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 Model-checking problem:

 Given: finite-state system M (system traces)

 Given: specification as formula  (good traces) ) : (bad traces)

 Question:  M ² ?

 Automata-based approach:

1. Represent sets by nondeterministic automata

2. Represent intersection by product automaton

Motivation: Finite-State Model Checking
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traces of M
bad traces :

Empty? (= no bad 
system trace?)

:
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Empty? 



 Alternating automaton as intermediate step

• direct and simple

• linear blow-up
Step 1

• complex

• exponential blow-up

Step 2

-- this talk --

• SPIN model checker

• SMV model checker
Further steps

Motivation: Divide and Conquer
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1. Background

2. Part I: Alternation Elimination Scheme

3. Part II: Scheme Instance for 2-Way Büchi Automata

Outline
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Background on Automata
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 An NA is a tuple (Q, §, ±, q0, F)

 ±: Q£§ 2Q transition function

 F µ Q! acceptance condition 
(state sequences that are considered to be accepting)

 Remark: Büchi and coBüchi condition given as F µ Q

 F = {¼ 2 Q! | an F-state occurs 1-often in ¼}

 F = {¼ 2 Q! | no F-state occurs 1-often in ¼}

 For a word w = w0w1…

 A run q0q1… is a sequence of states with qi+1 2 ±(qi, wi)

 w is accepted :, there is a run on w that is in F

Nondeterministic Automaton (NA)
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¼ 2 F

w0

…

wi

wi+1

all runs on w

q0
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Alternating Automata (AA)

 An AA is a tuple (Q, §, ±, q0, F)

 ±: Q£§ B+(Q) transition function

 B+(Q) positive boolean combination of formulas in DNF

 For a word w = w0w1…

 A run is a Q-labeled tree, where 

- the root is labeled by q0 , and

- a q-labeled node in level i has children labeled by 
states of one of the monomials of ±(q, wi)

 w is accepted
:, there is a run such that every path is in F
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q

r s

±(q, wi)= (r Æ s) Ç (s Æ t)

q0 w0

…
wi

wi+1

w0

…

wi

wi+1

every ¼ 2 F

all runs on w

q0

q0
q0

q0
q0

q0



 Some “runs” on the word {x}{x}{x ,y}{x}!

Example: Runs of an Alternating Büchi Automaton
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qxUy

qacc qxUy

qxUy

qxUy

qacc

qacc

{x}

{x}

{x ,y}

{x}

…
qxUyqacc

not accepting

qxUy

qacc qxUy

qxUyqacc

qacc

{x}

{x}

{x ,y}

{x}

…

accepting

qxUy

qacc qxUy

qacc

qxUyqacc

{x}

{x}

{x ,y}

{x}

…
qxUyqacc

not a run

Q := {qacc, qrej, qxUy, qx, qy}, q0 := qxUy, F := {qacc}

±(qxUy, a) :=   ±(qy, a)   Ç  (±(qx, a) Æ qxUy)

±(qx, a) :=   qacc if x 2 a, ±(qy, a) :=   qacc if y 2 a, 
qrej otherwise qrej otherwise



Part I: Alternation Elimination Scheme
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• direct and simple

• linear blow-up
Step 1

• complex

• exponential blow-up

Step 2

-- this talk --

• SPIN model checker

• SMV model checker
Further steps



 Alternation Elimination Scheme:

 Improves and generalizes approach used in green boxes

 Unifies + simplifies constructions and proofs of blue boxes that can now be 
seen as instances

Related Work

10Speaker: Christian Dax

POPL ’88
Vardi

ICALP ’98
Vardi

TCS ’92
Miyano, Hayashi

CONCUR ’01
Kupferman, Piterman, Vardi

FSTTCS ’06
Dax, Hofmann, Lange

Alternation 
Elimination 
Scheme

CAV ’01
Gastin, Oddoux

MFCS ’03
Gastin, Oddoux

LICS ’01
Lange, Stirling



Nondeterministic
Automaton

Input: w 2 §! 

