparent.

We also present novel alternation-elimination constructions. These construc-
tions are instances of our construction scheme and utilize a new complementation
construction for so-called loop-free 2-way nondeterministic co-Büchi automata.
In particular, we obtain an alternation-elimination construction that translates
a loop-free 2-way alternating Büchi automaton with n states into a language-
equivalent nondeterministic Büchi automaton with at most O(24n) states. This
construction has potential applications for translating formulas from fragments
of PSL extended with temporal past operators into nondeterministic Büchi au-
tomata. To the best of our knowledge, the best known construction for this class
of alternating automata results in nondeterministic Büchi automata of size at
most 2O(n2) [15].

Alternation Elimination by Complementation 3

Overall, we see our contributions as twofold. On the one hand, the pre-
sented general construction scheme extracts and uniformly identifies essential
ingredients for translating various classes of alternating automata into language-
equivalent nondeterministic ones. Previously proposed alternation-elimination
constructions for several classes of alternating automata, e.g. [11,12,15,25,28,30]
are based on similar ingredients. On the other hand, we clarify and improve ex-
isting alternation-elimination constructions for different classes of alternating
automata, and we provide novel ones.

We proceed as follows. In Section 2, we give background on alternating au-
tomata. In Section 3, we give the general construction scheme. In Section 4, we
present instances of that construction scheme for different classes of alternating
automata and revisit previously proposed alternation-elimination constructions.
Finally, in Section 5, we draw conclusions.

2 Background

We assume that the reader is familiar with automata theory. In this section, we
recall the relevant background in this area and fix the notation used throughout
this paper.

Given an alphabet Σ, Σ∗ is the set of finite words over Σ and Σω is the set
of infinite words over Σ. Let w be a word over Σ. We denote its length by |w|.
Note that |w| = ∞ if w ∈ Σω. For i < |w|, wi denotes the ith letter of w, and
we write wi for the word w0w1 . . . wi−1, where i ∈ N ∪ {∞} with i ≤ |w|. The
word u ∈ Σ∗ ∪Σω is a prefix of w if wi = u, for some i ∈ N∪ {∞} with i ≤ |w|.

A (Σ-labeled) tree is a function t : T → Σ, where T ⊆ N∗ satisfies the
following conditions: (i) T is prefix-closed (i.e., if w ∈ T and u is a prefix of w
then u ∈ T) and (ii) if xi ∈ T and i > 0 then x(i − 1) ∈ T . The elements in T
are called the nodes of t and the empty word ε is called the root of t. A node
xi ∈ T with i ∈ N is called a child of the node x ∈ T . An (infinite) path in t is
a word π ∈ Nω such that u ∈ T , for every prefix u of π. We write t(π) for the
word t(π0)t(π1) · · · ∈ Σω.

For a set P of propositions, B+(P) is the set of positive Boolean formulas
over P , i.e., the formulas built from the propositions in P , and the connectives
∧ and ∨. Given M ⊆ P and β ∈ B+(P), we write M |= β if the assignment
that assigns true to the propositions in M and assigns false to the propositions
in P \M satisfies β. Moreover, we write M |≡ β if M is a minimal model of β,
i.e., M |= β and there is no p ∈M such that M \ {p} |= β.

In the following, we define 2-way alternating automata, which scan input
words letter by letter with their read-only head. The meaning of “2-way” and
“alternating” is best illustrated by the example transition δ(p, a) = (q,−1) ∨
((r, 0) ∧ (s, 1)) of such an automaton, where p, q, r, s are states, a is a letter of
the input alphabet, and δ is the transition function. The second coordinate of the
tuples (q,−1), (r, 0), (s, 1) specify in which direction the read-only head moves:
−1 for left, 0 for not moving, and 1 for right. The transition above can be read
as follows. When reading the letter a in state p, the automaton has two choices:

4 Christian Dax and Felix Klaedtke

(i) It goes to state q and moves the read-only head to the left. In this case,
the automaton proceeds scanning the input word from the updated state and
position. (ii) Alternatively, it can go to state r and to state s, where the read-
only head is duplicated: the first copy proceeds scanning the input word from the
state r, where the position of the read-only head is not altered; the second copy
proceeds scanning the input word from the state s, where the read-only head is
moved to the right. Note that the choices (i) and (ii) are given by the minimal
models of the example transition δ(p, a), which is a positive Boolean formula
with propositions that are pairs of states and movements of the read-only head.

Let D := {−1, 0, 1} be the set of directions in which the read-only head
can move. Formally, a 2-way alternating automaton A is a tuple (Q,Σ, δ, qI,F),
where Q is a finite set of states, Σ is a finite nonempty alphabet, δ : Q × Σ →
B+(Q× D) is the transition function, qI ∈ Q is the initial state, and F ⊆ Qω is
the acceptance condition. The size |A| of the automaton A is |Q|.

A configuration of A is a pair (q, i) ∈ Q×N. Intuitively, q is the current state
and i is the position of the read-only head in the input word. A run of A on the
word w ∈ Σω is a tree r : T → Q×N such that r(ε) = (qI, 0) and for each node
x ∈ T with r(x) = (q, j), we have that{

(q′, j′− j) ∈ Q×Z
∣∣ r(y) = (q′, j′), where y is a child of x in r

}
|≡ δ(q, wj) .

Observe that we require here that the set of labels of the children is a mini-
mal model of the positive Boolean formula δ(q, wj). Intuitively, the minimality
requirement prevents the automaton from doing unnecessary work in an accept-
ing run. We need this minimality requirement in Section 3.3. A path π in r
is accepting if q0q1 · · · ∈ F , where r(π) = (q0, i0)(q1, i1) · · · ∈ (Q × N)ω. The
run r is accepting if every path in r is accepting. The language of A is the set
L(A) := {w ∈ Σω | there is an accepting run of A on w}.

In the following, we introduce restricted classes of 2-way alternating au-
tomata. Let A = (Q,Σ, δ, qI,F) be a 2-way alternating automaton.

Note that we do not have any restriction on the acceptance condition F ; it
can be any subset of Qω. However, since this is often too general, one usually
considers automata where the acceptance conditions are specified in a certain
finite way—the type of an acceptance condition. Commonly used types of accep-
tance conditions are listed in Table 1. Here, inf(π) is the set of states that occur
infinitely often in π ∈ Qω and the integer k is called the index of the automaton.
If F is specified by the type τ , we say that A is a τ automaton. Moreover, if
the type of the acceptance condition is clear from the context, we just give the
finite description α instead of F . For instance, a Büchi automaton is given as a
tuple (S, Γ, η, sI, α) with α ⊆ S.

