Alternation Elimination by Complementation

Christian Dax, Felix Klaedtke ETH Zurich

Recent results and ongoing work

LMU Munich, July 22nd, 2008

Motivation I: Finite-State Model Checking

- Question: system M fulfills specification φ?
 - M : nondeterministic automaton (all system traces)
 - φ : temporal formula
- Automata-based approach:
 - Reduction to emptiness check of nondet. automaton
 - 1. Negated specification \rightarrow nondet. automaton B (bad traces)
 - 2. Product of M and B (system traces that are bad)
 - 3. Emptiness check of $M \times B$ (is there a bad system trace?)
- This talk: focus on step 1.

 $\neg 0$

Motivation II: Alternation Elimination

- What is crucial?
 - 1. Specification (with past operators) \rightarrow (2-way) alternating automaton \Rightarrow direct/easy
 - 2. 2-way alternating \rightarrow 1-way nondeterministic automaton \Rightarrow complex/difficult
 - 3. Emptiness check for 1-way nondeterministic automaton \Rightarrow efficient/easy
- This talk: focus on step 2 + a bit on step 1.

Outline

- 1. Background: automata types
- 2. From alternating to nondeterministic automata
- 3. Complementing loop-free 2-way nondeterministic Büchi automata (NBA)
- 4. Outlook: from PSL logic with past operators to NBAs

Background: Automata Types

Deterministic Automata (DA)

- A DA is a tuple (Q, Σ , δ , q₀, \mathcal{F})
 - $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$ transition function
 - $\mathcal{F} \subseteq \mathbf{Q}^{\omega}$ set of sequences over **Q** that are accepting
 - Remark: Büchi and co-Büchi conditions are given as a subset F ⊆ Q

 *F*_F = {π ∈ Q^ω | π visits F-states ∞-often}
 (Büchi condition)

 *F*_F = {π ∈ Q^ω | π does not visit F-states ∞-often}
 (co-Büchi condition)

Nondeterministic/Universal Automata (NA/UA)

- An NA/UA is a tuple (Q, Σ , δ , q₀, \mathcal{F})
 - $\delta: \mathbb{Q} \times \Sigma \to \mathbb{2}^{\mathbb{Q}}$ transition function
- For a word $w = w_0 w_1 \dots$
 - A nondeterministic run q₀q₁... is a sequence of states with q_{i+1} ∈ δ(q_i, w_i)
 - w is accepted : \Leftrightarrow there is a run on w that is in ${\mathcal F}$

- A universal run is a Q-labeled tree
 - the root is labeled by q_0 , and
 - a q-labeled node in level i has children labeled by $\delta(q, w_i)$
 - w is accepted : \Leftrightarrow every path in the run is in $\mathcal F$

Alternating Automata (AA)

- An AA is a tuple (Q, Σ , δ , q₀, \mathcal{F})
 - $\delta: \mathbb{Q} \times \Sigma \rightarrow \mathcal{B}^+(\mathbb{Q})$ transition function
 - Here, we assume that $\delta(q, a)$ is in DNF, for all (q, a)

- A run is a Q-labeled tree, where
 - the root is labeled by q_0 , and
 - a q-labeled node in level i has children that are labeled by one of the monomials of $\delta(q, w_i)$
- a run is accepting : \Leftrightarrow every path is in $\mathcal F$
- w accepted :⇔ there is an accepting run

 $\delta(q, w_i) = (r \land s) \lor (s \land t)$

From Alternating to Nondeterministic Automata

Related Work

- We use building blocks that appeared in
 - Vardi (POPL '88, ICALP '98),
 - Miyano-Hayashi (TCS '92),
 - Lange-Stirling (LICS '01),
 - Kupferman-Piterman-Vardi (CONCUR '01),
 - Gastin-Oddoux (CAV '01, MFCS '03),
 - Dax-Hofmann-Lange (FSTTCS '06).
- We unify and generalize building blocks:
 - Theses papers solve particular translation problems.
 - We identify the main ingredients of the idea and investigate for which class of translations this idea can be used.
 - Unify and simplify constructions and proofs.

Word Representation of Memoryless Runs

- Memoryless automata
 - A run is memoryless :⇔ equally labeled nodes in the same level have equally labeled subtrees
 - An AA is memoryless :⇔ every accepted word has an memoryless accepting run
 - Remark: Rabin automata are memoryless.

not memoryless

a

- Encode memoryless run as word $f_0f_1f_2... \in (Q \rightarrow 2^Q)^{\omega}$
- f_i(q) : 'labels of children of q-labeled node in level i'

$$f_{0}(p) = \{p, q\} \qquad p \qquad q \qquad f_{1}(p) = \{p, q\}, f_{1}(q) = \{q, r\} \qquad p \qquad q \qquad f_{2}(p) = ..., f_{2}(q) = ..., f_{2}(r) = ... \qquad p \qquad q \qquad r \qquad p$$

Alternation Elimination

- It is easy to build an NA $\mathcal B$ over $\Sigma imes \Gamma$ for \bigstar
 - $\mathcal{B} := (\mathbf{Q}, \Sigma \times \Gamma, \eta, \mathbf{q}_0, \mathbf{Q}^{\omega} \setminus \mathcal{F})$
 - $\eta(q, (a, f)) := \begin{bmatrix} f(q) & f(q) \text{ is monomial in } \delta(q, a) \\ \{acc-sink\} & otherwise \end{bmatrix}$
- Finally: complement the NA \mathcal{B} and project it on Σ .

