Alternation Elimination by Complementation

Christian Dax, Felix Klaedtke
ETH Zurich

Recent results and ongoing work

LMU Munich, July 22 ${ }^{\text {nd }}, 2008$

Motivation I: Finite-State Model Checking

- Question: system M fulfills specification φ ?
- M : nondeterministic automaton (all system traces)
- φ : temporal formula
- Automata-based approach:
- Reduction to emptiness check of nondet. automaton

1. Negated specification \rightarrow nondet. automaton B (bad traces)
2. Product of M and B (system traces that are bad)
3. Emptiness check of $\mathrm{M} \times \mathrm{B}$ (is there a bad system trace?)

- This talk: focus on step 1.

Motivation II: Alternation Elimination

- What is crucial?

1. Specification (with past operators) \rightarrow (2-way) alternating automaton \Rightarrow direct/easy
2. 2-way alternating \rightarrow 1-way nondeterministic automaton \Rightarrow complex/difficult
3. Emptiness check for 1-way nondeterministic automaton \Rightarrow efficient/easy

- This talk: focus on step $2+a$ bit on step 1.

Outline

1. Background: automata types
2. From alternating to nondeterministic automata
3. Complementing loop-free 2-way nondeterministic Büchi automata (NBA)
4. Outlook: from PSL logic with past operators to NBAs

Background: Automata Types

Deterministic Automata (DA)

- A DA is a tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathcal{F}$)
- $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$ transition function
- $\mathcal{F} \subseteq Q^{\omega}$ set of sequences over Q that are accepting
- Remark: Büchi and co-Büchi conditions are given as a subset $\mathrm{F} \subseteq \mathrm{Q}$ $\mathcal{F}_{\mathrm{F}}=\left\{\pi \in \mathrm{Q}^{\omega} \mid \pi\right.$ visits F -states ∞-often $\}$
(Büchi condition) $\mathcal{F}_{\mathrm{F}}=\left\{\pi \in \mathrm{Q}^{\omega} \mid \pi\right.$ does not visit F -states ∞-often $\} \quad$ (co-Büchi condition)
- For a word $w=w_{0} w_{1} \ldots$
- A run $q_{0} q_{1} \ldots$ is a sequence of states with $q_{i+1}=\delta\left(q_{i}, w_{i}\right)$
- $\quad \mathrm{w}$ is accepted $: \Leftrightarrow$ the run $\pi=\mathrm{q}_{0} \mathrm{q}_{1} \ldots$ on w is in \mathcal{F}
- Syntax: ‘automaton as relation over words’
- $\mathcal{A}(w): \Leftrightarrow$ word w is accepted by automaton \mathcal{A}

$$
\begin{aligned}
& \begin{cases}q_{0} & w_{0} \\
\cdots & \cdots \\
q_{i} & w_{i} \\
q_{i+1} & w_{i+1}\end{cases} \\
& \pi \in \mathcal{F}
\end{aligned}
$$

Nondeterministic/Universal Automata (NA/UA)

- An NA/UA is a tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathcal{F}$)
- $\delta: \mathbf{Q} \times \Sigma \rightarrow 2^{\mathrm{Q}}$ transition function
- For a word $w=w_{0} w_{1} \ldots$
- A nondeterministic run $q_{0} q_{1} \ldots$ is a sequence of states with $\mathrm{q}_{\mathrm{i}+1} \in \delta\left(\mathrm{q}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}\right)$
- $\quad \mathrm{w}$ is accepted $: \Leftrightarrow$ there is a run on w that is in \mathcal{F}

- For a word $\mathrm{w}=\mathrm{w}_{0} \mathrm{w}_{1} \ldots$
- A universal run is a Q-labeled tree
- the root is labeled by q_{0}, and
- a q-labeled node in level i has children labeled by $\delta\left(\mathrm{q}, \mathrm{w}_{\mathrm{i}}\right)$
- \quad w is accepted $: \Leftrightarrow$ every path in the run is in \mathcal{F}

Alternating Automata (AA)

- An AA is a tuple $\left(Q, \Sigma, \delta, q_{0}, \mathcal{F}\right)$
- $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathcal{B}^{+}(\mathbf{Q})$ transition function
- Here, we assume that $\delta(\mathrm{q}, \mathrm{a})$ is in DNF, for all (q, a)

$$
\delta\left(q, w_{i}\right)=(r \wedge s) \vee(s \wedge t)
$$

- For a word $w=w_{0} w_{1} \ldots$
- A run is a Q-labeled tree, where
- the root is labeled by q_{0}, and
- a q-labeled node in level i has children that are labeled by one of the monomials of $\delta\left(\mathrm{q}, \mathrm{w}_{\mathrm{i}}\right)$
- a run is accepting $: \Leftrightarrow$ every path is in \mathcal{F}
- w accepted $: \Leftrightarrow$ there is an accepting run