The automaton A is 1-way if δ(q, a) ∈ B+(Q×{1}), for all q ∈ Q and a ∈ Σ.
That means, A can only move the read-only head to the right. If A is 1-way, we
assume that δ is of the form δ : Q×Σ → B+(Q).

The automaton A is nondeterministic if δ returns a disjunction of proposi-
tions for all inputs; A is universal if δ returns a conjunction of propositions for
all inputs; A is deterministic if it is nondeterministic and universal. For nonde-
terministic and deterministic automata, we use standard notation. For instance,

Alternation Elimination by Complementation 5

type: τ finite description, acceptance condition: α, F

α = F ⊆ Q
Büchi F := {π ∈ Qω | inf(π) ∩ F 6= ∅}
co-Büchi F := {π ∈ Qω | inf(π) ∩ F = ∅}

α = {F1, . . . , F2k} ⊆ 2Q, where F1 ⊆ F2 ⊆ · · · ⊆ F2k

parity F := {π ∈ Qω | min{i |Fi ∩ inf(π) 6= ∅} is even}
co-parity F := {π ∈ Qω | min{i |Fi ∩ inf(π) 6= ∅} is odd}

α = {(B1, C1), . . . , (Bk, Ck)} ⊆ 2Q × 2Q

Rabin F :=
⋃

i{π ∈ Q
ω | inf(π) ∩Bi 6= ∅ and inf(π) ∩ Ci = ∅}

Streett F :=
⋂

i{π ∈ Q
ω | inf(π) ∩Bi = ∅ or inf(π) ∩ Ci 6= ∅}

α = {M1, . . . ,Mk} ⊆ 2Q

Muller F :=
⋃

i{π ∈ Q
ω | inf(π) = Mi}

Table 1. Types of acceptance conditions.

if A is nondeterministic, we view δ as a function of the form δ : Q → 2Q×D.
That means, a clause is written as a set. Note that a run r : T → Q × N of a
nondeterministic automaton A on w ∈ Σω consists of the single path π = 0ω.
To increase readability, we call r(π) ∈ (Q×N)ω also a run of A on w. Moreover,
for R ⊆ Q and a ∈ Σ, we abbreviate

⋃
q∈R δ(q, a) by δ(R, a).

3 Alternation-Elimination Scheme

In this section, we present a general construction scheme for translating alter-
nating automata into language-equivalent nondeterministic automata. The con-
struction scheme is general in the sense that it can be instantiated for different
classes of alternating automata. We provide such instances in Section 4. Before
presenting the construction scheme in Section 3.2, we need some preparatory
work, which we present in Section 3.1.

3.1 Memoryless Runs as Words

Let A = (Q,Σ, δ, qI,F) be a 2-way alternating automaton and let r : T → Q×N
be a run of A on the word w ∈ Σω. The run r is memoryless1 if all equally
labeled nodes x, y ∈ T have isomorphic subtrees, i.e., if r(x) = r(y) then for all
z ∈ N∗, xz ∈ T ⇔ yz ∈ T and whenever xz ∈ T then r(xz) = r(yz). We define

M(A) := {w ∈ Σω | there is an accepting memoryless run on w}.
1 The choice of the term “memoryless” becomes clear when viewing a run of an alter-

nating automaton as a representation of a strategy of the first player in a two-person
infinite game [24]. A memoryless run encodes a memoryless strategy (also known as
a positional strategy) of the first player, i.e., a strategy that does not take the history
of a play into account.

6 Christian Dax and Felix Klaedtke

Note that M(A) ⊆ L(A); however, the converse does not hold in general. The
languages are equal when A is an alternating Büchi, co-Büchi, or parity automa-
ton [8, 17], or an alternating Rabin automaton [14]. For alternating Streett and
Muller automata, the languages can be different. However, such automata can
be translated to language-equivalent alternating parity automata, see [20].

Observe that in a memoryless run r : T → Q×N of A on a word w ∈ Σω, we
can merge nodes with isomorphic subtrees without loosing any information. We
obtain an infinite directed graph, which can be represented as an infinite word
of functions f ∈ (Q→ 2Q×D)ω, where fj(q) returns the labels of the children of
a node x ∈ T with label (q, j). Note that fj(q) is well-defined, since x ∈ T and
y ∈ T have isomorphic subtrees whenever r(x) = r(y).

Definition 1. The induced tree2 t : T → Q× N of the word f ∈ (Q→ 2Q×D)ω

is inductively defined:

(i) we have that ε ∈ T and t(ε) := (qI, 0), and
(ii) for each x ∈ T with t(x) = (p, j) and fj(p) = {(q0, d0), . . . , (qk, dk)}, we

have that x0, . . . , xk ∈ T and t(xi) := (qi, j+di), for each i ∈ N with i ≤ k.

The word f ∈ (Q→ 2Q×D)ω is a run-word of A on w ∈ Σω if the induced tree t
is a run of A on w. Moreover, f is accepting if t is accepting. Finally, we define
L′(A) := {w ∈ Σω | there is an accepting run-word of A on w}.

The following lemma states that automata that accept by run-words are as
expressive as automata that accept by memoryless runs.

Lemma 2. For every 2-way alternating automaton A, M(A) = L′(A).

3.2 Reduction to Complementation

For the following, fix a 2-way alternating automaton A = (Q,Σ, δ, qI,F). More-
over, we abbreviate the function space Q→ 2Q×D by Γ . Without loss of gener-
ality, we assume that A has a rejecting sink state s ∈ Q, i.e., for every a ∈ Σ,
δ(s, a) = (s, 1) and for every u ∈ Q∗, usω 6∈ F .

From A we construct the automaton B := (Q,Σ × Γ, η, qI, Qω \ F), which
is 2-way and nondeterministic. For q ∈ Q and (a, g) ∈ Σ × Γ , we define the
transition function as

η
(
q, (a, g)

)
:=

{
g(q) if g(q) |≡ δ(q, a),
{(s, 1)} otherwise.

The next lemma is at the core of the results of this paper. It states that the
automaton B rejects exactly those words (w0, f0)(w1, f1) · · · ∈ (Σ × Γ)ω, where
f is an accepting run-word of A on w.
2 The tree t is actually not uniquely determined, since we do not uniquely order the

children of a node in t. However, the order of the children is irrelevant for the results
in this paper, and to simplify matters, we consider two trees as isomorphic if they
only differ in the order of their subtrees.