Some Instances

Extension: alternation elimination for 2-way automata

- 1. From given 2-way AA over Σ , construct 2-way NA
- 2. Complement 2-way NA + eliminate bidirectionality
- 3. Project resulting 1-way NA on \varSigma

Translations to 1-way NBAs

	1-Weak Büchi LTL (+ Past)	Büchi PSL (+ Past)	Parity μLTL (+ Past)	Rabin
1-way	O(n2 ⁿ)	O(2 ²ⁿ)	O(2 ^{nk log n})	O(2 ^{nk log nk})
2-way	O(n2 ³ⁿ)	O(2 ^{n*n})	O(2 ^{nk*nk})	
2-way + loop-free	O(n2 ²ⁿ)	O(2 ⁴ n)	in progress	in progress

Some Instances

Extension: alternation elimination for 2-way automata

- 1. From given 2-way AA over Σ , construct 2-way NA
- 2. Complement 2-way NA + eliminate bidirectionality
- 3. Project resulting 1-way NA on \varSigma

Some instances

	1-Weak Büchi LTL (+ Past)	Büchi PSL (+ Past)	Parity μLTL (+ Past)	Rabin
1-way	O(n2 ⁿ)	O(2 ²ⁿ)	O(2 ^{nk log n})	O(2 ^{nk log nk})
2-way	O(n2 ³ⁿ)	O(2 ^{n*n})	O(2 ^{nk*nk})	
2-way + loop-free	O(n2 ²ⁿ)	O(2 ⁴ n)	in progress	in progress

Complementing Loop-Free 2-way Nondeterministic Büchi Automata (NBA)

2-Way Nondeterministic Büchi Automata (2NBA)

- A 2NBA is a tuple (Q, Σ , δ , q₀, F)
 - $\delta: \mathbb{Q} \times \Sigma \rightarrow 2^{\mathbb{Q} \times \{-1, 0, 1\}}$ transition function
 - Additional info where to move the read-only head
- For a word $w = w_0 w_1 \dots$
 - A configuration (q, j) is a pair in Q×'head positions'
 - A run (q₀, j₀) (q₁, j₁) ... is a sequence of configurations with (q_{i+1}, j_{i+1} - j_i) ∈ δ(q_i, w_j_i)
 - w accepted \Leftrightarrow ex. run on w that visits F-states ∞ -often

 For AAs, we have Q×'head positions'-labeled runtrees

all runs on w

ordered by head position

From Loop-Free 2-Way ABA to 1-Way NBA

- A loop-free co-2NBA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ accepts w : \Leftrightarrow ex. run on w that does not visit F-states ∞ -often
- 1-way NBA for the complement
 - w rejected \Leftrightarrow every run on w visits F ∞ -often
 - 1. Guess sequence $R_0R_1... \in (2^Q)^{\omega}$ that represents all runs on w ordered by head positions.
 - 2. Check locally that guess is correct: if $p \in R_i$ and $(q, d) \in \delta(p, w_i)$ then $q \in R_{i+d}$

- A loop-free co-2NBA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ accepts w : \Leftrightarrow ex. run on w that does not visit F-states ∞ -often
- 1-way NBA for the complement
 - w rejected \Leftrightarrow every run on w visits F ∞ -often
 - 1. Guess sequence $R_0R_1... \in (2^Q)^{\omega}$ that represents all runs on w ordered by head positions.
 - 2. Check locally that guess is correct: if $p \in R_i$ and $(q, d) \in \delta(p, w_i)$ then $q \in R_{i+d}$
 - 3. Guess breakpoints:
 - partitioning of the R-sequence in segments
 - each run starting at the previous breakpoint visits
 F before reaching the breakpoint

- A loop-free co-2NBA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ accepts w : \Leftrightarrow ex. run on w that does not visit F-states ∞ -often
- 1-way NBA for the complement
 - w rejected \Leftrightarrow every run on w visits F ∞ -often
 - 4. Guess sequence $S_0S_1... \in (2^{Q \setminus F})^{\omega}$ that represents all runs from q_0 or a breakpoint to an F-state.
 - 5. Check locally that guess is correct: if $p \in S_i$, $(q, d) \in \delta(p, w_i)$ and $q \notin F$ then either $q \in S_{i+d}$ or $S_{i+d} = \emptyset$ (breakpoint).

Outlook: From PSL with Past to NBAs

Outlook: PSL with Past Operators

- linear-time fragment of PSL = LTL + (semi-)regular expressions
- [Gastin, Oddoux] LTL + Past \rightarrow loop-free 2ABA
- For which fragment of PSL + Past is that possible?
- The benefit would be

Fragment of PSL with Past Operators

- Fragments that can be translated to loop-free ABAs
 - 1. Pure future PSL
 - 2. LTL + Past
 - 3. Boolean combinations of 1. and 2.
 - 4. ...?
- We are quite sure that even the whole linear-time fragment can be translated to loop-free ABAs.
 - Substitute regular expressions by propositions in PSL + Past formula
 - Translate LTL + Past formula to loop-free AA
 - Substitute the states for the propositions by AA for regular expressions.

Conclusion

- Construction scheme for translating AAs to NAs
 - Requires complementation construction for NA with co-acceptance condition
 - Requires AA to accept by memoryless runs
 - 3 new translations
 - Other translations can be seen as instances: simplify + unify constructions and proofs
- Novel complementation for loop-free co-2NBAs
 - 1-way Miyano-Hayashi can be seen as special case
 - Constructions of Gastin-Oddoux can be seen as special cases
- Ongoing and future work
 - Scheme for automata that do not accept by memoryless runs
 - Translations for fragments of PSL and µLTL with past operators: need of complementation for loop-free 2NParityA
 - Practical experiences for 2-way translations