From Linear-Time Logics to Automata

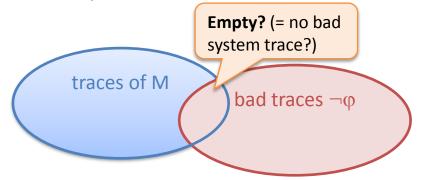
Christian Dax ETH Zurich

Joint work with Felix Klaedtke and Martin Lange

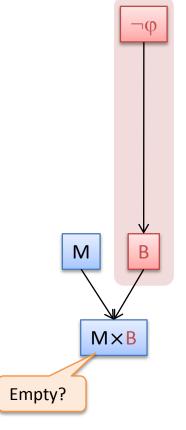
Konstanz, March 2009

Motivation: Finite-State Model Checking

- Model-checking problem:
 - Given: finite-state system M (system traces)
 - Given: specification as formula φ (good traces) $\Rightarrow \neg \varphi$ (bad traces)
 - Question: $M \models \phi$?

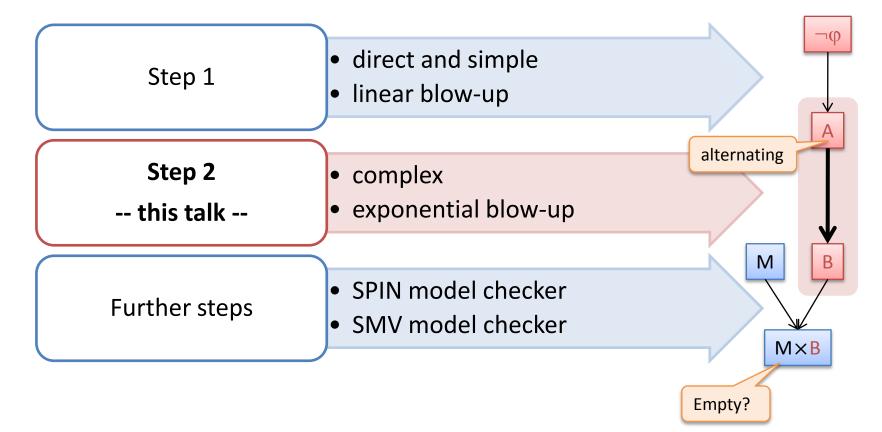


- Automata-based approach:
 - 1. Represent sets by nondeterministic automata
 - 2. Represent intersection by product automaton

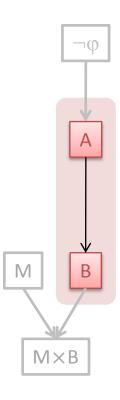


Motivation: Divide and Conquer

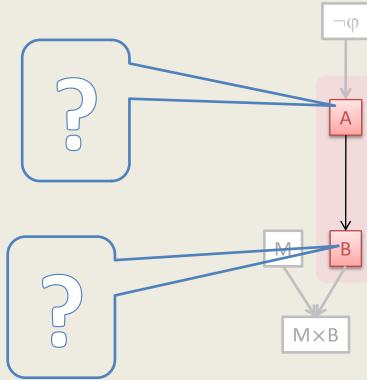
Alternating automaton as intermediate step



- 1. Background
- 2. Part I: Alternation Elimination Scheme
- 3. Part II: Scheme Instance for 2-Way Büchi Automata



Background on Automata

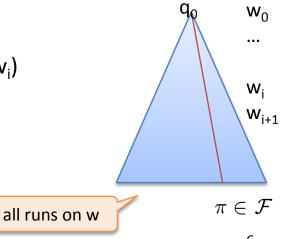


Nondeterministic Automaton (NA)

- An **NA** is a tuple (Q, Σ , δ , q₀, \mathcal{F})
 - $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{2}^{\mathbf{Q}}$ transition function
 - *F* ⊆ Q^ω acceptance condition (state sequences that are considered to be accepting)

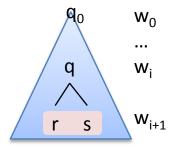
Remark: Büchi and coBüchi condition given as F ⊆ Q