Alternation Elimination by Complementation 7

Lemma 3. For all words w ∈ Σω and f ∈ Γω, it holds that

(w0, f0)(w1, f1) · · · ∈ L(B) iff
(i) f is not a run-word of A on w, or
(ii) f is a rejecting run-word of A on w.

The next theorem shows that when L(A) = M(A), the problem of eliminat-
ing the alternation of A (i.e., to construct a language-equivalent nondeterminis-
tic automaton) reduces to the problem of complementing the nondeterministic
automaton B.
Theorem 4. Let C be a nondeterministic automaton that accepts the comple-
ment of L(B) and let D be the projection of C on Σ. If L(A) = M(A) then
L(A) = L(D).

Proof. For a word w ∈ Σω, the following equivalences hold:

w ∈ L(A)
Lemma 2⇔ w ∈ L′(A)
Lemma 3⇔ (w0, f0)(w1, f1) · · · 6∈ L(B), for some f ∈ Γω

⇔ (w0, f0)(w1, f1) · · · ∈ L(C), for some f ∈ Γω

⇔ w ∈ L(D) . ut

3.3 On Weak and Loop-Free Automata

In the following, we show that the nondeterministic automaton B inherits proper-
ties from the alternating automaton A. We exploit these properties in Section 4.

Weak Automata. The notion of weakness for automata was introduced in [23]. It
led to new insights (e.g., [6,16,17,23]). Moreover, many operations on weak au-
tomata are often simpler and more efficient to implement than their counterparts
for non-weak automata, see e.g., [11, 17].

The following definition of weakness for an arbitrary acceptance condition F
generalizes the standard definition of weakness for the Büchi acceptance condi-
tion. Let A = (Q,Σ, δ, qI,F) be a 2-way alternating automaton. A set of states
S ⊆ Q is accepting if inf(r(π)) ⊆ S implies r(π) ∈ F , for each run r and each
path π in r. S is rejecting if inf(r(π)) ⊆ S implies r(π) /∈ F , for each run r and
each path π in r. The automaton A is (inherently) weak, if there is a partition on
Q into the sets Q1, . . . , Qn such that (i) each Qi is either accepting or rejecting,
and (ii) there is a partial order � on the Qis such that for every p ∈ Qi, q ∈ Qj ,
a ∈ Σ, and d ∈ D: if (q, d) occurs in δ(p, a) then Qj � Qi. The automaton
A is very-weak (also known as 1-weak or linear), if each Qi is a singleton. The
intuition of weakness is that each path of any run of a weak automaton that gets
trapped in one of the Qis is accepting iff Qi is accepting.

The following lemma shows that in our alternation-elimination scheme, the
weakness of an alternating automaton A transfers to the nondeterministic au-
tomaton B, which needs to be complemented (see Theorem 4).
Lemma 5. Let A be a 2-way alternating automaton and let B be the 2-way
nondeterministic automaton as defined in Section 3.2. If A is weak then B is
weak, and if A is very-weak then B is very-weak.

8 Christian Dax and Felix Klaedtke

VABA ABA APA ARA

1-way size O(n2n) O(22n) 2O(nk log n) 2O(nk log nk)

compl. by Corollary 11 by [4] by [18] by [18]

2-way size O(n23n) 2O(n2) 2O((nk)2)

compl. by Theorem 10 by [28] by [28]

2-way + size O(n22n) O(24n)
loop-free compl. by Corollary 9 by Theorem 8

Table 2. Sizes of 1-way NBAs obtained by instances of the construction scheme.

Loop-Free Automata. For a 2-way alternating automaton A = (Q,Σ, δ, qI,F),
we define the set Π(A) as the set of words (q0, j0)(q1, j1) · · · ∈ (Q × N)ω such
that (q0, j0) = (qI, 0) and for all i ∈ N, there is some a ∈ Σ and a minimal model
M ⊆ Q of δ(qi, a) with (qi+1, ji+1− ji) ∈M . The automaton A is loop-free if for
all words π ∈ Π(A), there are no integers i, j ∈ N with i 6= j such that πi = πj .
Recall that πi and πj are configurations, which consist of the current state and
the position of the read-only head. So, A does not loop on a branch in a partial
run when scanning an input word.

As in the case of weak automata, the nondeterministic automaton B inherits
the loop freeness of the alternating automaton A in the construction scheme.

Lemma 6. Let A be a 2-way alternating automaton and let B be the 2-way
nondeterministic automaton as defined in Section 3.2. If A is loop-free then B
is loop-free.

4 Instances of the Alternation-Elimination Scheme

In this section, we give instances of the construction scheme presented in Sec-
tion 3. For brevity, we use the following acronyms: ABA for 1-way alternating
Büchi automaton, NBA for 1-way nondeterministic Büchi automaton, and DBA
for 1-way deterministic Büchi automaton. We prepend the symbols 2, W, and
V to the acronyms to denote 2-way, weak, and very-weak automata, respec-
tively. Analogously, we use acronyms for co-Büchi, parity, Rabin, and Streett
automata. For instance, co-2WNBA abbreviates 2-way weak nondeterministic
co-Büchi automaton.

Table 2 summarizes some instances of our construction scheme for obtain-
ing language-equivalent NBAs from alternating automata. The table states the
sizes of the resulting NBAs, where n is the size and k is the index of the given
alternating automaton. Moreover, for each instance in Table 2, we reference the
used complementation construction. We remark that the classes of alternating
automata in the columns VABA, ABA, and APA in Table 2 are relevant in
finite-state model checking, since system properties that are given as formulas of
the widely used temporal logics like LTL, PSL, and µLTL or fragments thereof
can directly be translated into alternating automata that belong to one of these
classes of automata.

Alternation Elimination by Complementation 9

All the instances in Table 2 follow the same pattern, which is as follows. Let
us use the notation from Section 3.2. In particular, A is the given alternating
automaton over the alphabet Σ for which we want to construct a language-
equivalent NBA D.

1. From A we construct the nondeterministic automaton B over the extended
alphabet Σ × Γ with the co-acceptance condition of A.

2. We complement the nondeterministic automaton B with the complementa-
tion construction that is referenced in Table 2. We obtain an NBA C over
the alphabet Σ×Γ . Note that in some instances it is necessary to switch to
another acceptance condition in order to apply the referenced complemen-
tation construction. In these cases, we first transform B accordingly. Such
transformations are given in [20].

