Alternation Elimination by Complementation

Christian Dax, Felix Klaedtke
ETH Zurich

Recent results and ongoing work

ETH Zurich, August $12^{\text {th }}, 2008$

Motivation: Finite-State Model Checking

- Consider the problem:
- Given: finite-state system M (system traces)
- Given: specification as temporal formula $\varphi \Rightarrow \neg \varphi$ (bad traces)
- Question: $\mathrm{M} \vDash \varphi$?

- Automata-based approach:

1. View M as nondeterministic automaton
2. Translate $\neg \varphi$ to nondeterministic automaton B
3. Represent intersection via product automaton $M \times B$

Motivation: Alternation Elimination

- Translation via alternating automaton:

1. Direct/efficient: formula to alternating automaton
2. Complex/crucial: alternating to nondeterministic automaton
3. Easy/efficient: emptiness check

- This talk: focus on step 2.

Outline

1. Background: automata
2. From alternating to nondeterministic automata
3. From PSL logic + past operators to nondeterministic automata (includes ongoing work)

Background: Automata

Deterministic Automata (DA)

- A DA is a tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathcal{F}$)
- $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$ transition function
- $\mathcal{F} \subseteq \mathrm{Q}^{\omega}$ set of sequences over Q that are accepting
- Remark: Büchi/co-Büchi condition given as $\mathrm{F} \subseteq \mathrm{Q}$ Büchi: $\mathcal{F}_{\mathrm{F}}=\left\{\pi \in \mathrm{Q}^{\omega} \mid \pi\right.$ visits F -states ∞-often $\}$ co-Büchi: $\mathcal{F}_{\mathrm{F}}=\left\{\pi \in \mathrm{Q}^{\omega} \mid \pi\right.$ does not visit F-states ∞-often $\}$
- For a word $w=w_{0} w_{1} \ldots$
- A run $q_{0} q_{1} \ldots$ is a sequence of states with $q_{i+1}=\delta\left(q_{i}, w_{i}\right)$
- $\quad \mathrm{w}$ is accepted $: \Leftrightarrow$ the run $\pi=\mathrm{q}_{0} \mathrm{q}_{1} \ldots$ on w is in \mathcal{F}
- Syntax: 'automaton as relation over words'
- $\mathcal{A}(\mathrm{w}): \Leftrightarrow$ word w is accepted by automaton \mathcal{A}

$$
\left\{\begin{array}{ll}
q_{0} & w_{0} \\
\cdots & \cdots \\
q_{i} & w_{i} \\
q_{i+1} & w_{i+1}
\end{array}\right] \begin{aligned}
& \pi \in \mathcal{F}
\end{aligned}
$$

Nondeterministic/Universal Automata (NA/UA)

- An NA/UA is a tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathcal{F}$)
- $\delta: \mathrm{Q} \times \Sigma \rightarrow 2^{\mathrm{Q}}$ transition function
- For a word $w=w_{0} w_{1} \ldots$
- A nondeterministic run $q_{0} q_{1} \ldots$ is a sequence of states with $\mathrm{q}_{\mathrm{i}+1} \in \delta\left(\mathrm{q}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}\right)$
- $\quad \mathrm{w}$ is accepted $: \Leftrightarrow$ there is a run on w that is in \mathcal{F}

$$
\pi \in \mathcal{F}
$$

- A universal run is a Q-labeled tree
- the root is labeled by q_{0}, and
- a q-labeled node in level i has children labeled by $\delta\left(q, w_{i}\right)$
- w is accepted $: \Leftrightarrow$ every path in the run is in \mathcal{F}

Alternating Automata (AA)

- An AA is a tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathcal{F}$)
- $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathcal{B}^{+}(\mathbf{Q})$ transition function
- Here, we assume that $\delta(q, a)$ is in DNF, for all (q, a)

$$
\delta\left(q, w_{i}\right)=(r \wedge s) \vee(s \wedge t)
$$

- For a word $w=w_{0} w_{1} \ldots$
- A alternating run is a Q-labeled tree, where
- the root is labeled by q_{0}, and
- a q-labeled node in level i has children that are labeled by one of the monomials of $\delta\left(\mathrm{q}, \mathrm{w}_{\mathrm{i}}\right)$
- w accepted $: \Leftrightarrow$ there is a run s.t. every path is in \mathcal{F}

From Alternating to Nondeterministic Automata

Related Work

- We use building blocks that appeared in
- Vardi (POPL ’88, ICALP ‘98),
- Miyano-Hayashi (TCS’92),
- Lange-Stirling(LICS ’01),
- Kupferman-Piterman-Vardi (CONCUR’01),
- Gastin-Oddoux (CAV ’01, MFCS ‘03),
- Dax-Hofmann-Lange (FSTTCS ’06).
- We unify and generalize building blocks:
- The papers mentioned above solve particular translation problems.
- We identify and refine the main ingredients of these translations.
- We present one scheme that unifies + simplifies constructions and proofs.