- $\mathcal{F} = \{\pi \in \mathbf{Q}^{\omega} \mid \text{an } \mathsf{F}\text{-state occurs } \infty\text{-often in } \pi\}$
- $\mathcal{F} = \{\pi \in \mathbf{Q}^{\omega} \mid \text{no } \mathsf{F}\text{-state occurs } \infty\text{-often in } \pi\}$
- For a word $w = w_0 w_1 \dots$
 - A **run** q_0q_1 ... is a sequence of states with $q_{i+1} \in \delta(q_i, w_i)$
 - w is **accepted** : \Leftrightarrow there is a run on w that is in \mathcal{F}



Alternating Automata (AA)

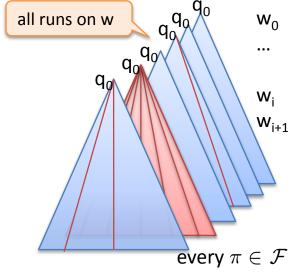
- An **AA** is a tuple (Q, Σ , δ , q₀, \mathcal{F})
 - $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathcal{B}^+(\mathbf{Q})$ transition function
 - $\mathcal{B}^+(Q)$ positive boolean combination of formulas in DNF



 $\delta(q, w_i) = (r \land s) \lor (s \land t)$

- For a word $w = w_0 w_1 \dots$
 - A **run** is a Q-labeled tree, where
 - the root is labeled by q_0 , and
 - a q-labeled node in level i has children labeled by states of one of the monomials of $\delta(q, w_i)$
 - w is accepted

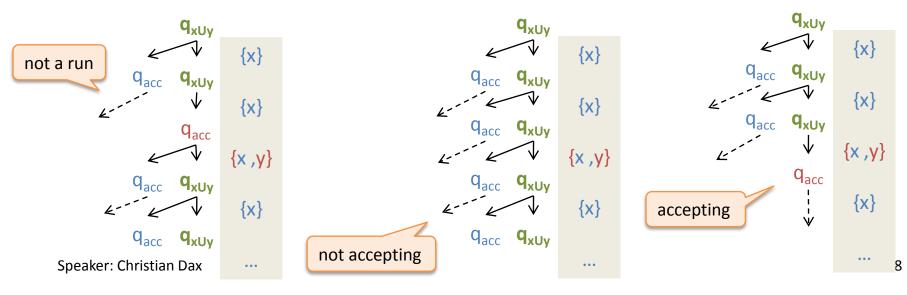
: \Leftrightarrow there is a run such that every path is in ${\mathcal F}$



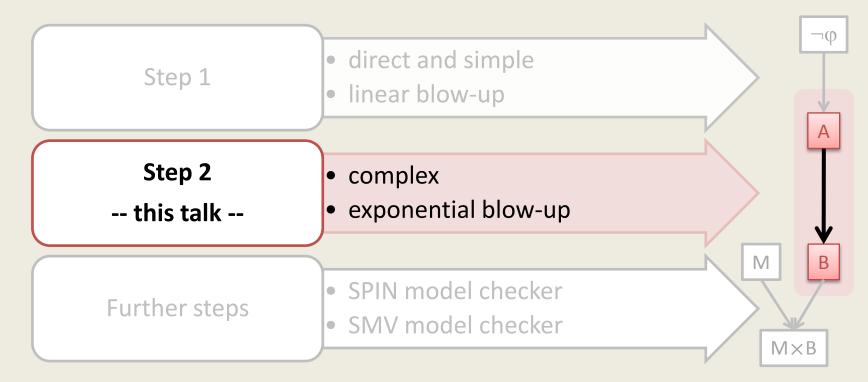
Example: Runs of an Alternating Büchi Automaton