3. Finally, we project the extended alphabet Σ × Γ of the NBA C to Σ. This
gives us the NBA D.

For instance, if A is an ARA, we construct an NSA B. With the construction
from [18], we complement the NSA B and obtain an NBA C.

Note that with the construction scheme at hand, the only remaining difficult
part is the complementation construction in the second step. In the following
Section 4.1, we present novel complementation constructions that are used by
some of the instances of the construction scheme from Table 2.

4.1 Novel Complementation Constructions

Complementing Loop-Free co-2NBAs. The following construction can be seen as
a combination of Vardi’s complementation construction [29] for 2-way nondeter-
ministic automata over finite words and the Miyano-Hayashi construction [17,22]
for 1-way alternating Büchi automata. The construction is based on the following
characterization of the words that are rejected by a loop-free co-2NBA.

Lemma 7. Let A = (Q,Σ, δ, qI, F) be a loop-free co-2NBA and w ∈ Σω. It
holds that w 6∈ L(A) iff there are words R ∈ (2Q)ω and S ∈ (2Q\F)ω such that

(i) qI ∈ R0,
(ii) for all i ∈ N, p, q ∈ Q, and d ∈ D, if p ∈ Ri, (q, d) ∈ δ(p, wi), and i+d ≥ 0

then q ∈ Ri+d,
(iii) S0 = R0 \ F ,
(iv) for all i ∈ N, p, q ∈ Q \ F , and d ∈ {0, 1}, if p ∈ Si and (q, d) ∈ δ(p, wi)

then q ∈ Si+d,
(v) for all i ∈ N and p, q ∈ Q \ F , if p ∈ Si, (q,−1) ∈ δ(p, wi), and i − 1 ≥ 0

then q ∈ Si−1 or Si−1 = ∅, and
(vi) there are infinitely many i ∈ N such that Si = ∅ and Si+1 = Ri+1 \ F .

Proof (sketch). (⇒) Assume w /∈ L(A), i.e., all runs of A on w visit a state in F
infinitely often. We need the following definitions. A word (q0, j0) . . . (qn, jn) ∈
(Q × N)∗ is a run segment if (qi+1, ji+1 − ji) ∈ δ(qi, wi), for all i < n. The

10 Christian Dax and Felix Klaedtke

run segment is initial if (q0, j0) = (qI, 0). For i ∈ N, we define Ri := {qn ∈
Q | there is an initial run segment (q0, j0) . . . (qn, jn) with jn = i}. Since (qI, 0)
is an initial run segment, R satisfies (i). To show that (ii) holds, assume i ∈ N,
p, q ∈ Q, and d ∈ D. If p ∈ Ri, (q, d) ∈ δ(p, wi), and i + d ≥ 0 then there
is an initial run segment r0 . . . rn ∈ (Q × N)∗ such that rn = (p, i). Hence,
r0 . . . rn(q, i+d) ∈ (Q×N)∗ is also an initial run segment and therefore, q ∈ Ri+d.

It remains to define S ∈ (2Q\F)ω that satisfies (iii)–(vi). In the following,
we call a run segment (q0, j0) . . . (qn, jn) ∈ (Q × N)∗ F -avoiding if qi /∈ F , for
all i ≤ n. For defining S inductively, it is convenient to use the auxiliary set
S−1 := ∅.

Let m ∈ N ∪ {−1} such that Sm = ∅. We define T ∈ (Q × N)ω as the
set of F -avoiding run segments that start in Rm+1 \ F , i.e., Ti := {qk ∈
Q | there is an F -avoiding run segment (q0, j0) . . . (qk, jk) with q0 ∈ Rm+1, j0 =
m+ 1, and jk = i}, for i ∈ N. We show that there is an integer n ∈ N such that
Tn = ∅. Assume that such an integer n does not exist. With König’s Lemma it
is easy to see that T contains an infinite F -avoiding run segment. Thus, there is
an accepting infinite run of A on w. This contradicts the assumption w /∈ L(A).
We choose n ∈ N to be minimal and define Sm+1+i := Ti, for i ≤ n.

By construction of S, conditions (iii) and (vi) are satisfied. With a similar
argumentation that we used to show (ii), we see that (iv)–(v) hold.

(⇐) Assume there are words R ∈ (2Q)ω and S ∈ (2Q\F)ω with the conditions
(i)–(vi). Let r := (q0, j0)(q1, j1) · · · ∈ (Q × N)ω be a run of A on w. Due to
conditions (i) and (ii), we have qi ∈ Rji

, for each i ∈ N. We show that r is
rejecting.

Suppose that r is accepting. There is a k ∈ N such that qi /∈ F , for all
i > k. Due to condition (vi), there is a breakpoint Sm = ∅ with m > jk and
Sm+1 = Rm+1 \ F . Since r is loop-free, there is an h > k such that jh = m+ 1.
Without loss of generality, we assume that h is maximal. Since r is loop-free and
the set Q is finite, such an h exists. We have ji > m+ 1, for all i > h.

Since qh ∈ Rjh
and qh /∈ F , we have qh ∈ Sjh

. Using the conditions (iv) and
(v), we obtain by induction that qi ∈ Sji , for all i > h. Since r is loop-free, there
is no n > m such that Sn = ∅. We obtain a contradiction to condition (vi). ut

The following theorem extends the Miyano-Hayashi construction to 2-way
automata. Roughly speaking, the constructed NBA C guesses a run that satisfies
the conditions of Lemma 7, for the given co-2NBA and an input word.

Theorem 8. For a loop-free co-2NBA B, there is an NBA C that accepts the
complement of L(B) and has 1 + 24|B| states.

Proof (sketch). Let B = (Q,Σ, δ, qI, F) be a loop-free co-2NBA. We define the
NBA C := (P,Σ, η, pI, G), where P := (2Q × 2Q\F × 2Q × 2Q\F) ∪ {pI}, and
G := 2Q × {∅} × 2Q × 2Q\F . The transition function η is defined as follows. For
the initial state pI and a ∈ Σ, we have that η(pI, a) 3 (R0, S0, R1, S1) iff the
following conditions hold:

– qI ∈ R0,

Alternation Elimination by Complementation 11

– for all p ∈ R0, q ∈ Q, and d ∈ {0, 1}: if (q, d) ∈ δ(p, a) then q ∈ Rd,
– S0 = R0 \ F ,
– for all p ∈ S0, q /∈ F , and d ∈ {0, 1}, if (q, d) ∈ δ(p, a) then q ∈ Sd.

