From Linear-Time Logics to Automata

Christian Dax
ETH Zurich

Joint work with
Felix Klaedtke and Martin Lange

Konstanz, March 2009

Motivation: Finite-State Model Checking

- Model-checking problem:
- Given: finite-state system M (system traces)
- Given: specification as formula φ (good traces) $\Rightarrow \neg \varphi$ (bad traces)
- Question: $\mathrm{M} \vDash \varphi$?

- Automata-based approach:

1. Represent sets by nondeterministic automata
2. Represent intersection by product automaton

Motivation: Divide and Conquer

- Alternating automaton as intermediate step

Outline

1. Background
2. Part I: Alternation Elimination Scheme
3. Part II: Scheme Instance for 2-Way Büchi Automata

Background on Automata

Nondeterministic Automaton (NA)

- An NA is a tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathcal{F}$)
- $\delta: \mathbf{Q} \times \Sigma \rightarrow 2^{\mathrm{a}}$ transition function
- $\mathcal{F} \subseteq \mathrm{Q}^{\omega}$ acceptance condition
(state sequences that are considered to be accepting)
- Remark: Büchi and coBüchi condition given as $\mathrm{F} \subseteq \mathrm{Q}$
- $\mathcal{F}=\left\{\pi \in \mathbf{Q}^{\omega} \mid\right.$ an F-state occurs ∞-often in $\left.\pi\right\}$
- $\mathcal{F}=\left\{\pi \in \mathbf{Q}^{\omega} \mid\right.$ no F-state occurs ∞-often in $\left.\pi\right\}$
- For a word $w=w_{0} w_{1} \ldots$
- A run $q_{0} q_{1} \ldots$ is a sequence of states with $q_{i+1} \in \delta\left(q_{i}, w_{i}\right)$
- w is accepted : \Leftrightarrow there is a run on w that is in \mathcal{F}

Alternating Automata (AA)

- An AA is a tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathcal{F}$)
- $\delta: \mathrm{Q} \times \Sigma \rightarrow \mathcal{B}^{+}(\mathrm{Q})$ transition function
- $\quad \mathcal{B}^{+}(\mathrm{Q})$ positive boolean combination of formulas in DNF

$$
\delta\left(q, w_{i}\right)=(r \wedge s) \vee(s \wedge t)
$$

- For a word $w=w_{0} W_{1} \ldots$
- A run is a Q-labeled tree, where
- the root is labeled by q_{0}, and
- a q-labeled node in level i has children labeled by states of one of the monomials of $\delta\left(\mathrm{q}, \mathrm{w}_{\mathrm{i}}\right)$
- w is accepted
$: \Leftrightarrow$ there is a run such that every path is in \mathcal{F}

Example: Runs of an Alternating Büchi Automaton

$$
\left.\begin{array}{l}
Q:=\left\{q_{a c c} q_{r e j}, q_{x U y}, q_{x}, q_{y}\right\}, \quad q_{0}:=q_{x \cup y} \quad F:=\left\{q_{a c c}\right\} \\
\delta\left(q_{x u y}, a\right):=\delta\left(q_{y y}, a\right) \vee \\
\delta\left(\delta\left(q_{x}, a\right) \wedge q_{x u y}\right)
\end{array}\right]:=\left[\begin{array}{lll}
q_{\text {acc }} & \text { if } x \in a, & \delta\left(q_{y}, a\right):=\left[\begin{array}{ll}
q_{\text {acc }} & \text { if } y \in a, \\
q_{\text {rej }} & \text { otherwise }
\end{array}\right. \\
q_{\text {rej }} & \text { otherwise }
\end{array}\right.
$$

- Some "runs" on the word $\{x\}\{x\}\{x, y\}\{x\}^{\omega}$

Speaker: Christian Dax

Part I: Alternation Elimination Scheme

Related Work

- Alternation Elimination Scheme:
- Improves and generalizes approach used in green boxes
- Unifies + simplifies constructions and proofs of blue boxes that can now be seen as instances

Alternation-Elimination Scheme by Example

Alternation-Elimination Scheme by Example

Alternation-Elimination Scheme by Example

Alternation Elimination (1/2) : Runs as Words

- We consider only automata with memoryless runs
- Examples: Büchi, co-Büchi, Parity, Rabin automata
- Equally-labeled nodes have equally-labeled subtrees
- "for equally-labeled nodes, automaton chooses same transition"

- Encode run as sequence $s_{0} s_{1} s_{2} \ldots \in\left(Q \rightarrow 2^{a}\right)^{\omega}$ of successor functions
- $s_{i}(q)$: 'labels of children of q-labeled node in level i^{\prime}
- Example:

$$
\begin{array}{r}
s_{0}(p)=\{p, q\} \\
s_{1}(p)=\{p, q\}, s_{1}(q)=\{q, r\} \\
s_{2}(p)=\ldots, s_{2}(q)=\ldots, s_{2}(r)=\ldots
\end{array}
$$