From Alternating to Nondeterministic Automata

Related Work

- We use building blocks that appeared in
- Vardi (POPL ’88, ICALP ‘98),
- Miyano-Hayashi (TCS ’92),
- Lange-Stirling (LICS ’01),
- Kupferman-Piterman-Vardi (CONCUR ’01),
- Gastin-Oddoux (CAV ’01, MFCS ‘03),
- Dax-Hofmann-Lange (FSTTCS '06).
- We unify and generalize building blocks:
- Theses papers solve particular translation problems.
- We identify the main ingredients of the idea and investigate for which class of translations this idea can be used.
- Unify and simplify constructions and proofs.

Word Representation of Memoryless Runs

- Memoryless automata
- A run is memoryless : \Leftrightarrow equally labeled nodes in the same level have equally labeled subtrees
- An AA is memoryless : \Leftrightarrow every accepted word has an memoryless accepting run
- Remark: Rabin automata are memoryless.

not memoryless
- Encode memoryless run as word $f_{0} f_{1} f_{2} \ldots \in\left(Q \rightarrow 2^{a}\right)^{\omega}$
- $f_{i}(q)$: 'labels of children of q-labeled node in level i '

$$
\begin{array}{r}
f_{0}(p)=\{p, q\} \\
f_{1}(p)=\{p, q\}, f_{1}(q)=\{q, r\} \\
f_{2}(p)=\ldots, f_{2}(q)=\ldots, f_{2}(r)=\ldots
\end{array}
$$

Alternation Elimination

- Let $\mathcal{A}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathcal{F}\right)$ be an AA and $\Gamma:=\left(\mathrm{Q} \rightarrow 2^{\mathrm{a}}\right)^{\omega}$
- A word w is accepted
- \Leftrightarrow there is a run on w such that all paths are in \mathcal{F}
- $\Leftrightarrow \exists \mathrm{r}: \forall \pi: \mathrm{r} \in \operatorname{runs}(\mathrm{w}) \wedge(\pi \in \mathrm{r} \rightarrow \pi \in \mathcal{F})$
- $\Leftrightarrow \exists \mathrm{r}: \neg \exists \pi: \mathrm{r} \notin \operatorname{runs}(\mathrm{w}) \vee(\pi \in \mathrm{r} \wedge \pi \notin \mathcal{F})$
word run-word
- $\Leftrightarrow \exists \mathrm{r}: \neg \mathcal{B}(\mathrm{w}, \mathrm{r})$
- It is easy to build an NA \mathcal{B} over $\Sigma \times \Gamma$ for
- $\mathcal{B}:=\left(\mathrm{Q}, \Sigma \times \Gamma, \eta, \mathrm{a}_{0}, \mathrm{Q}^{\omega} \backslash \mathcal{F}\right)$
- $\quad \eta(\mathrm{q},(\mathrm{a}, \mathrm{f})):=\left[\begin{array}{ll}\mathrm{f}(\mathrm{q}) & \mathrm{f}(\mathrm{q}) \text { is monomial in } \delta(\mathrm{q}, \mathrm{a}) \\ \{\text { acc-sink }\} & \text { otherwise }\end{array}\right.$
- Finally: complement the NA \mathcal{B} and project it on Σ.

Some Instances

- Extension: alternation elimination for 2-way automata

1. From given 2-way AA over Σ, construct 2-way NA
2. Complement 2-way NA + eliminate bidirectionality
3. Project resulting 1-way NA on Σ

- Translations to 1-way NBAs

	1-Weak Büchi LTL (+ Past)	Büchi PSL (+ Past)	Parity μ LTL (+ Past)	Rabin
1-way	$\mathrm{O}\left(\mathrm{n} 2^{\mathrm{n}}\right.$)	$\mathrm{O}\left(2^{2 n}\right)$	$\mathrm{O}\left(2^{\mathrm{nk} \log \mathrm{n}}\right)$	$\mathbf{O}\left(2^{\text {nk log nk }}\right)$
2-way	$\mathrm{O}\left(\mathrm{n} 2^{3 n}\right)$	$O\left(2^{n^{*} n}\right)$	$\mathrm{O}\left(2^{\mathrm{nk}{ }^{*} \mathrm{nk}}\right)$	
2-way + loop-free	$\mathrm{O}\left(\mathrm{n} 2^{2 \mathrm{n}}\right)$	$O\left(2^{4 n}\right)$	-- in progress --	-- in progress --

