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Motivation: Finite-State Model Checking

®= Model-checking problem:
= Given: finite-state system M (system traces)

= Given: specification as formula ¢ (good traces) = —¢ (bad traces)

= Question: M F ¢?

Empty? (= no bad
system trace?)

bad traces —¢

= Automata-based approach:
1. Represent sets by nondeterministic automata
2. Represent intersection by product automaton
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Motivation: Divide and Conquer

= Alternating automaton as intermediate step

( )
Step 1
\_ J
é )
Step 2
-- this talk --

\_ W,
( )
Further steps
\_ W,
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e direct and simple
e linear blow-up

e complex
e exponential blow-up

e SPIN model checker
e SMV model checker
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Outline

1. Background

2. Partl: Alternation Elimination Scheme

3. Partll: Scheme Instance for 2-Way Blichi Automata
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Background on Automata
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Nondeterministic Automaton (NA)

= AnNAisatuple(Q, X, 9, q, F)
= §: Qx Y — 2%transition function

= JF C Q¥ acceptance condition
(state sequences that are considered to be accepting)

= Remark: Biichi and coBiichi condition givenas F C Q
= F={m € Q¥]| an F-state occurs oo-often in 7}
= F={m € Q¥| no F-state occurs oo-often in 7}

= Forawordw =wyw,...
= ArunqyQ,... is a sequence of states with q,,; € d(q;, w;)
=  wis accepted ;& thereis a run on w thatis in F

all runs onw
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Alternating Automata (AA)

= AnAAisatuple (Q, X, 9, qy F)
= ):Qx XY — B*Q) transition function
= [B*(Q) positive boolean combination of formulas in DNF

= Forawordw =wyw,...
= ArunisaQ-labeled tree, where
- theroot is labeled by q,, and

- aqg-labeled node in level i has children labeled by | a)1 runs on w
states of one of the monomials of d(q, w,)

= w is accepted q
&> thereis a run such that every pathis in F

everym € F
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Example: Runs of an Alternating Biichi Automaton

Q = {qaccl qrejl quyI qxl qy}l qO = quy) F = {qacc}
o(a,u, @) = dla,a) vV (d(a,a)Ady,)

oa,a):=[a,. ifxea, o(a,a):=[a,,. ify€a,
dr; Otherwise O Otherwise

= Some “runs” on the word {x}{xHx ,yHx}¥

Axuy Qxuy Ayuy

A “V <V K
not a run g q

Qacc quy qfcc quy ’f‘H"V
P STV e {x}

q qu

Qacc qf\cc quy ,f‘CC \l/ y
YV {xy) TV oy £ x.y}

qacc quy qfcc qxuy q?cc
2 e’ {x} accepting \i/ {x}

qacc quy qacc quy
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Part I: Alternation Elimination Scheme

Step 2 e complex
-- this talk -- e exponential blow-up
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= Alternation Elimination Scheme:
= Improves and generalizes approach used in green boxes

= Unifies + simplifies constructions and proofs of blue boxes that can now be
seen as instances
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Alternation-Elimination Scheme by Example

Alternating
Automaton

Input: w € .V

Nondeterministic
Automaton

Input: w € ).V

Speaker: Christian Dax

Bichi

Bichi
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Alternation-Elimination Scheme by Example

Alternating
Automaton Bichi

. W
Input: w € X/ accepts
refuter’s strategy

Nondeterministic
Automaton Co-Blichi

Input: (w, s) € Jv¥ x (Q — 29
Word + Run complementation

Bichi

accepts
automaton’s strategy

projection
Nondeterministic
Automaton Biichi

Input: w € 3V
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Alternation-Elimination Scheme by Example

Alternating
Automaton

Input: w € .V

Nondeterministic
Automaton

Input: (w, s) € 2¥ x (Q — 29
Word + Run

accepts
automaton’s strategy

Nondeterministic
Automaton

Input: w € 3V
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Blichi 2-Way Weak Blchi Parity
accepts
refuter’s strategy
Co-Buchi 2-Way Weak Co-Blichi Co-Parity
complementation
Blichi Blichi Blichi
projection
Blichi Buchi Blichi
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Alternation Elimination (1/2) : Runs as Words

= We consider only automata with memoryless runs
= Examples: Blichi, co-Blichi, Parity, Rabin automata
= Equally-labeled nodes have equally-labeled subtrees

= “for equally-labeled nodes, automaton chooses same
transition”

" Encode run as sequence s.5s,... € (Q — 29)~ of
successor functions
= s(q) : ‘labels of children of g-labeled node in level i’

= Example:
So(p) = {p, a} P
/\
s1(p) ={p, a}, s,(d) ={a, r} P q ;
VA YA N\
SZ(p) =y Sz(q) = .., Sz(r) =... P q q r 0 q
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Alternation Elimination (2/2) : Complementation

= letA=(Q, X, J,qy F)beanAAand [':=Q — 29

= A accepts the word w
& thereis a run on w s.t. every path isin F
= &Sdsiseruns(W)AVresime F
Sdsia(sgruns(w)Vdresimg F) &
& ds: = B(w, s)

‘refuter’s strategy’