For the other states in P and a ∈ Σ, we have that η
(
(R−1, S−1, R0, S0), a

)
3

(R0, S0, R1, S1) iff the following conditions hold:

– for all p ∈ R0, q ∈ Q, and d ∈ D, if (q, d) ∈ δ(p, a) then q ∈ Rd,
– for all p ∈ S0, q /∈ F , and d ∈ {0, 1}, if (q, d) ∈ δ(p, a) then q ∈ Sd,
– for all p ∈ S0 and q /∈ F , if (q,−1) ∈ δ(p, a) then q ∈ S−1 or S−1 = ∅, and
– if S0 = ∅ then S1 = R1 \ F .

Intuitively, for an input word w, the automaton guesses the words R ∈ (2Q)ω

and S ∈ (2Q\F)ω from Lemma 7. With the first and third component of P ,
it checks the conditions (i) and (ii). With the second and last component, it
checks that (iii)–(v) holds. Finally, the acceptance condition ensures that (vi) is
satisfied. It easy to check that C accepts the complement of L(B). ut

Complementing (Loop-Free) co-2VNBA. If the given automaton is a loop-free
co-2VNBA, we can simplify the 2-way breakpoint construction presented in The-
orem 8. The simplification is based on the following observation: each run of a
very-weak automaton will eventually get trapped in a state with a self-loop.
Thus, the conditions (iii)–(vi) from Lemma 7 can be simplified accordingly.
The simpler conditions allow us to optimize the complementation construc-
tion for loop-free co-2VNBA. Roughly speaking, instead of guessing the word
S ∈ (2Q\F)ω from Lemma 7 and checking that S fulfills the conditions (iii)–
(vi), the constructed automaton only has to check that no run of the loop-free
co-2VNBA gets trapped in a state q /∈ F .

Additionally, for very-weak automata, we can extend the above 2-way break-
point construction so that it can deal with non-loop-free co-2VNBAs. This ex-
tension is based on the observation that there are only two types of loops: a
very-weak automaton loops if (1) it gets trapped in a state without moving the
read-only head or (2) it gets trapped in a state in which it first moves the read-
only head to the right and then to the left. Such loops can be locally detected.

Based on these two observations, we obtain from Lemma 7 the following
corollary that characterizes the words that are rejected by a given (loop-free)
co-2VNBA. We exploit this new characterization in the Theorem 10 below for
complementing (loop-free) co-2VNBAs.

Corollary 9. Let A = (Q,Σ, δ, qI, F) be a co-2VNBA and w ∈ Σω. It holds
that w 6∈ L(A) iff there is a word R ∈ (2Q)ω such that

(i) qI ∈ R0,
(ii) for all i ∈ N, p, q ∈ Q, and d ∈ D, if p ∈ Ri, (q, d) ∈ δ(p, wi), and i+d ≥ 0

then q ∈ Ri+d,
(iii) there is no n ∈ N such that q ∈ Ri \ F and (q, 1) ∈ δ(q, wi), for all i ≥ n.
(iv) there is no i ∈ N and q ∈ Ri \ F such that (q, 0) ∈ δ(q, wi), and

12 Christian Dax and Felix Klaedtke

(v) there is no i ∈ N and q ∈ Ri \ F such that (q, 1) ∈ δ(q, wi) and (q,−1) ∈
δ(q, wi+1).

Furthermore, when A is loop-free only (i)–(iii) must hold.

Theorem 10. For a co-2VNBA B, there is an NBA C that accepts the comple-
ment of L(B) and has O(|B| ·23|B|) states. If B is loop-free then we can construct
C with O(|B| · 22|B|) states.

Proof (sketch). Let B = (Q,Σ, δ, qI, F) be a co-2VNBA, where we assume that
Q = {1, . . . , n} and Q \F = {1, . . . ,m}, for m,n ∈ N. If m = 0 then F = Q and
hence, L(B) = ∅. So, assume m > 0. Furthermore, assume m < n. Otherwise,
we add an additional accepting state to Q. Let k := m+ 1.

We define the NBA C := (P,Σ, η, pI, G), where P := (2Q × 2Q × 2Q\F ×
{1, . . . , k}) ∪ {pI} and G := 2Q × 2Q × 2Q\F × {1}. The transition function η
is defined as follows. For the initial state pI and a ∈ Σ, we have that η(pI, a) 3
(R0, R1, R

′
0, 1) iff the following conditions hold:

– qI ∈ R0,
– for all p ∈ R0, q ∈ Q, and d ∈ {0, 1}, if (q, d) ∈ δ(p, a) then q ∈ Rd,
– there is no q ∈ R0 \ F such that (q, 0) ∈ δ(q, a), and
– R′0 = {q ∈ R0 | (q, 1) ∈ δ(q, a)}.

For the other states in P and a ∈ Σ, we have that η
(
(R−1, R0, R

′
−1, s), a

)
3

(R0, R1, R
′
0, s
′) iff the following conditions hold:

– for all p ∈ R0, q ∈ Q, and d ∈ D, if (q, d) ∈ δ(p, a) then q ∈ Rd,
– s′ = s, if s ≤ m, s ∈ R0, and (s, 1) ∈ δ(s, a); otherwise, s′ = (smod k) + 1,
– there is no q ∈ R0 \ F such that (q, 0) ∈ δ(q, a),
– there is no q ∈ R′−1 such that (q,−1) ∈ δ(q, a), and
– R′0 = {q ∈ R0 | (q, 1) ∈ δ(q, a)}.

It remains to show that C accepts the complement of L(B). Note that C locally
checks all conditions of Corollary 9 except for (iii). Condition (iii) is satisfied if
the run is accepting.

We remark that we need the third component in a state because C forgets the
previously read letter. There is an alternative construction, namely, we construct
an automaton with the state space (2Q × 2Q ×Σ × (Q \ F)) ∪ {pI} that stores
the letter in the third component of a state.

When B is loop-free, the automaton C does not have to check (iv) and (v).
Hence we can drop the third component in C’s state space. ut

If the given automaton A is a co-VNBA, we can further simplify the con-
struction. To ensure that a word w is rejected by the co-VNBA A, one only has
to check the first three conditions of Corollary 9, where we can restrict d to 1
instead of d ∈ D in condition (ii). We point out that the idea of this construction
is implicitly used in the translation [3,11] of VABAs to NBAs and in the “focus
approach” of the satisfiability checking of LTL formulas in [19].