Some Instances

- Extension: alternation elimination for 2-way automata

1. From given 2-way AA over Σ, construct 2-way NA
2. Complement 2-way NA + eliminate bidirectionality
3. Project resulting 1-way NA on Σ

- Some instances

	1-Weak Büchi LTL (+ Past)	Büchi PSL (+ Past)	Parity μ LTL (+ Past)	Rabin
1-way	$\mathrm{O}\left(\mathrm{n} 2^{\mathrm{n}}\right)$	$\mathrm{O}\left(2^{2 \mathrm{n}}\right)$	$\mathrm{O}\left(2^{\mathrm{nk} \log \mathrm{n}}\right)$	$\mathrm{O}\left(2^{\text {nk log nk }}\right)$
2-way	$O\left(n 2^{3 n}\right)$	$O\left(2^{n^{*} \mathrm{n}}\right)$	$\mathrm{O}\left(2^{\text {nk* }} \mathrm{nk}\right)$	
2-way + loop-free	$O\left(n 2^{2 n}\right)$	$O\left(2^{4 n}\right)$	-- in progress --	-- in progress --

Complementing Loop-Free 2-way Nondeterministic Büchi Automata (NBA)

2-Way Nondeterministic Büchi Automata (2NBA)

- A 2NBA is a tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}$)
- $\delta: \mathbf{Q} \times \Sigma \rightarrow 2^{\mathbf{Q} \times\{-1,0,1\}}$ transition function
- Additional info where to move the read-only head
- For a word $w=w_{0} w_{1} \ldots$
- A configuration (q, j) is a pair in $Q \times$ 'head positions'

- A run $\left(q_{0}, j_{0}\right)\left(q_{1}, j_{1}\right)$... is a sequence of configurations with $\left(q_{i+1}, j_{i+1}-j_{i}\right) \in \delta\left(q_{i}, w j_{i}\right)$
- w accepted \Leftrightarrow ex. run on w that visits F-states ∞-often
- For AAs, we have $\mathrm{Q} \times$ 'head positions'-labeled runtrees
all runs on w ordered by head position

From Loop-Free 2-Way ABA to 1-Way NBA

- Loop-freeness
- A run of an AA is loop-free : \Leftrightarrow for every path, no configuration occurs twice on the path
- An AA is loop-free $: \Leftrightarrow$ every run is loop-free
- Lemma: if AA is loop-free then the NA is loop-free.

1-Way Miyano-Hayashi Complementation

- A co-NBA $\mathcal{A}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ accepts a word w $: \Leftrightarrow$ ex. run on w that does not visit F-states ∞-often
- NBA for the complement
- $\mathcal{B}:=\left(2^{\mathrm{Q}} \times 2^{\mathrm{a}}, \Sigma, \eta,\left(\left\{q_{0}\right\}, \emptyset\right), 2^{\mathrm{a}} \times\{\emptyset\}\right)$
- $\quad \eta((\mathrm{R}, \emptyset), \mathrm{a}):=(\delta(\mathrm{R}, \mathrm{a}), \delta(\mathrm{R}, \mathrm{a}) \backslash \mathrm{F})$
- $\quad \eta((\mathrm{R}, \mathrm{S}), \mathrm{a}):=(\delta(\mathrm{R}, \mathrm{a}), \delta(\mathrm{S}, \mathrm{a}) \backslash \mathrm{F})$
- w accepted \Leftrightarrow every run on w visits F-states ∞-often
'breakpoint'
segment visited F
- Subset-construction with R-component: compute all runs in parallel (black lines)
- States of S-component have to visit F (red lines)
- $2^{Q} \times\{\emptyset\}$ is visited ∞-often \Leftrightarrow every run visits $F \infty$-often

2-Way Miyano-Hayashi Complementation

- A loop-free co-2NBA $\mathcal{A}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ accepts w $: \Leftrightarrow$ ex. run on w that does not visit F-states ∞-often
- 1-way NBA for the complement
- w rejected \Leftrightarrow every run on w visits F ∞-often

1. Guess sequence $R_{0} R_{1} \ldots \in\left(2^{Q}\right)^{\omega}$ that represents all runs on w ordered by head positions.
2. Check locally that guess is correct:
if $p \in R_{i}$ and $(q, d) \in \delta\left(p, w_{i}\right)$ then $q \in R_{i+d}$