Alternation-Elimination Scheme by Example
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Alternating
Automaton

Input: w 2 §! 

Büchi

Büchi

…



Nondeterministic
Automaton

Input: w 2 §! 

Nondeterministic
Automaton

Input: (w, s) 2 §! £ (Q  2Q)!

Word + Run

Alternation-Elimination Scheme by Example
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Input: w 2 §! 

Co-Büchi

Büchi

Büchi

Büchi

complementation

projection

accepts 
refuter’s strategy

accepts 
automaton’s strategy



Nondeterministic
Automaton

Input: w 2 §! 

Nondeterministic
Automaton

Input: (w, s) 2 §! £ (Q  2Q)!

Word + Run

Alternation-Elimination Scheme by Example
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Alternating
Automaton

Input: w 2 §! 

Co-Büchi

Büchi

Büchi

Büchi

2-Way Weak Co-Büchi

2-Way Weak Büchi

Büchi

Büchi

Co-Parity

Parity

Büchi

Büchi

complementation

projection

accepts 
refuter’s strategy

accepts 
automaton’s strategy



Alternation Elimination (1/2) : Runs as Words

 We consider only automata with memoryless runs

 Examples: Büchi, co-Büchi, Parity, Rabin automata

 Equally-labeled nodes have equally-labeled subtrees

 “for equally-labeled nodes, automaton chooses same 
transition”

 Encode run as sequence s0s1s2… 2 (Q  2Q)! of 
successor functions

 si(q) : ‘labels of children of q-labeled node in level i’

 Example:
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q q

s0(p) = {p, q}

s1(p) = {p, q}, s1(q) = {q, r}

s2(p) = …, s2(q) = …, s2(r) = … r

p

p q

qp q
…

p

qp

w0

…

wi

wi+1

q0

'



Alternation Elimination (2/2) : Complementation

 Let A = (Q, §, ±, q0, F) be an AA and ¡ := Q  2Q

 A accepts the word w

 , there is a run on w s.t. every path is in F

 , 9s: s 2 runs(w) Æ 8¼ 2 s: ¼ 2 F

 , 9s: : (s  runs(w) Ç 9¼ 2 s: ¼  F )  F
 , 9s: : B(w, s)

 It is easy to build an NA B over §£¡  for F
 B := (Q, §£¡,  ´, q0, Q! \ F)

 ´(q, (a, s)) :=  s(q) s(q) is a monomial in ±(q, a)
{qacc} otherwise

 Finally: complement the NA B and project it on §.

15Speaker: Christian Dax

w0

…

wi

wi+1

¼  F

‘refuter’s strategy’



 In our paper: scheme also works for 2-way automata

 2-way automata can move the read-only head in both directions.

 Configuration consists of a state and the position of the read-only head

 Loop-freeness

 A run is loop-free :, for every path, no configuration occurs twice

 An AA is loop-free :, every run is loop-free

 Examples:

Scheme for 2-Way Automata
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¼ 2 F

(p,0)

(q,1)

(q,2)

(r,3)

(r,1)

(q,0)

(s,0)

w2w0

¼ 2 F

(p,0)

(q,1)

(q,2)

(r,3)

(r,1)

(q,0)

(r,1)

w2w0

run is not loop-free



 Resulting sizes of 1-way NBAs:

Some Instances: Translations to NBAs
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old/new 1-Weak ABA
LTL (+ Past)

ABA
PSL (+ Past)

AParityA
¹LTL (+ Past)

ARabinA

1-way O(n2n)/ O(22n)/ 2O(nk log n)/ --/O(2nk log nk)

2-way --/O(n23n) 2O(n*n)/ 2O(nk*nk)/

2-way + 
loop-free

O(n22n)/ --/O(24n) --/unpublished --/unpublished

alternating automata

smaller constant (hidden in O notation)
same size but construction more modular 

Part II of this talk



Part II: From 2-Way ABA to NBA
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 PastPSL ' extension of linear-time logics PSL and SVA with past operators

