
Christian Dax, Felix Klaedtke

ETH Zurich

Recent results and ongoing work

LMU Munich, July 22nd, 2008

Alternation Elimination by Complementation

Motivation I: Finite-State Model Checking

 Question: system M fulfills specification ?

 M : nondeterministic automaton (all system traces)

 : temporal formula

 Automata-based approach:

 Reduction to emptiness check of nondet. automaton

1. Negated specification nondet. automaton B (bad
traces)

2. Product of M and B (system traces that are bad)

3. Emptiness check of M£B (is there a bad system trace?)

 This talk: focus on step 1.

2Speaker: Christian Dax

:

BM

M£B

Empty? (= no bad
system trace?)

Motivation II: Alternation Elimination

 What is crucial?

1. Specification (with past operators) (2-way)
alternating automaton) direct/easy

2. 2-way alternating 1-way nondeterministic
automaton) complex/difficult

3. Emptiness check for 1-way nondeterministic
automaton) efficient/easy

 This talk: focus on step 2 + a bit on step 1.

3Speaker: Christian Dax

:

BM

M£B

Empty? (= no bad
system trace?)

A

1. Background: automata types

2. From alternating to nondeterministic automata

3. Complementing loop-free 2-way
nondeterministic Büchi automata (NBA)

4. Outlook: from PSL logic with past operators to NBAs

Outline

4Speaker: Christian Dax

Background: Automata Types

5Speaker: Christian Dax

 A DA is a tuple (Q, , ±, q0, F)

 ±: Q£§ Q transition function

 F µ Q! set of sequences over Q that are accepting

 Remark: Büchi and co-Büchi conditions are given as a subset F µ Q
FF = {¼ 2 Q!| ¼ visits F-states 1-often} (Büchi condition)
FF = {¼ 2 Q! | ¼ does not visit F-states 1-often} (co-Büchi condition)

 For a word w = w0w1…

 A run q0q1… is a sequence of states with qi+1 = ±(qi, wi)

 w is accepted :, the run ¼ = q0 q1 … on w is in F

 Syntax: ‘automaton as relation over words’

 A(w) :, word w is accepted by automaton A

Deterministic Automata (DA)

6Speaker: Christian Dax

w0

…

wi

wi+1

q0

…

qi

qi+1

¼ 2 F

unique run on w

Nondeterministic/Universal Automata (NA/UA)

 An NA/UA is a tuple (Q, §, ±, q0, F)

 ±: Q£§ 2Q transition function

 For a word w = w0w1…

 A nondeterministic run q0q1… is a sequence of states
with qi+1 2 ±(qi, wi)

 w is accepted :, there is a run on w that is in F

 For a word w = w0w1…

 A universal run is a Q-labeled tree

- the root is labeled by q0, and

- a q-labeled node in level i has children labeled by
±(q, wi)

- w is accepted :, every path in the run is in F

7Speaker: Christian Dax

¼ 2 F

every ¼ 2 F

w0

…

wi

wi+1

w0

…

wi

wi+1

unique run on w

all runs on w

 An AA is a tuple (Q, §, ±, q0, F)

 ±: Q£§ B+(Q) transition function

 Here, we assume that ±(q, a) is in DNF, for all (q, a)

 For a word w = w0w1…

 A run is a Q-labeled tree, where

- the root is labeled by q0 , and

- a q-labeled node in level i has children that are
labeled by one of the monomials of ±(q, wi)

 a run is accepting :, every path is in F

 w accepted :, there is an accepting run

Alternating Automata (AA)

8Speaker: Christian Dax

q

r s

±(q, wi)= (r Æ s) Ç (s Æ t)

q0 w0

…
wi

wi+1

w0

…

wi

wi+1

every ¼ 2 F

all runs on w

From Alternating to Nondeterministic Automata

9Speaker: Christian Dax

 We use building blocks that appeared in

 Vardi (POPL ’88, ICALP ‘98),

 Miyano-Hayashi (TCS ’92),

 Lange-Stirling (LICS ’01),

 Kupferman-Piterman-Vardi (CONCUR ’01),

 Gastin-Oddoux (CAV ’01, MFCS ‘03),

 Dax-Hofmann-Lange (FSTTCS ’06).

 We unify and generalize building blocks:

 Theses papers solve particular translation problems.

 We identify the main ingredients of the idea and investigate for which class of
translations this idea can be used.

 Unify and simplify constructions and proofs.

Related Work

10Speaker: Christian Dax

Word Representation of Memoryless Runs

 Memoryless automata

 A run is memoryless :, equally labeled nodes in the
same level have equally labeled subtrees

 An AA is memoryless :, every accepted word has an
memoryless accepting run

 Remark: Rabin automata are memoryless.