Step 1 of 2: Run as Word

- Memoryless automata
- We use that Rabin, parity, ... automata are memoryless.
- A run is memoryless $: \Leftrightarrow$ equally labeled nodes in the same level have equally labeled subtrees
- An AA is memoryless : \Leftrightarrow every accepted word has a memoryless accepting run

not memoryless
- Memoryless run as word:
- Merge equally-labeld nodesin same level
- Encode memoryless run as word $r_{0} r_{1} r_{2} \ldots \in\left(Q \rightarrow 2^{Q}\right)^{\omega}$
- $r_{i}(q)$: 'labels of children of q-labeled node in level i^{\prime}
- Example:

$$
\begin{array}{r}
r_{0}(p)=\{p, q\} \\
r_{1}(p)=\{p, q\}, r_{1}(q)=\{q, r\} \\
r_{2}(p)=\ldots, r_{2}(q)=\ldots, r_{2}(r)=\ldots
\end{array}
$$

Step 2 of 2: Alternation Elimination

- Let $\mathcal{A}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathcal{F}\right)$ be an AA and $\Gamma:=\mathrm{Q} \rightarrow 2^{\mathrm{Q}}$
- A word w is accepted
- \Leftrightarrow there is a run on w s.t. every path is in \mathcal{F}
- $\Leftrightarrow \exists \mathrm{r}: \mathrm{r} \in \operatorname{runs}(\mathrm{w}) \wedge \forall \pi \in \mathrm{r}: \pi \in \mathcal{F}$
- $\Leftrightarrow \exists \mathrm{r}: \neg(\mathrm{r} \notin \mathrm{runs}(\mathrm{w}) \vee \exists \pi \in \mathrm{r}: \pi \notin \mathcal{F})$
- $\Leftrightarrow \exists \mathrm{r}: \neg \mathcal{B}(\mathrm{w}, \mathrm{r})$
- It is easy to build an NA \mathcal{B} over $\Sigma \times \Gamma$ for
- $\mathcal{B}:=\left(\mathrm{Q}, \Sigma \times \Gamma, \eta, \mathrm{q}_{0}, \mathrm{Q}^{\omega} \backslash \mathcal{F}\right)$
- $\quad \eta(\mathrm{q},(\mathrm{a}, \mathrm{r})):=\left[\begin{array}{ll}r(\mathrm{q}) & \mathrm{r}(\mathrm{q}) \text { is monomial in } \delta(\mathrm{q}, \mathrm{a}) \\ \{\text { acc-sink\} } & \text { otherwise }\end{array}\right.$
- Finally: complement the NA \mathcal{B} and project it on Σ.

$\pi \notin \mathcal{F}$

Some Instances

- Remark: scheme also works for 2-way automata
- 2-way automata can move the read-only head in both directions.
- Number of states of resulting 1-way NBAs

	1-Weak Büchi LTL (+ Past)	Büchi PSL (+ Past)	Parity μ LTL (+ Past)	Rabin
1-way	$\mathrm{O}\left(\mathrm{n} 2^{\mathrm{n}}\right)$	$\mathrm{O}\left(2^{2 \mathrm{n}}\right)$	$\mathrm{O}\left(2^{\mathrm{nk} \log \mathrm{n}}\right)$	$\mathrm{O}\left(2^{\text {nk log nk }}\right)$
2-way	$O\left(n 2^{3 n}\right)$	$O\left(2^{n^{*} n}\right)$	$\mathrm{O}\left(2^{\mathrm{nk} * \mathrm{nk}}\right)$	
2-way + loop-free	$\mathrm{O}\left(\mathrm{n} 2^{2 n}\right)$	$O\left(2^{4 n}\right)$	-- in progress --	-- in progress --

From PSL with Past to

Nondeterministic Büchi Automata (NBAs)

Motivation: Property Specification Language (PSL)

- PSL is an IEEE standard and increasingly used in hardware industry
- linear-time fragment of PSL $\approx L T L+$ regular expressions + syntactic sugar
- Past operators for concise and natural specification
standard

our suggestion

Background: 2-Way Nondet. Büchi Automata (2NBA)

- A 2NBA is a tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}$)
- $\delta: \mathbf{Q} \times \Sigma \rightarrow 2^{\mathbf{Q} \times\{-1,0,1\}}$ transition function
- Additional info where to move the read-only head
- For a word $w=w_{0} w_{1} \ldots$
- A configuration (q, j) is a pair in $Q \times$ 'head positions'

- A run $\left(q_{0}, j_{0}\right)\left(q_{1}, j_{1}\right)$... is a sequence of configurations with $\left(q_{i+1}, j_{i+1}-j_{i}\right) \in \delta\left(q_{i}, w j_{i}\right)$
- w accepted \Leftrightarrow ex. run on w that visits F-states ∞-often
- For AAs: Q×'head positions'-labeled run-trees
all runs on w ordered by head position