• Translation:  
PastPSL  2-way ABA

Step 1

• Translation:
2-way ABA  1-way NBA

Step 2

Motivation: From PastPSL to NBA

19Speaker: Christian Dax

:

BM

M£B

A



Motivation: Overview on PSL and SVA

 IEEE standardized temporal logics

 linear core of PSL = LTL + semi-extended regular 
expressions

 linear core of SVA = semi-extended regular expressions

 Widely used in hardware industry (Intel, IBM, 
Infineon, …)

 Well balances between competing needs of 
specification languages:

 Expressiveness: omega-regular languages

 Usability: formulas are easy to read and write

 Implementability: model-checking problem is solvable 
in practice
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Expressive
ness

Impleme
ntability

Usability



Motivation: Why Past Operators?

 PSL and SVA have no past operators

 Justification: “… arbitrary mixing of past and future 
operators results in nonnegligible implementation 
cost.” [TACAS’02]

 However: 

 Past Operators for LTL are natural to express properties 
like

 Another example:

- Every grant is preceded by a request.

- request = start followed by an end with no cancel
in between
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G( grant  O request )

G( grant  O {{start; true*; end} Å {:cancel}*} )



Motivation: Why Past Operators?

 PSL and SVA have no past operators

 Justification: “… arbitrary mixing of past and future 
operators results in nonnegligible implementation 
cost.” [TACAS’02]

 However:

 PastPSL is 

- exponentially more succinct than PSL and SVA, 

- double-exponentially more succinct than PastLTL

 Implementation cost is negligible in theory and does 
not exist in practice for symbolic model checking.
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PastPSL

LTL

PSLPastLTL

¸ exp
· 2exp

¸ 2exp

¸ 2exp

¸ exp

· 3exp

our results

|NBAPastPSL| = O(23 * 2^{2n}) |NBAPSL| = O(22 * 2^{2n})
vs.



Outline: From PastPSL to NBA
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loop-free 2NcoBA 
over §£¡

loop-free 2ABA
over §

NBA 
over §£¡

NBA 
over §

new complementation 
(next slides)

‘refuter’s strategy’

:
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PastPSL formula



Complementation Construction

 Given loop-free 2NcoBA A = (Q, §, ±, q0, F)

1. A accepts w , 9 run on w: no F-state occurs 1-often

2. A rejects w , 8 run on w visits an F-state 1-often

 Construct NBA that checks 2.

 Guess sequence R0R1 … 2 (2Q)!

 Check that sequence is consistent with ±
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all runs of A on w

¼ 2 F

(p,0)

(s,1)

(t,2)

(s,3)

(q,1)

(r,0)

(s,0)

w2w0

all runs on w ordered 
by head position

p

q

r s
w0

w1

w2

w3

s

t

s

R0

R1

R2

R3

“2-way powerset construction”



Complementation Construction

 Given loop-free 2NcoBA A = (Q, §, ±, q0, F)

1. A accepts w , 9 run on w: no F-state occurs 1-often

2. A rejects w , 8 run on w visits an F-state 1-often

 Construct NBA that checks 2.

 Guess sequence R0R1 … 2 (2Q)!

 Check that sequence is consistent with ±

 Guess breakpoints:

- each run starting at the previous breakpoint visits F 
before reaching the next breakpoint

- Example: F = {s}

 Check that breakpoints occur 1-often.
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 Alternation-elimination scheme

 Requires complementation construction for NA with co-acceptance condition

 Novel constructions generalizes known constructions and proofs

 Also works for tree automata, visibly pushdown automata, …

 PastPSL

 Novel efficient symbolic translation to NBAs

 Succinctness results for PastPSL with respect to PastLTL and PSL

 Past operators and 2-way automata are not difficult

 Ongoing and future work: Implementation

 Unexpectedly good results for symbolic model checking

 Work in progress for SPIN model checking

Conclusion
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