$$\begin{aligned} & \mathsf{Q} := \{\mathsf{q}_{\mathsf{acc}}, \mathsf{q}_{\mathsf{rej}}, \mathsf{q}_{\mathsf{xUy}}, \mathsf{q}_{\mathsf{x}}, \mathsf{q}_{\mathsf{y}}\}, \qquad \mathsf{q}_{0} := \mathsf{q}_{\mathsf{xUy}}, \qquad \mathsf{F} := \{\mathsf{q}_{\mathsf{acc}}\} \\ & \delta(\mathsf{q}_{\mathsf{xUy}}, \mathsf{a}) := \ \delta(\mathsf{q}_{\mathsf{y}}, \mathsf{a}) \ \lor \ (\delta(\mathsf{q}_{\mathsf{x}}, \mathsf{a}) \land \mathsf{q}_{\mathsf{xUy}}) \\ & \delta(\mathsf{q}_{\mathsf{x}}, \mathsf{a}) := \begin{bmatrix} \mathsf{q}_{\mathsf{acc}} & \text{if } \mathsf{x} \in \mathsf{a}, \\ \mathsf{q}_{\mathsf{rej}} & \text{otherwise} \end{bmatrix} \qquad \delta(\mathsf{q}_{\mathsf{y}}, \mathsf{a}) := \begin{bmatrix} \mathsf{q}_{\mathsf{acc}} & \text{if } \mathsf{y} \in \mathsf{a}, \\ \mathsf{q}_{\mathsf{rej}} & \text{otherwise} \end{bmatrix} \end{aligned}$$

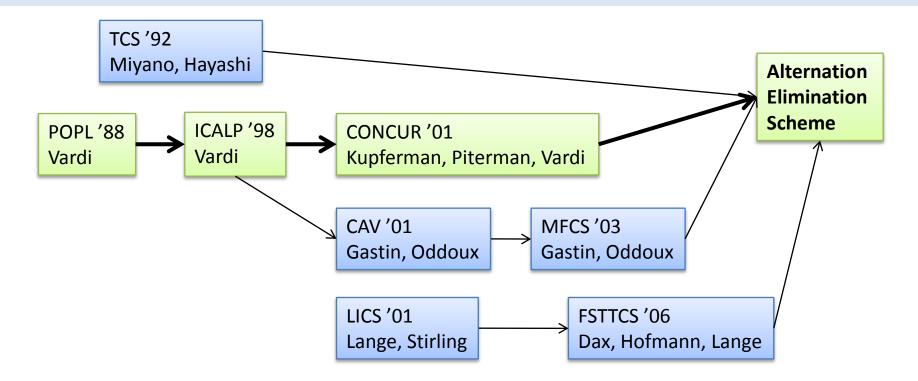
Some "runs" on the word $\{x\}\{x\}\{x,y\}\{x\}^{\omega}$



