
Christian Dax

ETH Zurich

Joint work with 

Felix Klaedtke and Martin Lange

Konstanz, March 2009

From Linear-Time Logics to Automata



 Model-checking problem:

 Given: finite-state system M (system traces)

 Given: specification as formula  (good traces) ) : (bad traces)

 Question:  M ² ?

 Automata-based approach:

1. Represent sets by nondeterministic automata

2. Represent intersection by product automaton

Motivation: Finite-State Model Checking
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 Alternating automaton as intermediate step

• direct and simple

• linear blow-up
Step 1

• complex

• exponential blow-up

Step 2

-- this talk --

• SPIN model checker

• SMV model checker
Further steps

Motivation: Divide and Conquer
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1. Background

2. Part I: Alternation Elimination Scheme

3. Part II: Scheme Instance for 2-Way Büchi Automata

Outline
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Background on Automata
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 An NA is a tuple (Q, §, ±, q0, F)

 ±: Q£§ 2Q transition function

 F µ Q! acceptance condition 
(state sequences that are considered to be accepting)

 Remark: Büchi and coBüchi condition given as F µ Q

 F = {¼ 2 Q! | an F-state occurs 1-often in ¼}

 F = {¼ 2 Q! | no F-state occurs 1-often in ¼}

 For a word w = w0w1…

 A run q0q1… is a sequence of states with qi+1 2 ±(qi, wi)

 w is accepted :, there is a run on w that is in F

Nondeterministic Automaton (NA)
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¼ 2 F
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wi+1

all runs on w

q0

6



Alternating Automata (AA)

 An AA is a tuple (Q, §, ±, q0, F)

 ±: Q£§ B+(Q) transition function

 B+(Q) positive boolean combination of formulas in DNF

 For a word w = w0w1…

 A run is a Q-labeled tree, where 

- the root is labeled by q0 , and

- a q-labeled node in level i has children labeled by 
states of one of the monomials of ±(q, wi)

 w is accepted
:, there is a run such that every path is in F
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q

r s

±(q, wi)= (r Æ s) Ç (s Æ t)

q0 w0

…
wi

wi+1

w0

…

wi

wi+1

every ¼ 2 F

all runs on w

q0

q0
q0

q0
q0

q0



 Some “runs” on the word {x}{x}{x ,y}{x}!

Example: Runs of an Alternating Büchi Automaton
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qxUy

qacc qxUy

qxUy

qxUy

qacc

qacc

{x}

{x}

{x ,y}

{x}

…
qxUyqacc

not accepting

qxUy

qacc qxUy

qxUyqacc

qacc

{x}

{x}

{x ,y}

{x}

…

accepting

qxUy

qacc qxUy

qacc

qxUyqacc

{x}

{x}

{x ,y}

{x}

…
qxUyqacc

not a run

Q := {qacc, qrej, qxUy, qx, qy}, q0 := qxUy, F := {qacc}

±(qxUy, a) :=   ±(qy, a)   Ç  (±(qx, a) Æ qxUy)

±(qx, a) :=   qacc if x 2 a, ±(qy, a) :=   qacc if y 2 a, 
qrej otherwise qrej otherwise



Part I: Alternation Elimination Scheme
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• linear blow-up
Step 1

• complex

• exponential blow-up

Step 2

-- this talk --

• SPIN model checker

• SMV model checker
Further steps



 Alternation Elimination Scheme:

 Improves and generalizes approach used in green boxes

 Unifies + simplifies constructions and proofs of blue boxes that can now be 
seen as instances

Related Work
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Nondeterministic
Automaton

Input: w 2 §! 

Alternation-Elimination Scheme by Example

11Speaker: Christian Dax

Alternating
Automaton
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Nondeterministic
Automaton

Input: w 2 §! 

Nondeterministic
Automaton

Input: (w, s) 2 §! £ (Q  2Q)!

Word + Run

Alternation-Elimination Scheme by Example
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Nondeterministic
Automaton

Input: w 2 §! 

Nondeterministic
Automaton

Input: (w, s) 2 §! £ (Q  2Q)!

Word + Run

Alternation-Elimination Scheme by Example
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Alternating
Automaton

Input: w 2 §! 

Co-Büchi

Büchi

Büchi

Büchi

2-Way Weak Co-Büchi

2-Way Weak Büchi

Büchi

Büchi

Co-Parity

Parity

Büchi

Büchi

complementation

projection

accepts 
refuter’s strategy

accepts 
automaton’s strategy



Alternation Elimination (1/2) : Runs as Words

 We consider only automata with memoryless runs

 Examples: Büchi, co-Büchi, Parity, Rabin automata

 Equally-labeled nodes have equally-labeled subtrees

 “for equally-labeled nodes, automaton chooses same 
transition”

 Encode run as sequence s0s1s2… 2 (Q  2Q)! of 
successor functions

 si(q) : ‘labels of children of q-labeled node in level i’

 Example:
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q q

s0(p) = {p, q}

s1(p) = {p, q}, s1(q) = {q, r}

s2(p) = …, s2(q) = …, s2(r) = … r

p

p q

qp q
…

p

qp

w0

…

wi

wi+1

q0

'



Alternation Elimination (2/2) : Complementation

 Let A = (Q, §, ±, q0, F) be an AA and ¡ := Q  2Q

 A accepts the word w

 , there is a run on w s.t. every path is in F

 , 9s: s 2 runs(w) Æ 8¼ 2 s: ¼ 2 F

 , 9s: : (s  runs(w) Ç 9¼ 2 s: ¼  F )  F
 , 9s: : B(w, s)

 It is easy to build an NA B over §£¡  for F
 B := (Q, §£¡,  ´, q0, Q! \ F)

 ´(q, (a, s)) :=  s(q) s(q) is a monomial in ±(q, a)
{qacc} otherwise

 Finally: complement the NA B and project it on §.
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w0

…

wi

wi+1

¼  F

‘refuter’s strategy’



 In our paper: scheme also works for 2-way automata

 2-way automata can move the read-only head in both directions.