Alternation Elimination by Complementation 13

Corollary 11. For a co-VNBA B, there is a DBA C that accepts the complement
of L(B) and has O(|B| · 2|B|) states.

Proof (sketch). Let B = (Q,Σ, δ, qI, F). Assume that Q = {1, . . . , n} and Q \
F = {1, . . . ,m}, for m,n ∈ N. If m = 0 then F = Q and hence, L(B) = ∅.
So, assume m > 0. Furthermore, assume that m < n. Otherwise, we add an
additional accepting state to Q. Let k := m + 1. We define the DBA C :=
(2Q × {1, . . . , k}, Σ, η, ({qI}, 1), 2Q × {1}

)
, where

η
(
(R, s), a

)
:=

{(
δ(R, a), s

)
if s ≤ m, s ∈ R, and s ∈ δ(s, a),(

δ(R, a), (smod k) + 1
)

otherwise.

B accepts a word w iff there is a run that gets trapped in a state q 6∈ F iff C
detects the existence of such a run with its second component and rejects. ut

4.2 Revisiting Alternation-Elimination Constructions

Let us first review the construction of the nondeterministic automaton B ac-
cording to the construction scheme in Section 3.2. Observe that B possesses the
alphabet Σ×Γ , which is exponential in the size of the given alternating automa-
ton A. In practice, it will not be feasible to explicitly construct B. Fortunately,
for the instances in Table 2, we can optimize the constructions by merging the
steps of constructing B and complementing B: we build the transitions of B
only locally and we directly project the extended alphabet Σ × Γ to Σ when
constructing the complement automaton of B.

For the remainder of this section, let us revisit previously proposed alterna-
tion-elimination constructions. The alternation-elimination constructions in [7,
15,28,30] for specific classes of alternating automata have a similar flavor as the
instances that we obtain from the construction scheme presented in Section 3. In
fact, at the core of all these constructions is the complementation of a nondeter-
ministic automaton B that processes inputs of the given alternating automaton
A augmented with additional information about the runs of the automaton A.
However, the previously proposed constructions and the corresponding instances
from our construction scheme differ in the following technical detail. The con-
structions in [7, 15, 28, 30] use an additional automaton B′ that checks whether
such an augmented input is valid, i.e., in our terminology that the additional
information is a run-word. In the worst-case, the size of B′ is exponential in the
size of A. We do not need this additional automaton B′. Instead, the requirement
in our construction scheme that the given alternating automaton A has a reject-
ing sink state takes care of invalid inputs. This technical detail leads to slightly
better upper bounds on the size of the constructed nondeterministic automata,
since we do not need to apply the product construction with the automaton B′
to check whether an input is valid.

Finally, we remark that the alternation-elimination construction by Miyano
and Hayashi [22] for ABAs, and the constructions by Gastin and Oddoux [11,12]

14 Christian Dax and Felix Klaedtke

for VABAs and loop-free 2VABAs coincide (modulo some minor technical de-
tails) with the corresponding instances that we obtain from the presented con-
struction scheme. Moreover, these three alternation-elimination constructions
can be seen as special cases of the alternation-elimination construction for loop-
free 2ABAs that we obtain from the construction scheme by using the comple-
mentation construction in Theorem 8. We are not aware of any other alternation-
elimination construction for this class of automata except the one that also han-
dles non-loop-free ABAs. However, the upper bounds for the construction for
2ABAs is worse than the upper bound that we obtain by this new construction
for loop-free 2ABAs (see Table 2).

5 Conclusion

We have presented a general construction scheme for translating alternating au-
tomata into language-equivalent nondeterministic automata. Furthermore, we
have given instances of this construction scheme for various classes of alter-
nating automata. Some of these instances clarify, simplify, or improve existing
ones; some of these instances are novel. Since declarative specification languages
for reactive systems like LTL or fragments of PSL can directly be translated
into some of the considered classes of alternating automata, the presented con-
structions are of immediate practical interest in finite-state model checking and
satisfiability checking.

We remark that the presented constructions depend on complementation
constructions for nondeterministic automata. Improving the latter ones, will im-
mediately result in better alternation-elimination constructions. A comparison
of the upper bounds on the sizes of the produced nondeterministic automata
suggests that alternation elimination for 2-way alternating automata causes a
slightly larger blow-up than for 1-way alternating automata (see Table 2). It
remains as future work to close this gap, e.g., by providing worst-case examples
that match these upper bounds or by improving the constructions.

Acknowledgments. The authors thank Martin Lange, Nir Piterman, and Moshe
Vardi for helpful discussions and comments.

References

1. IEEE standard for property specification language (PSL). IEEE Std 1850TM, Oct.
2005.

2. B. Banieqbal and H. Barringer, Temporal logic with fixed points, in Proceed-
ings of Temporal Logic in Specification 1987, vol. 398 of Lect. Notes Comput. Sci.,
Springer, 1989, pp. 62–74.

3. R. Bloem, A. Cimatti, I. Pill, and M. Roveri, Symbolic implementation of
alternating automata, Int. J. Found. Comput. Sci., 18 (2007), pp. 727–743.

4. B. Boigelot, S. Jodogne, and P. Wolper, An effective decision procedure for
linear arithmetic over the integers and reals, ACM Trans. Comput. Log., 6 (2005),
pp. 614–633.

Alternation Elimination by Complementation 15

5. D. Bustan, D. Fisman, and J. Havlicek, Automata construction for PSL, tech.
report, Computer Science and Applied Mathematics, The Weizmann Institute of
Science, Israel, 2005.

6. E. Chang, Z. Manna, and A. Pnueli, The safety-progress classification, in Logic
and Algebra of Specifications, vol. 79 of NATO Advanced Science Institutes Series,
Springer, 1993, pp. 143–202.

7. C. Dax, M. Hofmann, and M. Lange, A proof system for the linear time µ-
calculus, in Proceedings of the 26th International Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS), vol. 4437 of
Lect. Notes Comput. Sci., Springer, 2006, pp. 273–284.

8. E. Emerson and C. Jutla, Tree automata, mu-calculus and determinacy (ex-
tended abstract), in Proceedings of the 32nd Annual Symposium on Foundations
of Computer Science (FOCS), IEEE Computer Society, 1991, pp. 368–377.

9. K. Etessami, T. Wilke, and R. Schuller, Fair simulation relations, parity
games, and state space reduction for Büchi automata, SIAM J. Comput., 34 (2005),
pp. 1159–1175.