 Encode memoryless run as word f0f1f2… 2 (Q 2Q)!

 fi(q) : ‘labels of children of q-labeled node in level i’

11Speaker: Christian Dax

q q

not memoryless

r

p

p q

qp q
…

f0(p) = {p, q}

f1(p) = {p, q}, f1(q) = {q, r}

f2(p) = …, f2(q) = …, f2(r) = …

p

qp

w0

…

wi

wi+1

 Let A = (Q, §, ±, q0, F) be an AA and ¡ := (Q 2Q)!

 A word w is accepted

 , there is a run on w such that all paths are in F

 , 9 r: 8 ¼: r 2 runs(w) Æ (¼ 2 r ¼ 2 F)

 , 9 r: : 9 ¼: r runs(w) Ç (¼ 2 r Æ ¼ F) F
 , 9 r: : B(w, r)

 It is easy to build an NA B over §£¡ for F
 B := (Q, §£¡, ´, q0, Q! \ F)

 ´(q, (a,f)) := f(q) f(q) is monomial in ±(q, a)
{acc-sink} otherwise

 Finally: complement the NA B and project it on §.

Alternation Elimination

12Speaker: Christian Dax

w0

…

wi

wi+1

¼ F

word
in §

run-word
in ¡

NA
over §£¡

accepts iff F holds

‘refuter’s strategy’

 Extension: alternation elimination for 2-way automata

1. From given 2-way AA over §, construct 2-way NA

2. Complement 2-way NA + eliminate bidirectionality

3. Project resulting 1-way NA on §

 Translations to 1-way NBAs

1-Weak Büchi
LTL (+ Past)

Büchi
PSL (+ Past)

Parity
¹LTL (+ Past)

Rabin

1-way O(n2n) O(22n) O(2nk log n) O(2nk log nk)

2-way O(n23n) O(2n*n) O(2nk*nk)

2-way +
loop-free

O(n22n) O(24n)
-- in progress -- -- in progress --

Some Instances

13Speaker: Christian Dax

 Extension: alternation elimination for 2-way automata

1. From given 2-way AA over §, construct 2-way NA

2. Complement 2-way NA + eliminate bidirectionality

3. Project resulting 1-way NA on §

 Some instances

1-Weak Büchi
LTL (+ Past)

Büchi
PSL (+ Past)

Parity
¹LTL (+ Past)

Rabin

1-way O(n2n) O(22n) O(2nk log n) O(2nk log nk)

2-way O(n23n) O(2n*n) O(2nk*nk)

2-way +
loop-free

O(n22n) O(24n)
-- in progress -- -- in progress --

Some Instances

14Speaker: Christian Dax

Complementing Loop-Free 2-way

Nondeterministic Büchi Automata (NBA)

15Speaker: Christian Dax

2-Way Nondeterministic Büchi Automata (2NBA)

 A 2NBA is a tuple (Q, §, ±, q0, F)

 ±: Q£§ 2Q x {-1, 0, 1} transition function

 Additional info where to move the read-only head

 For a word w = w0w1…

 A configuration (q, j) is a pair in Q£‘head positions’

 A run (q0, j0) (q1, j1) … is a sequence of configurations
with (qi+1, ji+1 - ji) 2 ±(qi, w_ji)

 w accepted , ex. run on w that visits F-states 1-often

 For AAs, we have Q£‘head positions’-labeled run-
trees

16Speaker: Christian Dax

¼ 2 F

w0

…

wi

wi+1

all runs on w

all runs on w
ordered by
head position

(p,0)

(q,1)

(q,2)

(r,3)

(r,1)

(q,0)

(s,0)

w2w0

From Loop-Free 2-Way ABA to 1-Way NBA

 Loop-freeness

 A run of an AA is loop-free :, for every path, no
configuration occurs twice on the path

 An AA is loop-free :, every run is loop-free

 Lemma: if AA is loop-free then the NA is loop-free.

 Loop-free 2-way ABA 1-way NBA

1. For 2-way ABA over §, construct loop-free 2-way co-
NBA over §£¡

2. Complement result with 2-way Miyano-Hayashi

3. Project resulting 1-way NBA on §

17Speaker: Christian Dax

loop-free co-2NBA
over §£¡

loop-free 2ABA
over §

1NBA
over §£¡

1NBA
over §

2-way Miyano-Hayashi

1-Way Miyano-Hayashi Complementation

 A co-NBA A = (Q, §, ±, q0, F) accepts a word w
:, ex. run on w that does not visit F-states 1-often

 NBA for the complement

 B := (2Q£2Q, §, ´, ({q0},;), 2Q £{;})

 ´((R, ;), a) := (±(R,a), ±(R,a) \ F) ‘breakpoint’

 ´((R, S), a) := (±(R,a), ±(S,a) \ F)

 w accepted , every run on w visits F-states 1-often

 Subset-construction with R-component:
compute all runs in parallel (black lines)

 States of S-component have to visit F (red lines)