 Configuration consists of a state and the position of the read-only head

 Loop-freeness

 A run is loop-free :, for every path, no configuration occurs twice

 An AA is loop-free :, every run is loop-free

 Examples:

Scheme for 2-Way Automata
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¼ 2 F

(p,0)

(q,1)

(q,2)

(r,3)

(r,1)

(q,0)

(s,0)

w2w0

¼ 2 F

(p,0)

(q,1)

(q,2)

(r,3)

(r,1)

(q,0)

(r,1)

w2w0

run is not loop-free



 Resulting sizes of 1-way NBAs:

Some Instances: Translations to NBAs
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old/new 1-Weak ABA
LTL (+ Past)

ABA
PSL (+ Past)

AParityA
¹LTL (+ Past)

ARabinA

1-way O(n2n)/ O(22n)/ 2O(nk log n)/ --/O(2nk log nk)

2-way --/O(n23n) 2O(n*n)/ 2O(nk*nk)/

2-way + 
loop-free

O(n22n)/ --/O(24n) --/unpublished --/unpublished

alternating automata

smaller constant (hidden in O notation)
same size but construction more modular 

Part II of this talk



Part II: From 2-Way ABA to NBA
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 PastPSL ' extension of linear-time logics PSL and SVA with past operators

• Translation:  
PastPSL  2-way ABA

Step 1

• Translation:
2-way ABA  1-way NBA

Step 2

Motivation: From PastPSL to NBA
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Motivation: Overview on PSL and SVA

 IEEE standardized temporal logics

 linear core of PSL = LTL + semi-extended regular 
expressions

 linear core of SVA = semi-extended regular expressions

 Widely used in hardware industry (Intel, IBM, 
Infineon, …)

 Well balances between competing needs of 
specification languages:

 Expressiveness: omega-regular languages

 Usability: formulas are easy to read and write

 Implementability: model-checking problem is solvable 
in practice
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Motivation: Why Past Operators?

 PSL and SVA have no past operators

 Justification: “… arbitrary mixing of past and future 
operators results in nonnegligible implementation 
cost.” [TACAS’02]

 However: 

 Past Operators for LTL are natural to express properties 
like

 Another example:

- Every grant is preceded by a request.

- request = start followed by an end with no cancel
in between

21Speaker: Christian Dax

G( grant  O request )

G( grant  O {{start; true*; end} Å {:cancel}*} )



Motivation: Why Past Operators?

 PSL and SVA have no past operators

 Justification: “… arbitrary mixing of past and future 
operators results in nonnegligible implementation 
cost.” [TACAS’02]

 However:

 PastPSL is 

- exponentially more succinct than PSL and SVA, 

- double-exponentially more succinct than PastLTL

 Implementation cost is negligible in theory and does 
not exist in practice for symbolic model checking.
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PastPSL

LTL

PSLPastLTL

¸ exp
· 2exp

¸ 2exp

¸ 2exp

¸ exp

· 3exp

our results

|NBAPastPSL| = O(23 * 2^{2n}) |NBAPSL| = O(22 * 2^{2n})
vs.



Outline: From PastPSL to NBA

24Speaker: Christian Dax

loop-free 2NcoBA 
over §£¡

loop-free 2ABA
over §

NBA 
over §£¡

NBA 
over §

new complementation 
(next slides)

‘refuter’s strategy’
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Complementation Construction

 Given loop-free 2NcoBA A = (Q, §, ±, q0, F)

1. A accepts w , 9 run on w: no F-state occurs 1-often

2. A rejects w , 8 run on w visits an F-state 1-often

 Construct NBA that checks 2.

 Guess sequence R0R1 … 2 (2Q)!

 Check that sequence is consistent with ±
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all runs of A on w

¼ 2 F

(p,0)

(s,1)

(t,2)

(s,3)

(q,1)

(r,0)

(s,0)

w2w0

all runs on w ordered 
by head position

p

q

r s
w0

w1

w2

w3

s

t

s

R0

R1

R2

R3

“2-way powerset construction”



Complementation Construction

 Given loop-free 2NcoBA A = (Q, §, ±, q0, F)

1. A accepts w , 9 run on w: no F-state occurs 1-often

2. A rejects w , 8 run on w visits an F-state 1-often

 Construct NBA that checks 2.

 Guess sequence R0R1 … 2 (2Q)!

 Check that sequence is consistent with ±

 Guess breakpoints:

- each run starting at the previous breakpoint visits F 
before reaching the next breakpoint

- Example: F = {s}

 Check that breakpoints occur 1-often.
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 Alternation-elimination scheme

 Requires complementation construction for NA with co-acceptance condition

 Novel constructions generalizes known constructions and proofs

 Also works for tree automata, visibly pushdown automata, …

 PastPSL

 Novel efficient symbolic translation to NBAs

 Succinctness results for PastPSL with respect to PastLTL and PSL

 Past operators and 2-way automata are not difficult

 Ongoing and future work: Implementation

 Unexpectedly good results for symbolic model checking

 Work in progress for SPIN model checking

Conclusion
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