10. C. Fritz and T. Wilke, Simulation relations for alternating Büchi automata,
Theoret. Comput. Sci., 338 (2005), pp. 275–314.

11. P. Gastin and D. Oddoux, Fast LTL to Büchi automata translation, in Proceed-
ings of the 13th International Conference on Computer Aided Verification (CAV),
vol. 2102 of Lect. Notes Comput. Sci., Springer, 2001, pp. 53–65.

12. , LTL with past and two-way very-weak alternating automata, in Proceedings
of the 28th International Symposium on Mathematical Foundations of Computer
Science (MFCS), vol. 2747 of Lect. Notes Comput. Sci., Springer, 2003, pp. 439–
448.

13. R. Gerth, D. Peled, M. Vardi, and P. Wolper, Simple on-the-fly automatic
verification of linear temporal logic, in Proceedings of the 15th IFIP WG6.1 Inter-
national Symposium on Protocol Specification, Testing and Verification (PSTV),
vol. 38 of IFIP Conference Proceedings, Chapman & Hall, 1996, pp. 3–18.

14. C. Jutla, Determinization and memoryless winning strategies, Inf. Comput., 133
(1997), pp. 117–134.

15. O. Kupferman, N. Piterman, and M. Vardi, Extended temporal logic revis-
ited, in Proceedings of the 12th International Conference on Concurrency Theory
(CONCUR), vol. 2154 of Lect. Notes Comput. Sci., Springer, 2001, pp. 519–535.

16. O. Kupferman and M. Vardi, Weak alternating automata and tree automata
emptiness, in Proceedings of the 30th Annual ACM Symposium on the Theory of
Computing (STOC), ACM Press, 1998, pp. 224–233.

17. , Weak alternating automata are not that weak, ACM Trans. Comput. Log.,
2 (2001), pp. 408–429.

18. , Complementation constructions for nondeterministic automata on infinite
words, in Proceedings of the 11th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), vol. 3440 of Lect.
Notes Comput. Sci., Springer, 2005, pp. 206–221.

19. M. Lange and C. Stirling, Focus games for satisfiability and completeness of
temporal logic, in Proceedings of the 16th Annual IEEE Symposium on Logic in
Computer Science (LICS), IEEE Computer Society, 2001, pp. 357–365.

20. C. Löding, Methods for the transformation of omega-automata: Complexity and
connection to second order logic, master’s thesis, University of Kiel, Germany, 1998.

21. C. Löding and W. Thomas, Alternating automata and logics over infinite words,
in Proceedings of the 1st IFIP International Conference on Theoretical Computer
Science (TCS), vol. 1872 of Lect. Notes Comput. Sci., Springer, 2000, pp. 521–535.

16 Christian Dax and Felix Klaedtke

22. S. Miyano and T. Hayashi, Alternating finite automata on ω-words, Theoret.
Comput. Sci., 32 (1984), pp. 321–330.

23. D. Muller, A. Saoudi, and P. Schupp, Alternating automata, the weak monadic
theory of trees and its complexity, Theoret. Comput. Sci., 97 (1992), pp. 233–244.

24. D. Muller and P. Schupp, Alternating automata on infinite trees, Theoret. Com-
put. Sci., 54 (1987), pp. 267–276.

25. , Simulating alternating tree automata by nondeterministic automata: New
results and new proofs of the theorems of Rabin, McNaughton and Safra, Theoret.
Comput. Sci., 141 (1995), pp. 69–107.

26. A. Pnueli, The temporal logic of programs, in Proceedings of the 18th Annual
Symposium on Foundations of Computer Science (FOCS), IEEE Computer Society,
1977, pp. 46–57.

27. G. Rohde, Alternating automata and the temporal logic of ordinals, PhD thesis,
University of Illinois at Urbana-Champaign, Champaign, IL, USA, 1997.

28. M. Vardi, A temporal fixpoint calculus, in Proceedings of the 15th Annual ACM
Symposium on Principles of Programming Languages (POPL), ACM Press, 1988,
pp. 250–259.

29. , A note on the reduction of two-way automata to one-way automata, Inform.
Process. Lett., 30 (1989), pp. 261–264.

30. , Reasoning about the past with two-way automata, in Proceedings of the 25th
International Colloquium on Automata, Languages and Programming (ICALP),
vol. 1443 of Lect. Notes Comput. Sci., Springer, 1998, pp. 628–641.

31. , Automata-theoretic model checking revisited, in Proceedings of the 8th Inter-
national Conference on erification, Model Checking, and Abstract Interpretation
(VMCAI), vol. 4349 of Lect. Notes Comput. Sci., Springer, 2007, pp. 137–150.

Alternation Elimination by Complementation 17

A Additional Proof Details

A.1 Proof Details of Lemma 2

Proof. (⊇) Obvious, since the induced tree of a run-word is a memoryless run.

(⊆) Suppose that A = (Q,Σ, δ, qI,F) and that r : T → Q × N is an accepting
memoryless run on w ∈ Σω. We must show that there is an accepting run-word
f ∈ (Q→ 2Q×D)ω on w. For j ∈ N, we define

fj(p) :=
{

(q, k − j)
∣∣ there are nodes x, y ∈ T with r(x) = (p, j),

r(y) = (q, k), and y is a child of x
}
.

Let r′ : T ′ → Q×N be the induced tree of f . We first show that for all x ∈ T
and x′ ∈ T ′ with r(x) = r′(x′), we have that

{r′(y) | y is a child of x′ in r′} = {r(y) | y is a child of x in r} . (1)

Assume that r(x) = r′(x′) = (p, j). The following equivalences hold:

there is a child y of x′ in r′ with r′(y) = (q, k)
⇔ (q, k − j) ∈ fj(p)
⇔ there is a child y of x in r with r(y) = (q, k).

Note that latter equivalence holds because r is memoryless.
Next, we show that for each node x′ ∈ T ′, there is a node x ∈ T such that

r′(x′) = r(x). We prove this by induction on the length of the nodes in T ′. For
|x′| = 0, choose x as ε. It holds that r′(x′) = (qI, 0) = r(ε). For |x′| > 0, by
induction hypothesis, there is a node z ∈ T such that r′(x′0 . . . x

′
|x′|−2) = r(z).