" |tis easyto buildan NA B over XX I for

W
v Bi=(Q IxI 1, d Q°\ F)
n(g, (a, s)) :=[ s(q)  s(q) is a monomial in d(q, a)
{q..} otherwise Wi
Wi
= Finally: complement the NA 5 and project it on 2.
me F
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Scheme for 2-Way Automata

" |n our paper: scheme also works for 2-way automata
= 2-way automata can move the read-only head in both directions.
= Configuration consists of a state and the position of the read-only head

= Loop-freeness
= Arunis loop-free :& for every path, no configuration occurs twice

= An AAis loop-free :< every run is loop-free

= Examples:
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Some Instances: Translations to NBAs

= Resulting sizes of 1-way NBAs:

alternating automata

old/new 1-Weak ABA ABA AParityA ARabinA
LTL (+ Past) PSL (+ Past) LLTL (+ Past)
1-way O(nzn)/O O(zZn)/O 20(nk|og n)/o __/O(anlog nk)
2-way --/0(n23") ZO(n*n)/O 20(nk*nk)/o
2-way + O(n22“)/o --/0(24") --/unpublished --/unpublished

loop-free
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Part Il of this talk
© smaller constant (hidden in O notation)

O same size but construction more modular
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Part ll: From 2-Way ABA to NBA

P

[ loop-free 2ABA

\

\Vi

NBA

MXxB
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Motivation: From PastPSL to NBA

= PastPSL ~ extension of linear-time logics PSL and SVA with past operators

~

-
Step 1
\_
~
Step 2
\_

J
~
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e Translation:
PastPSL — 2-way ABA

e Translation:
2-way ABA — 1-way NBA

¢
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Motivation: Overview on PSL and SVA

= |EEE standardized temporal logics

= linear core of PSL = LTL + semi-extended regular
expressions

= linear core of SVA = semi-extended regular expressions

Expressive

= Widely used in hardware industry (Intel, IBM, ness
Infineon, ...)

= Well balances between competing needs of Impleme
specification languages: ntability

= Expressiveness: omega-regular languages
= Usability: formulas are easy to read and write

= Implementability: model-checking problem is solvable
in practice
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Motivation: Why Past Operators?

= PSL and SVA have no past operators

= Justification: “... arbitrary mixing of past and future
operators results in nonnegligible implementation
cost.” [TACAS'02]

= However:

= Past Operators for LTL are natural to express properties

like
G( grant — O request)

=  Another example:
- Every grant is preceded by a request.

- request = followed by an with no cancel
in between

G( grant — O {{ ; true™; } N {—cancel}*})
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Motivation: Why Past Operators?

= PSL and SVA have no past operators
= Justification: “... arbitrary mixing of past and future

operators results in nonnegligible implementation PastPSL
cost.” [TACAS’'02]
" However: / < 3exp \
, PastLTL = PSL
= PastPSLis NN o
- exponentially more succinct than PSL and SVA, > exp > 2exp
- double-exponentially more succinct than PastLTL =200 i V7
—
our results

= Implementation cost is negligible in theory and does
not exist in practice for symbolic model checking.

INBA,_ps | = O(237 2"201) INBA,, | = 022" 2"2n})
VS.
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Outline: From PastPSL to NBA

loop-free 2ABA PastPSL formula
over

A4

‘refuter’s strategy’ loop-free 2NcoBA
over XYx I A"

loop-free 2ABA

new complementation
(next slides) o

!

NBA 5 1 nBA
over M x I’ _F

NBA

over ).
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Complementation Construction

= Given loop-free 2NcoBA A =(Q, X, 4, q,, F)
1. A accepts w < drun on w: no F-state occurs co-often
2. A rejects w <V run on w visits an F-state co-often

= Construct NBA that checks 2.
= Guess sequence RyR; ... € (29¥

“2-way powerset construction”

= Check that sequence is consistent with 9

all runs on w ordered

all runs of Aonw | 1 by head position
Ro [ B r s J
I N/l > N Vo
Rl d s Y
| L ow
R | )
| / LW,
Ry [ i |
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Complementation Construction

= Given loop-free 2NcoBA A =(Q, X, 6, q,, F) R,
1. A accepts w < 3 run on w: no F-state occurs co-often

N\ N\
2. A rejects w <V run on w visits an F-state co-often Ry 9 S\\ I]
= Construct NBA that checks 2. R, | t
= Guess sequence RyR; ... € (29¥ 4 '
R | 8 J

= Check that sequence is consistent with 9

= Quess

- each run starting at the previous breakpoint visits F [I

before reaching the next breakpoint {

- Example: F = {s}

= Check that occur oco-often. [

P
/ |
7 )
P 94— 5\ J
N\ |
\'4 N )
D -
r S t J

\
AN

t

7

7
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Conclusion

Alternation-elimination scheme
= Requires complementation construction for NA with co-acceptance condition
= Novel constructions generalizes known constructions and proofs
= Also works for tree automata, visibly pushdown automata, ...

PastPSL
= Novel efficient symbolic translation to NBAs
= Succinctness results for PastPSL with respect to PastLTL and PSL
= Past operators and 2-way automata are not difficult

Ongoing and future work: Implementation
= Unexpectedly good results for symbolic model checking
= Work in progress for SPIN model checking
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