Part I: Alternation Elimination Scheme

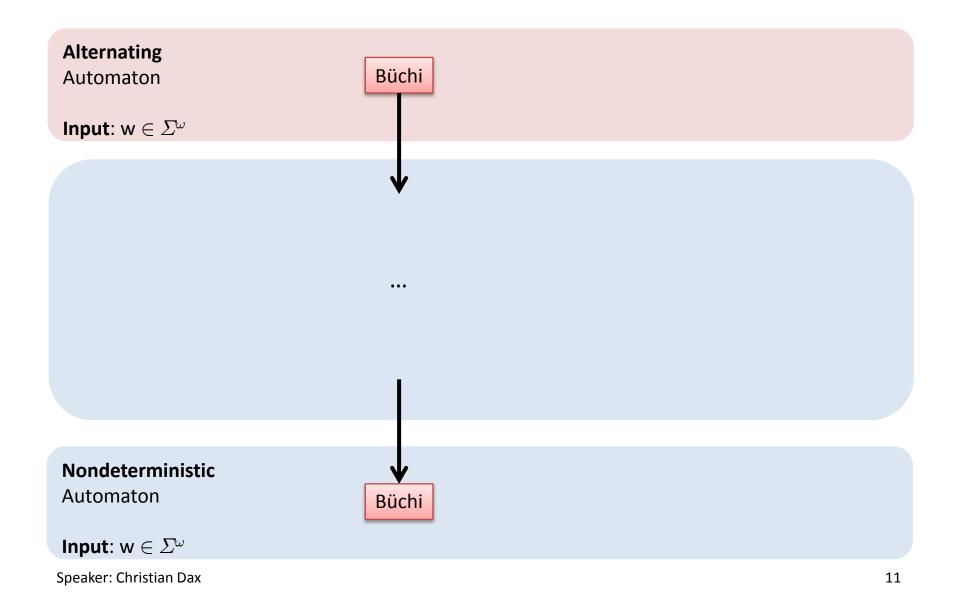


Related Work

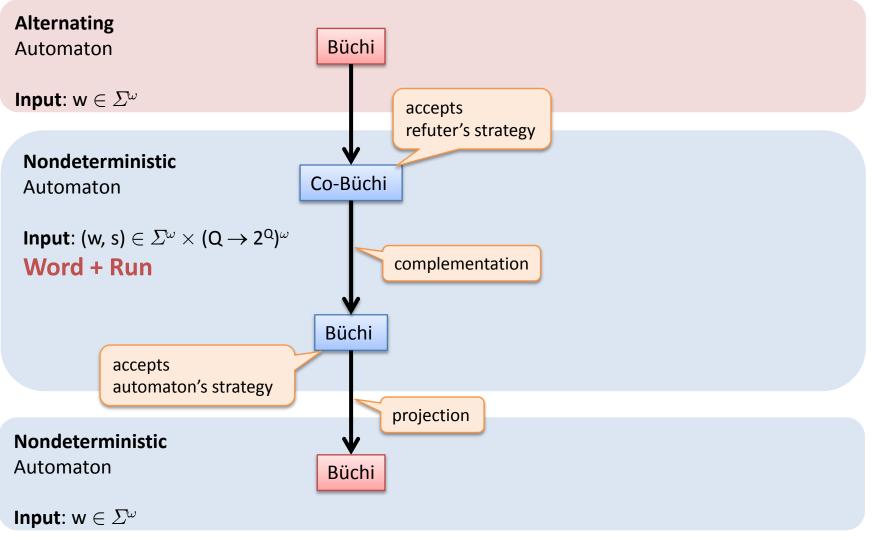


- Alternation Elimination Scheme:
 - Improves and generalizes approach used in green boxes
 - Unifies + simplifies constructions and proofs of blue boxes that can now be seen as instances

Alternation-Elimination Scheme by Example

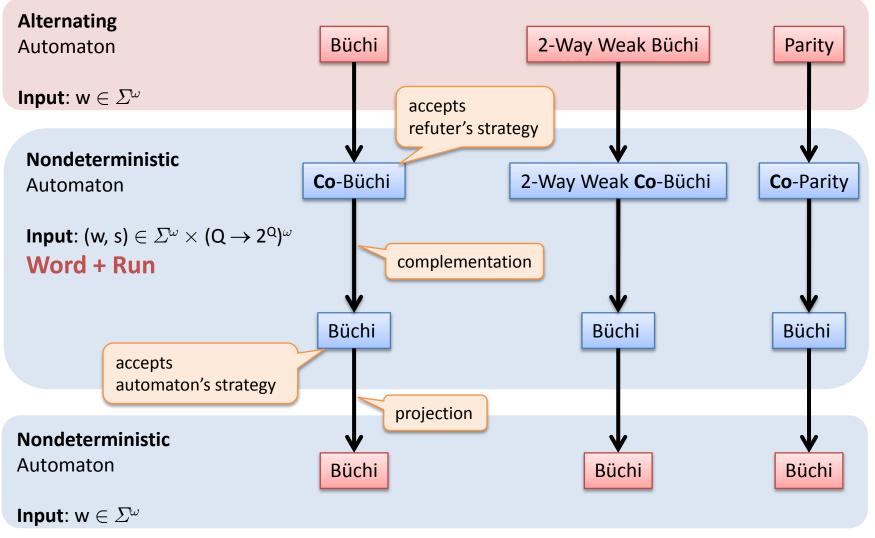


Alternation-Elimination Scheme by Example



Speaker: Christian Dax

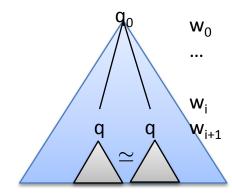
Alternation-Elimination Scheme by Example



Speaker: Christian Dax

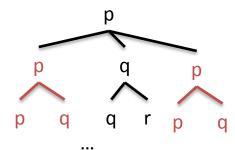
Alternation Elimination (1/2) : Runs as Words