With (1) we conclude that there is a child x of z in r with r(x) = r′(x′).
Now, we prove that the induced tree r′ of f is a run of A on w. Note that

r′(ε) = (qI, 0) by definition. Let x′ ∈ T ′ be any node in r′ with r′(x′) = (p, j).
We have that r′(x′) = r(x), for some node x ∈ T . By (1), we have that
{r′(y) | y is a child of x′} = {r(y) | y is a child of x}. Since r is a run, we con-
clude that {r′(y) | y is a child of x′} |≡ δ(p, wj).

Finally, we show that r′ is accepting. Since all paths in r are accepting, it
suffices to show that for each path π′ ∈ Nω in r′, there is a path π ∈ Nω in r such
that r′(π′) = r(π). Let π′ ∈ Nω be any path in r′. We define π ∈ Nω recursively:

– Let π0 be a child of ε in r such that r(π0) = r′(π′0). Note that the existence
of such a node π0 ∈ T is guaranteed, since r(ε) = r′(ε) and (1).

– For i > 0, let πiπi be a child of the node πi ∈ T such that r(πiπi) = r′(π′iπ′i).
As above, the existence of such a node πiπi in r is guaranteed, since r(πi) =
r′(π′i) by construction and (1). ut

18 Christian Dax and Felix Klaedtke

A.2 Proof Details of Lemma 3

Proof. (⇒) Suppose r = (q0, j0)(q1, j1) · · · ∈ (Q × N)ω is an accepting run of
the nondeterministic automaton B on the word (w0, f0)(w1, f1) Note that
ji denotes the position of the letter (wji , fji) that is read by the automaton B
when it is in configuration (qi, ji) and goes to configuration (qi+1, ji+1).

Case 1: Suppose that fji
(qi) |≡ δ(qi, wji

), for all i ∈ N. It suffices to show
that there is a path π ∈ Nω in the induced tree t : T → Q × N of f such that
t(π) = r 6∈ F and t cannot be an accepting run-word. We construct the path
π ∈ Nω recursively as follows. To simplify notation, we write π = π1π2

Note that t(ε) = (qI, 0) = (q0, j0) by definition of t and r. For i ∈ N, define
πi+1 ∈ N such that πiπi+1 ∈ T is a child of the node πi ∈ T and t(πi+1) =
(qi+1, ji+1). We show that such a node πi+1 exists. By definition of the node πi,
we have that t(πi) = (qi, ji). Therefore, πi has |fji

(qi)| children with the set of
labels {(q′, ji + d) | (q′, d) ∈ fji

(qi)}. Since (qi+1, ji+1) ∈ fji
(qi), there is a child

of πi that is labeled by (qi+1, ji + (ji+1 − ji)) = (qi+1, ji+1).
Case 2: Suppose that there is an integer i ∈ N such that fji

(qi)|6≡δ(qi, wji
). Let

k ∈ N be the least number such that fjk
(qk) |6≡δ(qk, wjk

). Using the construction
from Case 1, we can construct a node π1 . . . πk ∈ T such that t(π1 . . . πk) =
(qk, jk). Since the children of π1 . . . πk are labeled by the configurations in C :=
{(q′, jk + d) | (q′, d) ∈ fjk

(qk)}, we have that {(q′, (jk + d) − jk) | (q′, jk + d) ∈
C} = fjk

(qk). Since fjk
(qk) |6≡ δ(qk, wjk

) by assumption, it follows that t is not a
run of A on w. Hence, f is not a run-word of A on w.

(⇐) Case 1: Suppose f is not a run-word of A on w, i.e., the induced tree
t : T → Q×N is not a run ofA on w. There is a node x ∈ T with label t(x) = (q, j)
such that the set {(q′, j′ − j) | t(y) = (q′, j′), where y is a child of x} |6≡ δ(q, wj).
Without loss of generality, we assume that x is chosen so that k := |x| is minimal.

Define r ∈ (Q × N)k by ri := t(xi) = (qi, ji), for i < k. By the minimality
of x and the definition of t, we have that fji

|≡ δ(qi, wji
), for each i < k. Hence,

r0 . . . rk−1(s, jk−1 + 1)(s, jk−1 + 2) · · · ∈ (Q×N)ω is an accepting run of B on w.
Case 2: Suppose f is a nonaccepting run-word of A on w, i.e., the induced

tree t : T → Q× N is a nonaccepting run of A on w. Let π ∈ Nω be a path in t
such that t(π) =: (q0, j0)(q1, j1) · · · ∈ (Q × N)ω is nonaccepting, i.e., t(π) 6∈ F .
By definition of t we have that fji(qi) |≡ δ(qi, wji), for each i ∈ N. Hence, t(π) is
an accepting run of B on w. ut

A.3 Proof Details of Lemma 5

Proof. Let Q1, . . . , Qn be a partition of A’s state space such that (i) each Qi

is either accepting or rejecting, and (ii) there is a partial order � on Qis such
that for every p ∈ Qi, q ∈ Qj , a ∈ Σ, and d ∈ D: if (q, d) occurs in δ(p, a) then
Qj � Qi. Without loss of generality, we assume that the rejecting sink state s of
A is in the singleton partition Qn and Qn � Qi, for all i ≤ n. Recall that B has
the same set of states Q as A. It suffices to show that Q1, . . . , Qn is a partition

Alternation Elimination by Complementation 19

of B’s state space such that for every p ∈ Qi, q ∈ Qj , (a, f) ∈ Σ × (Q→ 2Q×D),
and d ∈ D, if (q, d) ∈ η(p, (a, f)) then Qj � Qi. We have two cases.

– If f(p) |6≡ δ(p, a) then (q, d) ∈ {(s, 1)}. Hence, j = n and Qn � Qi.
– If f(p) |≡ δ(p, a) then (q, d) ∈ f(p). We have that (q, d) occurs in δ(p, a)

because f(p) is minimal. We conclude that Qj � Qi.

Note that the arguments in this poof are also valid if the Qis are singletons. ut

A.4 Proof Details of Lemma 6

Proof. Assume that A = (Q,Σ, δ, qI,F) and that s ∈ Q is the rejecting sink
state of A. We prove the lemma by contraposition. Let π be a word in Π(B)
such that there are integers i, j ∈ N with i 6= j such that πi = πj . Without loss
of generality, we assume that i < j.
Case 1: πi = (s, k), for some k ∈ N. By the definition of B’s transition function,
we conclude that πj = (s, k + (j − i)). This contradicts the assumption that
πi = πj .

Case 2: πi 6= (s, k), for all k ∈ N. From the definition of B’s transition function,
we conclude that π ∈ Π(A). So, A is not loop-free. ut