2-Way Miyano-Hayashi Complementation

- A loop-free co-2NBA $\mathcal{A}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ accepts w $: \Leftrightarrow$ ex. run on w that does not visit F-states ∞-often
- 1-way NBA for the complement
- w rejected \Leftrightarrow every run on w visits F ∞-often

1. Guess sequence $R_{0} R_{1} \ldots \in\left(2^{Q}\right)^{\omega}$ that represents all runs on w ordered by head positions.
2. Check locally that guess is correct:
if $p \in R_{i}$ and ($\left.q, d\right) \in \delta\left(p, w_{i}\right)$ then $q \in R_{i+d}$
3. Guess breakpoints:

- partitioning of the R -sequence in segments
- each run starting at the previous breakpoint visits F before reaching the breakpoint

2-Way Miyano-Hayashi Complementation

- A loop-free co-2NBA $\mathcal{A}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ accepts w $: \Leftrightarrow$ ex. run on w that does not visit F-states ∞-often
- 1-way NBA for the complement
- w rejected \Leftrightarrow every run on w visits F ∞-often

4. Guess sequence $S_{0} S_{1} \ldots \in\left(2^{Q \backslash F}\right)^{\omega}$ that represents all runs from q_{0} or a breakpoint to an F-state.
5. Check locally that guess is correct:
if $\mathrm{p} \in \mathrm{S}_{\mathrm{i}},(\mathrm{q}, \mathrm{d}) \in \delta\left(\mathrm{p}, \mathrm{w}_{\mathrm{i}}\right)$ and $\mathrm{q} \notin \mathrm{F}$ then either $\mathrm{q} \in \mathrm{S}_{\mathrm{i}+\mathrm{d}}$ or $\mathrm{S}_{\mathrm{i}+\mathrm{d}}=\emptyset$ (breakpoint).

2-Way Miyano-Hayashi Complementation

- A loop-free co-2NBA $\mathcal{A}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ accepts w $: \Leftrightarrow$ ex. run on w that does not visit F-states ∞-often
- 1-way NBA for the complement
- w rejected \Leftrightarrow every run on w visits F ∞-often

4. Guess sequence $S_{0} S_{1} \ldots \in\left(2^{Q \backslash F}\right)^{\omega}$ that represents all runs from q_{0} or a breakpoint to an F-state.
5. Check locally that guess is correct:
if $\mathrm{p} \in \mathrm{S}_{\mathrm{i}},(\mathrm{q}, \mathrm{d}) \in \delta\left(\mathrm{p}, \mathrm{w}_{\mathrm{i}}\right)$ and $\mathrm{q} \notin \mathrm{F}$ then either $\mathrm{q} \in \mathrm{S}_{\mathrm{i}+\mathrm{d}}$ or $S_{i+d}=\emptyset$ (breakpoint).
6. Check that pattern ' $S_{i}=\emptyset, S_{i+1}=R_{i+1} \backslash F^{\prime}$ occurs ∞-often.
```
every path in \(2^{\text {nd }}\)
```

segment visited F

Outlook: From PSL with Past to NBAs

Outlook: PSL with Past Operators

- linear-time fragment of PSL $=$ LTL + (semi-)regular expressions
- [Gastin, Oddoux] LTL + Past \rightarrow loop-free 2ABA
- For which fragment of PSL + Past is that possible?
- The benefit would be

Fragment of PSL with Past Operators

- Fragments that can be translated to loop-free ABAs

1. Pure future PSL
2. LTL + Past
3. Boolean combinations of 1 . and 2 .
4. ...?

- We are quite sure that even the whole linear-time fragment can be translated to loop-free ABAs.
- Substitute regular expressions by propositions in PSL + Past formula
- Translate LTL + Past formula to loop-free AA
- Substitute the states for the propositions by AA for regular expressions.

Conclusion

- Construction scheme for translating AAs to NAs
- Requires complementation construction for NA with co-acceptance condition
- Requires AA to accept by memoryless runs
- 3 new translations
- Other translations can be seen as instances: simplify + unify constructions and proofs
- Novel complementation for loop-free co-2NBAs
- 1-way Miyano-Hayashi can be seen as special case
- Constructions of Gastin-Oddoux can be seen as special cases
- Ongoing and future work
- Scheme for automata that do not accept by memoryless runs
- Translations for fragments of PSL and μ LTL with past operators: need of complementation for loop-free 2NParityA
- Practical experiences for 2-way translations

