
Christian Dax

ETH Zurich

Joint work with

Felix Klaedtke and Martin Lange

Konstanz, March 2009

From Linear-Time Logics to Automata

 Model-checking problem:

 Given: finite-state system M (system traces)

 Given: specification as formula (good traces)) : (bad traces)

 Question: M ² ?

 Automata-based approach:

1. Represent sets by nondeterministic automata

2. Represent intersection by product automaton

Motivation: Finite-State Model Checking

2Speaker: Christian Dax

traces of M
bad traces :

Empty? (= no bad
system trace?)

:

BM

M£B

Empty?

 Alternating automaton as intermediate step

• direct and simple

• linear blow-up
Step 1

• complex

• exponential blow-up

Step 2

-- this talk --

• SPIN model checker

• SMV model checker
Further steps

Motivation: Divide and Conquer

3Speaker: Christian Dax

:

BM

M£B

A

Empty?

alternating

1. Background

2. Part I: Alternation Elimination Scheme

3. Part II: Scheme Instance for 2-Way Büchi Automata

Outline

4Speaker: Christian Dax

:

BM

M£B

A

Background on Automata

5Speaker: Christian Dax

:

BM

M£B

A

 An NA is a tuple (Q, §, ±, q0, F)

 ±: Q£§ 2Q transition function

 F µ Q! acceptance condition
(state sequences that are considered to be accepting)

 Remark: Büchi and coBüchi condition given as F µ Q

 F = {¼ 2 Q! | an F-state occurs 1-often in ¼}

 F = {¼ 2 Q! | no F-state occurs 1-often in ¼}

 For a word w = w0w1…

 A run q0q1… is a sequence of states with qi+1 2 ±(qi, wi)

 w is accepted :, there is a run on w that is in F

Nondeterministic Automaton (NA)

Speaker: Christian Dax

¼ 2 F

w0

…

wi

wi+1

all runs on w

q0

6

Alternating Automata (AA)

 An AA is a tuple (Q, §, ±, q0, F)

 ±: Q£§ B+(Q) transition function

 B+(Q) positive boolean combination of formulas in DNF

 For a word w = w0w1…

 A run is a Q-labeled tree, where

- the root is labeled by q0 , and

- a q-labeled node in level i has children labeled by
states of one of the monomials of ±(q, wi)

 w is accepted
:, there is a run such that every path is in F

7Speaker: Christian Dax

q

r s

±(q, wi)= (r Æ s) Ç (s Æ t)

q0 w0

…
wi

wi+1

w0

…

wi

wi+1

every ¼ 2 F

all runs on w

q0

q0
q0

q0
q0

q0

 Some “runs” on the word {x}{x}{x ,y}{x}!

Example: Runs of an Alternating Büchi Automaton

8Speaker: Christian Dax

qxUy

qacc qxUy

qxUy

qxUy

qacc

qacc

{x}

{x}

{x ,y}

{x}

…
qxUyqacc

not accepting

qxUy

qacc qxUy

qxUyqacc

qacc

{x}

{x}

{x ,y}

{x}

…

accepting

qxUy

qacc qxUy

qacc

qxUyqacc

{x}

{x}

{x ,y}

{x}

…
qxUyqacc

not a run

Q := {qacc, qrej, qxUy, qx, qy}, q0 := qxUy, F := {qacc}

±(qxUy, a) := ±(qy, a) Ç (±(qx, a) Æ qxUy)

±(qx, a) := qacc if x 2 a, ±(qy, a) := qacc if y 2 a,
qrej otherwise qrej otherwise

Part I: Alternation Elimination Scheme

9Speaker: Christian Dax

:

BM

M£B

A

• direct and simple

• linear blow-up
Step 1

• complex

• exponential blow-up

Step 2

-- this talk --

• SPIN model checker

• SMV model checker
Further steps

 Alternation Elimination Scheme:

 Improves and generalizes approach used in green boxes

 Unifies + simplifies constructions and proofs of blue boxes that can now be
seen as instances

Related Work

10Speaker: Christian Dax

POPL ’88
Vardi

ICALP ’98
Vardi

TCS ’92
Miyano, Hayashi

CONCUR ’01
Kupferman, Piterman, Vardi

FSTTCS ’06
Dax, Hofmann, Lange

Alternation
Elimination
Scheme

CAV ’01
Gastin, Oddoux

MFCS ’03
Gastin, Oddoux

LICS ’01
Lange, Stirling

Nondeterministic
Automaton

Input: w 2 §!