Alternation Elimination (2/2) : Complementation

- Let $\mathcal{A}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathcal{F}\right)$ be an AA and $\Gamma:=\mathrm{Q} \rightarrow 2^{\mathrm{Q}}$
- \mathcal{A} accepts the word w
- \Leftrightarrow there is a run on w s.t. every path is in \mathcal{F}
- $\Leftrightarrow \exists \mathrm{s}: \mathrm{s} \in \operatorname{runs}(\mathrm{w}) \wedge \forall \pi \in \mathrm{s}: \pi \in \mathcal{F}$
- $\Leftrightarrow \exists \mathrm{s}: \neg(\mathrm{s} \notin \mathrm{runs}(\mathrm{w}) \vee \exists \pi \in \mathrm{s}: \pi \notin \mathcal{F})$
- $\Leftrightarrow \exists \mathrm{s}: \neg \mathcal{B}(\mathrm{w}, \mathrm{s})$
- It is easy to build an NA \mathcal{B} over $\Sigma \times \Gamma$ for \star
- $\mathcal{B}:=\left(\mathrm{Q}, \Sigma \times \Gamma, \eta, \mathrm{q}_{0}, \mathrm{Q}^{\omega} \backslash \mathcal{F}\right)$
- $\eta(\mathrm{q},(\mathrm{a}, \mathrm{s})):=\left[\begin{array}{ll}\mathrm{s}(\mathrm{q}) & \mathrm{s}(\mathrm{q}) \text { is a monomial in } \delta(\mathrm{q}, \mathrm{a}) \\ \left\{\mathrm{q}_{\mathrm{acc}}\right\} & \text { otherwise }\end{array}\right.$
- Finally: complement the NA \mathcal{B} and project it on Σ.

$\pi \notin \mathcal{F}$

Scheme for 2-Way Automata

- In our paper: scheme also works for 2-way automata
- 2-way automata can move the read-only head in both directions.
- Configuration consists of a state and the position of the read-only head
- Loop-freeness
- A run is loop-free : \Leftrightarrow for every path, no configuration occurs twice
- An AA is loop-free $: \Leftrightarrow$ every run is loop-free
- Examples:

Some Instances: Translations to NBAs

- Resulting sizes of 1-way NBAs:

Part II: From 2-Way ABA to NBA

Motivation: From PastPSL to NBA

- PastPSL \simeq extension of linear-time logics PSL and SVA with past operators

Motivation: Overview on PSL and SVA

- IEEE standardized temporal logics
- linear core of PSL = LTL + semi-extended regular expressions
- linear core of SVA = semi-extended regular expressions
- Widely used in hardware industry (Intel, IBM, Infineon, ...)
- Well balances between competing needs of specification languages:

Expressive

- Implementability: model-checking problem is solvable in practice

Motivation: Why Past Operators?

- PSL and SVA have no past operators
- Justification: "... arbitrary mixing of past and future operators results in nonnegligible implementation cost."
[TACAS'02]
- However:
- Past Operators for LTL are natural to express properties
like

$$
\mathrm{G}(\text { grant } \rightarrow 0 \text { request })
$$

- Another example:
- Every grant is preceded by a request.
- request = start followed by an end with no cancel in between

$$
\text { G(grant } \rightarrow \mathrm{O}\left\{\{\text { start; true*; end }\} \cap\{\neg \text { cancel }\}^{*}\right\} \text {) }
$$

Motivation: Why Past Operators?

- PSL and SVA have no past operators
- Justification: "... arbitrary mixing of past and future operators results in nonnegligible implementation cost."
[TACAS'02]
- However:
- PastPSL is
- exponentially more succinct than PSL and SVA,
- double-exponentially more succinct than PastLTL

- Implementation cost is negligible in theory and does not exist in practice for symbolic model checking.

$$
\mid \text { NBA }_{\text {PastPSL }}\left|=O\left(2^{3^{*} 2^{\wedge}\{2 n\}}\right) \quad\right| \text { vBA }_{\text {PSL }} \mid=O\left(2^{2^{*} 2^{\wedge}\{2 n\}}\right)
$$

Outline: From PastPSL to NBA

Complementation Construction

- Given loop-free $2 \mathrm{NcoBA} \mathcal{A}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$

1. \mathcal{A} accepts $\mathrm{w} \Leftrightarrow \exists$ run on w : no F-state occurs ∞-often
2. \mathcal{A} rejects $\mathbf{w} \Leftrightarrow \forall$ run on \mathbf{w} visits an F-state ∞-often

- Construct NBA that checks 2.
- Guess sequence $R_{0} R_{1} \ldots \in\left(2^{a}\right)^{\omega}$
"2-way powerset construction"
- Check that sequence is consistent with δ

Complementation Construction

- Given loop-free $2 \mathrm{NcoBA} \mathcal{A}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$

1. \mathcal{A} accepts $\mathbf{w} \Leftrightarrow \exists$ run on \mathbf{w} : no F-state occurs ∞-often
2. \mathcal{A} rejects $\mathbf{w} \Leftrightarrow \forall$ run on \mathbf{w} visits an F-state ∞-often

- Construct NBA that checks 2.
- Guess sequence $R_{0} R_{1} \ldots \in\left(2^{Q}\right)^{\omega}$
- Check that sequence is consistent with δ
- Guess breakpoints:
- each run starting at the previous breakpoint visits F before reaching the next breakpoint
- Example: $\mathrm{F}=\{\mathrm{s}\}$
- Check that breakpoints occur ∞-often.

Conclusion

- Alternation-elimination scheme
- Requires complementation construction for NA with co-acceptance condition
- Novel constructions generalizes known constructions and proofs
- Also works for tree automata, visibly pushdown automata, ...
- PastPSL
- Novel efficient symbolic translation to NBAs
- Succinctness results for PastPSL with respect to PastLTL and PSL
- Past operators and 2-way automata are not difficult
- Ongoing and future work: Implementation
- Unexpectedly good results for symbolic model checking
- Work in progress for SPIN model checking