- We consider only automata with memoryless runs
 - Examples: Büchi, co-Büchi, Parity, Rabin automata
 - Equally-labeled nodes have equally-labeled subtrees
 - "for equally-labeled nodes, automaton chooses same transition"



- Encode run as sequence s₀s₁s₂... ∈ (Q → 2^Q)^ω of successor functions
 - s_i(q) : 'labels of children of q-labeled node in level i'
 - Example:

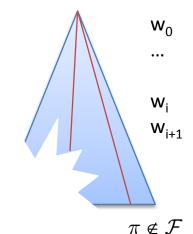
 $s_0(p) = \{p, q\}$ $s_1(p) = \{p, q\}, s_1(q) = \{q, r\}$ $s_2(p) = ..., s_2(q) = ..., s_2(r) = ...$



Alternation Elimination (2/2) : Complementation

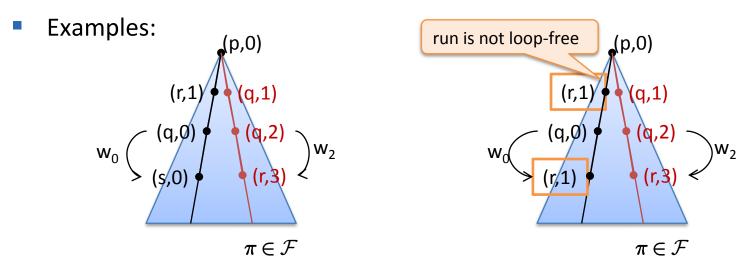
- Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, \mathcal{F})$ be an AA and $\Gamma := Q \rightarrow 2^Q$
- \mathcal{A} accepts the word w
 - \Leftrightarrow there is a run on w s.t. every path is in \mathcal{F}
 - $\Leftrightarrow \exists s: s \in runs(w) \land \forall \pi \in s: \pi \in \mathcal{F}$
 - $\Leftrightarrow \exists s: \neg (s \notin runs(w) \lor \exists \pi \in s: \pi \notin \mathcal{F}) \bigstar$
 - $\Leftrightarrow \exists s: \neg \mathcal{B}(w, s)$

- It is easy to build an NA \mathcal{B} over $\Sigma \times \Gamma$ for \bigstar
 - $\mathcal{B} := (\mathbf{Q}, \Sigma \times \Gamma, \eta, \mathbf{q}_0, \mathbf{Q}^{\omega} \setminus \mathcal{F})$
 - $\eta(q, (a, s)) := \begin{bmatrix} s(q) & s(q) \text{ is a monomial in } \delta(q, a) \\ \{q_{acc}\} & otherwise \end{bmatrix}$
- Finally: complement the NA \mathcal{B} and project it on Σ .



Scheme for 2-Way Automata

- In our paper: scheme also works for 2-way automata
 - 2-way automata can move the read-only head in both directions.
 - Configuration consists of a state and the position of the read-only head
- Loop-freeness
 - A run is **loop-free** :⇔ for every path, no configuration occurs twice
 - An AA is loop-free :⇔ every run is loop-free

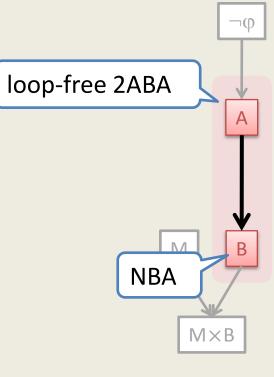


Some Instances: Translations to NBAs

Resulting sizes of 1-way NBAs:

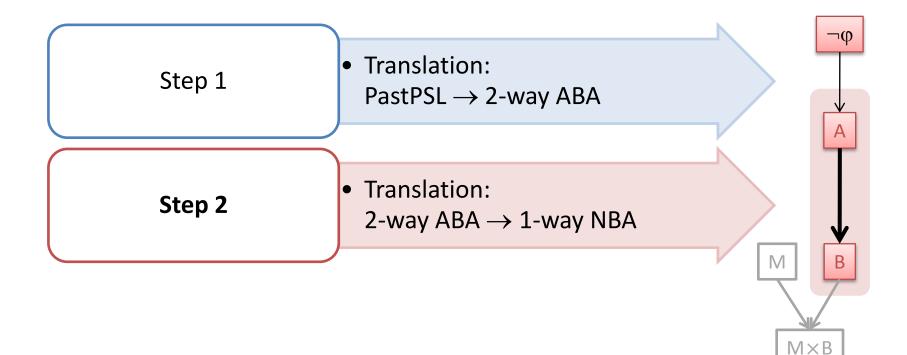
				alternating automata
old/new	1-Weak ABA LTL (+ Past)	ABA PSL (+ Past)	AParityA µLTL (+ Past)	ARabinA
1-way	O(n2 ⁿ)/〇	O(2 ²ⁿ)/	2 ^{O(nk log n})/	/O(2 ^{nk log nk})
2-way	/O(n2 ³ⁿ)	2 ^{0(n*n)} /	2 ^{O(nk*nk)} /	
2-way + loop-free	O(n2 ²ⁿ)/	/O(2 ⁴ n)	/unpublished	/unpublished
		Part II of this talk		(hidden in O notation) nstruction more modular

Part II: From 2-Way ABA to NBA



Motivation: From PastPSL to NBA

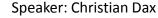
• PastPSL \simeq extension of linear-time logics PSL and SVA with past operators

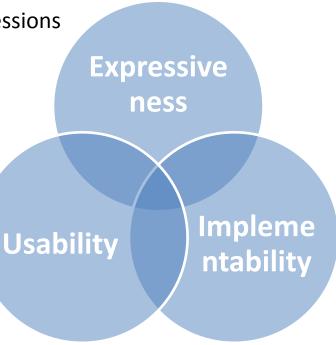


Motivation: Overview on PSL and SVA

IEEE standardized temporal logics

- linear core of PSL = LTL + semi-extended regular expressions
- linear core of SVA = semi-extended regular expressions
- Widely used in hardware industry (Intel, IBM, Infineon, ...)
- Well balances between competing needs of specification languages:
 - **Expressiveness**: omega-regular languages
 - Usability: formulas are easy to read and write
 - Implementability: model-checking problem is solvable in practice





Motivation: Why Past Operators?

PSL and SVA have no past operators

 Justification: "... arbitrary mixing of past and future operators results in nonnegligible implementation cost." [TACAS'02]

However:

 Past Operators for LTL are natural to express properties like

```
G( grant \rightarrow O request )
```

- Another example:
 - Every grant is preceded by a request.
 - request = start followed by an end with no cancel in between

```
G(grant \rightarrow O {{start; true*; end} \cap {\negcancel}*})
```

Motivation: Why Past Operators?

PSL and SVA have no past operators

 Justification: "... arbitrary mixing of past and future operators results in nonnegligible implementation cost." [TACAS'02]

However:

- PastPSL is
 - exponentially more succinct than PSL and SVA,
 - double-exponentially more succinct than PastLTL
- Implementation cost is negligible in theory and does not exist in practice for symbolic model checking.

$$|NBA_{PastPSL}| = O(2^{3 * 2^{2n}})$$
 $|NBA_{PSL}| = O(2^{2 * 2^{2n}})$
vs.