 2Q£{;} is visited 1-often , every run visits F 1-often

18Speaker: Christian Dax

w0

…

wi

wi+1

all runs on w

every path in 2nd

segment visited F

every path in 1st

segment visited F

2F

F

2-Way Miyano-Hayashi Complementation

 A loop-free co-2NBA A = (Q, §, ±, q0, F) accepts w
:, ex. run on w that does not visit F-states 1-often

 1-way NBA for the complement

 w rejected , every run on w visits F 1-often

1. Guess sequence R0R1… 2 (2Q)! that represents all runs
on w ordered by head positions.

2. Check locally that guess is correct:
if p 2 Ri and (q, d) 2 ±(p, wi) then q 2 Ri+d

19Speaker: Christian Dax

q0
w0

…

wi-1

wi

wi+1

all runs on w
ordered by
head position

Ri-1

Ri

Ri+1

2-Way Miyano-Hayashi Complementation

 A loop-free co-2NBA A = (Q, §, ±, q0, F) accepts w
:, ex. run on w that does not visit F-states 1-often

 1-way NBA for the complement

 w rejected , every run on w visits F 1-often

1. Guess sequence R0R1… 2 (2Q)! that represents all runs
on w ordered by head positions.

2. Check locally that guess is correct:
if p 2 Ri and (q, d) 2 ±(p, wi) then q 2 Ri+d

3. Guess breakpoints:

- partitioning of the R-sequence in segments

- each run starting at the previous breakpoint visits
F before reaching the breakpoint

20Speaker: Christian Dax

q0
w0

…

wi-1

wi

wi+1

all runs on w
ordered by
head position

2-Way Miyano-Hayashi Complementation

 A loop-free co-2NBA A = (Q, §, ±, q0, F) accepts w
:, ex. run on w that does not visit F-states 1-often

 1-way NBA for the complement

 w rejected , every run on w visits F 1-often

4. Guess sequence S0S1… 2 (2Q \ F)! that represents all
runs from q0 or a breakpoint to an F-state.

5. Check locally that guess is correct:
if p 2 Si, (q, d) 2 ±(p, wi) and q F then either q 2 Si+d

or Si+d = ; (breakpoint).

21Speaker: Christian Dax

q0

all runs on w
ordered by
head position

w0

…

wi-1

wi

wi+1

Si-1

Si

Si+1

2-Way Miyano-Hayashi Complementation

 A loop-free co-2NBA A = (Q, §, ±, q0, F) accepts w
:, ex. run on w that does not visit F-states 1-often

 1-way NBA for the complement

 w rejected , every run on w visits F 1-often

4. Guess sequence S0S1… 2 (2Q \ F)! that represents all
runs from q0 or a breakpoint to an F-state.

5. Check locally that guess is correct:
if p 2 Si, (q, d) 2 ±(p, wi) and q F then either q 2 Si+d

or Si+d = ; (breakpoint).

6. Check that pattern ‘Si = ;, Si+1 = Ri+1 \ F’ occurs 1-often.

22Speaker: Christian Dax

q0

every path in 1st

segment visited F

every path in 2nd

segment visited F

all runs on w
ordered by
head position

w0

…

wi-1

wi

wi+1

Outlook: From PSL with Past to NBAs

23Speaker: Christian Dax

 linear-time fragment of PSL = LTL + (semi-)regular expressions

 [Gastin, Oddoux] LTL + Past loop-free 2ABA

 For which fragment of PSL + Past is that possible?

 The benefit would be

Outlook: PSL with Past Operators

24Speaker: Christian Dax

PSL + Past
size n

2ABA
size n

1NBA
size 2O(n*n)

Fragment of PSL + Past
size n

loop-free 2ABA
size n

1NBA
size O(24n)

?

 Fragments that can be translated to loop-free ABAs

1. Pure future PSL

2. LTL + Past

3. Boolean combinations of 1. and 2.

4. …?

 We are quite sure that even the whole linear-time fragment can be
translated to loop-free ABAs.

 Substitute regular expressions by propositions in PSL + Past formula

 Translate LTL + Past formula to loop-free AA

 Substitute the states for the propositions by AA for regular expressions.

Fragment of PSL with Past Operators

25Speaker: Christian Dax

 Construction scheme for translating AAs to NAs

 Requires complementation construction for NA with co-acceptance condition

 Requires AA to accept by memoryless runs

 3 new translations

 Other translations can be seen as instances:
simplify + unify constructions and proofs

 Novel complementation for loop-free co-2NBAs

 1-way Miyano-Hayashi can be seen as special case

 Constructions of Gastin-Oddoux can be seen as special cases

 Ongoing and future work

 Scheme for automata that do not accept by memoryless runs

 Translations for fragments of PSL and ¹LTL with past operators:
need of complementation for loop-free 2NParityA

 Practical experiences for 2-way translations

Conclusion

26Speaker: Christian Dax