Alternation-Elimination Scheme by Example

11Speaker: Christian Dax

Alternating
Automaton

Input: w 2 §!

Büchi

Büchi

…

Nondeterministic
Automaton

Input: w 2 §!

Nondeterministic
Automaton

Input: (w, s) 2 §! £ (Q 2Q)!

Word + Run

Alternation-Elimination Scheme by Example

12Speaker: Christian Dax

Alternating
Automaton

Input: w 2 §!

Co-Büchi

Büchi

Büchi

Büchi

complementation

projection

accepts
refuter’s strategy

accepts
automaton’s strategy

Nondeterministic
Automaton

Input: w 2 §!

Nondeterministic
Automaton

Input: (w, s) 2 §! £ (Q 2Q)!

Word + Run

Alternation-Elimination Scheme by Example

13Speaker: Christian Dax

Alternating
Automaton

Input: w 2 §!

Co-Büchi

Büchi

Büchi

Büchi

2-Way Weak Co-Büchi

2-Way Weak Büchi

Büchi

Büchi

Co-Parity

Parity

Büchi

Büchi

complementation

projection

accepts
refuter’s strategy

accepts
automaton’s strategy

Alternation Elimination (1/2) : Runs as Words

 We consider only automata with memoryless runs

 Examples: Büchi, co-Büchi, Parity, Rabin automata

 Equally-labeled nodes have equally-labeled subtrees

 “for equally-labeled nodes, automaton chooses same
transition”

 Encode run as sequence s0s1s2… 2 (Q 2Q)! of
successor functions

 si(q) : ‘labels of children of q-labeled node in level i’

 Example:

14Speaker: Christian Dax

q q

s0(p) = {p, q}

s1(p) = {p, q}, s1(q) = {q, r}

s2(p) = …, s2(q) = …, s2(r) = … r

p

p q

qp q
…

p

qp

w0

…

wi

wi+1

q0

'

Alternation Elimination (2/2) : Complementation

 Let A = (Q, §, ±, q0, F) be an AA and ¡ := Q 2Q

 A accepts the word w

 , there is a run on w s.t. every path is in F

 , 9s: s 2 runs(w) Æ 8¼ 2 s: ¼ 2 F

 , 9s: : (s runs(w) Ç 9¼ 2 s: ¼ F) F
 , 9s: : B(w, s)

 It is easy to build an NA B over §£¡ for F
 B := (Q, §£¡, ´, q0, Q! \ F)

 ´(q, (a, s)) := s(q) s(q) is a monomial in ±(q, a)
{qacc} otherwise

 Finally: complement the NA B and project it on §.

15Speaker: Christian Dax

w0

…

wi

wi+1

¼ F

‘refuter’s strategy’

 In our paper: scheme also works for 2-way automata

 2-way automata can move the read-only head in both directions.

 Configuration consists of a state and the position of the read-only head

 Loop-freeness

 A run is loop-free :, for every path, no configuration occurs twice

 An AA is loop-free :, every run is loop-free

 Examples:

Scheme for 2-Way Automata

16Speaker: Christian Dax

¼ 2 F

(p,0)

(q,1)

(q,2)

(r,3)

(r,1)

(q,0)

(s,0)

w2w0

¼ 2 F

(p,0)

(q,1)

(q,2)

(r,3)

(r,1)

(q,0)

(r,1)

w2w0

run is not loop-free

 Resulting sizes of 1-way NBAs:

Some Instances: Translations to NBAs

17Speaker: Christian Dax

old/new 1-Weak ABA
LTL (+ Past)

ABA
PSL (+ Past)

AParityA
¹LTL (+ Past)

ARabinA

1-way O(n2n)/ O(22n)/ 2O(nk log n)/ --/O(2nk log nk)

2-way --/O(n23n) 2O(n*n)/ 2O(nk*nk)/

2-way +
loop-free

O(n22n)/ --/O(24n) --/unpublished --/unpublished

alternating automata

smaller constant (hidden in O notation)
same size but construction more modular

Part II of this talk

Part II: From 2-Way ABA to NBA

18Speaker: Christian Dax

:

BM

M£B

A

loop-free 2ABA

NBA

 PastPSL ' extension of linear-time logics PSL and SVA with past operators

• Translation:
PastPSL 2-way ABA

Step 1

• Translation:
2-way ABA 1-way NBA

Step 2

Motivation: From PastPSL to NBA

19Speaker: Christian Dax

:

BM

M£B

A

Motivation: Overview on PSL and SVA

 IEEE standardized temporal logics

 linear core of PSL = LTL + semi-extended regular
expressions

 linear core of SVA = semi-extended regular expressions

 Widely used in hardware industry (Intel, IBM,
Infineon, …)

 Well balances between competing needs of
specification languages:

 Expressiveness: omega-regular languages

 Usability: formulas are easy to read and write

 Implementability: model-checking problem is solvable
in practice

20Speaker: Christian Dax

Expressive
ness

Impleme
ntability

Usability

Motivation: Why Past Operators?

 PSL and SVA have no past operators

 Justification: “… arbitrary mixing of past and future
operators results in nonnegligible implementation
cost.” [TACAS’02]

 However:

 Past Operators for LTL are natural to express properties
like

 Another example:

- Every grant is preceded by a request.

- request = start followed by an end with no cancel
in between

21Speaker: Christian Dax

G(grant O request)

G(grant O {{start; true*; end} Å {:cancel}*})

Motivation: Why Past Operators?

 PSL and SVA have no past operators

 Justification: “… arbitrary mixing of past and future
operators results in nonnegligible implementation
cost.” [TACAS’02]

 However:

 PastPSL is

- exponentially more succinct than PSL and SVA,

- double-exponentially more succinct than PastLTL

 Implementation cost is negligible in theory and does
not exist in practice for symbolic model checking.

22Speaker: Christian Dax

PastPSL

LTL

PSLPastLTL

¸ exp
· 2exp

¸ 2exp

¸ 2exp

¸ exp

· 3exp

our results

|NBAPastPSL| = O(23 * 2^{2n}) |NBAPSL| = O(22 * 2^{2n})
vs.

Outline: From PastPSL to NBA

24Speaker: Christian Dax

loop-free 2NcoBA
over §£¡

loop-free 2ABA
over §

NBA
over §£¡

NBA
over §

new complementation
(next slides)

‘refuter’s strategy’

:

BM

M£B

A
loop-free 2ABA

NBA

PastPSL formula

Complementation Construction

 Given loop-free 2NcoBA A = (Q, §, ±, q0, F)

1. A accepts w , 9 run on w: no F-state occurs 1-often

2. A rejects w , 8 run on w visits an F-state 1-often

 Construct NBA that checks 2.

 Guess sequence R0R1 … 2 (2Q)!

 Check that sequence is consistent with ±

25Speaker: Christian Dax

all runs of A on w

¼ 2 F

(p,0)

(s,1)

(t,2)

(s,3)

(q,1)

(r,0)

(s,0)

w2w0

all runs on w ordered
by head position

p

q

r s
w0

w1

w2

w3

s

t

s

R0

R1

R2

R3

“2-way powerset construction”

Complementation Construction

 Given loop-free 2NcoBA A = (Q, §, ±, q0, F)

1. A accepts w , 9 run on w: no F-state occurs 1-often

2. A rejects w , 8 run on w visits an F-state 1-often

 Construct NBA that checks 2.

 Guess sequence R0R1 … 2 (2Q)!

 Check that sequence is consistent with ±

 Guess breakpoints:

- each run starting at the previous breakpoint visits F
before reaching the next breakpoint

- Example: F = {s}

 Check that breakpoints occur 1-often.

26Speaker: Christian Dax

p

q

r s

s

t

s

R0

R1

R2

R3

r

q

t

t

s

t

r

p

p

p s

s

 Alternation-elimination scheme

 Requires complementation construction for NA with co-acceptance condition

 Novel constructions generalizes known constructions and proofs

 Also works for tree automata, visibly pushdown automata, …

 PastPSL

 Novel efficient symbolic translation to NBAs

 Succinctness results for PastPSL with respect to PastLTL and PSL

 Past operators and 2-way automata are not difficult

 Ongoing and future work: Implementation

 Unexpectedly good results for symbolic model checking

 Work in progress for SPIN model checking

Conclusion

27Speaker: Christian Dax