> exp

 $> 2 \exp$

our results

PSL

PastPSI

< 3exp

LTL

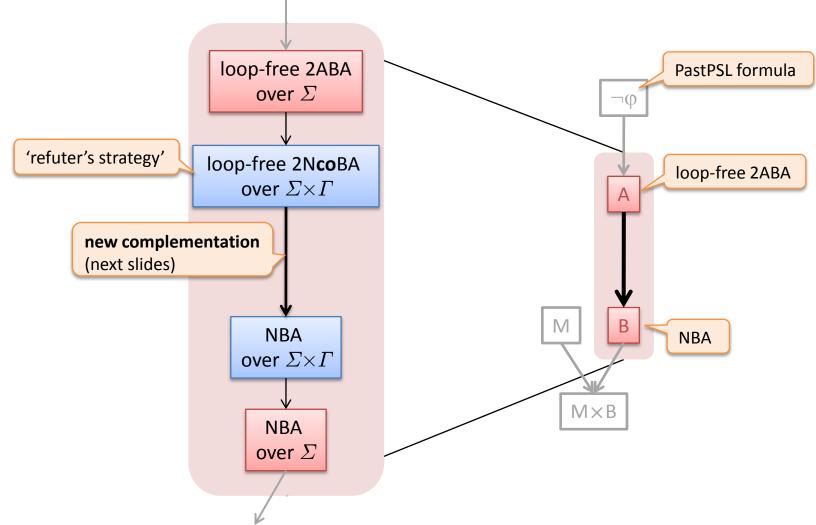
 $> 2 \exp$

> exp

< 2 exp

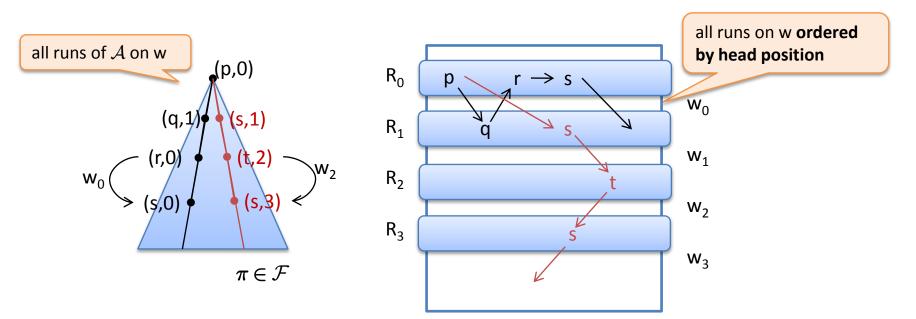
PastLTL

Outline: From PastPSL to NBA



Complementation Construction

- Given loop-free 2NcoBA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$
 - 1. \mathcal{A} accepts w $\Leftrightarrow \exists$ run on w: no F-state occurs ∞ -often
 - 2. \mathcal{A} rejects w $\Leftrightarrow \forall$ run on w visits an F-state ∞ -often
- Construct NBA that checks 2.
 - Guess sequence $R_0R_1 \dots \in (2^Q)^{\omega}$
 - Check that sequence is consistent with δ

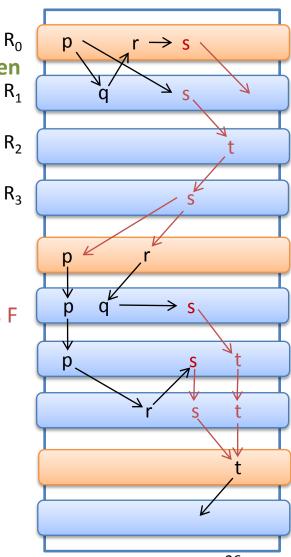


"2-way powerset construction"

Complementation Construction

Given loop-free 2NcoBA \mathcal{A} = (Q, Σ , δ , q₀, F)

- 1. \mathcal{A} accepts w $\Leftrightarrow \exists$ run on w: no F-state occurs ∞ -often
- 2. \mathcal{A} rejects w $\Leftrightarrow \forall$ run on w visits an F-state ∞ -often
- Construct NBA that checks 2.
 - Guess sequence $R_0R_1 \dots \in (2^Q)^{\omega}$
 - Check that sequence is consistent with δ
 - Guess breakpoints:
 - each run starting at the previous breakpoint visits F before reaching the next breakpoint
 - Example: F = {s}
 - Check that breakpoints occur ∞ -often.



Conclusion

- Alternation-elimination scheme
 - Requires complementation construction for NA with co-acceptance condition
 - Novel constructions generalizes known constructions and proofs
 - Also works for tree automata, visibly pushdown automata, ...

PastPSL

- Novel efficient symbolic translation to NBAs
- Succinctness results for PastPSL with respect to PastLTL and PSL
- Past operators and 2-way automata are not difficult
- Ongoing and future work: Implementation
 - Unexpectedly good results for symbolic model checking
 - Work in progress for SPIN model checking