Outline: From PSL to NBA

- Loop-freeness
- A run is loop-free $: \Leftrightarrow$ for every path, no configuration occurs twice on the path
- An AA is loop-free $: \Leftrightarrow$ every run is loop-free
- PastPSLto 1-way NBA

1. PastPSL formula \rightarrow 2-way ABA (ongoing work)
2. Construction scheme:

2-way Miyano-Hayashi (next slides)

- Lemma: if AA is loop-free then \mathcal{B} is loop-free.
- Construct loop-free 2-way co-NBA \mathcal{B} over $\Sigma \times \Gamma$
- Complement with 2-way Miyano-Hayashi
- Project resulting 1-way NBA on Σ

1-Way Miyano-Hayashi Complementation

- A co-NBA $\mathcal{A}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ accepts a word w $: \Leftrightarrow$ ex. run on w that does not visit F-states ∞-often
- NBA for the complement
- w rejected \Leftrightarrow each run of \mathcal{A} on w visits $\mathrm{F} \infty$-often
- $\mathcal{B}:=\left(2^{a} \times 2^{a}, \Sigma, \eta,(\{q \circ\}, \emptyset), 2^{a} \times\{\emptyset\}\right)$
- $\quad \eta((\mathrm{R}, \emptyset), \mathrm{a}):=(\delta(\mathrm{R}, \mathrm{a}), \delta(\mathrm{R}, \mathrm{a}) \backslash \mathrm{F})$
- $\quad \eta((\mathrm{R}, \mathrm{S}), \mathrm{a}):=(\delta(\mathrm{R}, \mathrm{a}), \delta(\mathrm{S}, \mathrm{a}) \backslash \mathrm{F})$

- Subset-construction with R-component: compute all runs in parallel (black lines)
- States of S-component have to visit F (red lines)
- $2^{Q} \times\{\emptyset\}$ is visited ∞-often \Leftrightarrow every run visits F ∞-often

2-Way Miyano-Hayashi Complementation

- A loop-free co-2NBA $\mathcal{A}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ accepts w $: \Leftrightarrow$ ex. run on w that does not visit F-states ∞-often
- 1-way NBA for the complement
- w rejected \Leftrightarrow every run of \mathcal{A} on w visits $\mathrm{F} \infty$-often

1. Guess sequence $R_{0} R_{1} \ldots \in\left(2^{\mathrm{Q}}\right)^{\omega}$ that represents all runs on w ordered by head positions (black lines).
2. Check locally that guess is correct:
if $p \in R_{i}$ and $(q, d) \in \delta\left(p, w_{i}\right)$ then $q \in \operatorname{Ri+d}$

2-Way Miyano-Hayashi Complementation

- A loop-free co-2NBA $\mathcal{A}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ accepts w $: \Leftrightarrow$ ex. run on w that does not visit F-states ∞-often
- 1-way NBA for the complement
- w rejected \Leftrightarrow every run of \mathcal{A} on w visits $\mathrm{F} \infty$-often

1. Guess sequence $R_{0} R_{1} \ldots \in\left(2^{\mathrm{Q}}\right)^{\omega}$ that represents all runs on w ordered by head positions (black lines).
2. Check locally that guess is correct:
if $p \in R_{i}$ and $(q, d) \in \delta\left(p, w_{i}\right)$ then $q \in R i+d$
3. Guess breakpoints:

- partitioning of the R-sequence in segments
- each run starting at the previous breakpoint visits F before reaching the next breakpoint

2-Way Miyano-Hayashi Complementation

- A loop-free co-2NBA $\mathcal{A}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ accepts w $: \Leftrightarrow$ ex. run on w that does not visit F-states ∞-often
- 1-way NBA for the complement
- w rejected \Leftrightarrow every run of \mathcal{A} on w visits $\mathrm{F} \infty$-often

4. Guess sequence $S_{0} S_{1} \ldots \in\left(2^{Q} \backslash F\right)^{\omega}$ that represents all runs from q_{0} or a breakpoint to an F-state (red lines).
5. Check locally that guess is correct:
if $\mathrm{p} \in \mathrm{S}_{\mathrm{i}},(\mathrm{q}, \mathrm{d}) \in \delta\left(\mathrm{p}, \mathrm{w}_{\mathrm{i}}\right)$ and $\mathrm{q} \notin \mathrm{F}$ then either $\mathrm{q} \in S_{i+d}$ or $S_{i+d}=\emptyset$ (breakpoint).

2-Way Miyano-Hayashi Complementation

- A loop-free co-2NBA $\mathcal{A}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ accepts w $: \Leftrightarrow$ ex. run on w that does not visit F-states ∞-often
- 1-way NBA for the complement
- w rejected \Leftrightarrow every run of \mathcal{A} on w visits $\mathrm{F} \infty$-of every path in $1^{\text {st }}$ segment visited F

4. Guess sequence $S_{0} S_{1} \ldots \in\left(2^{Q} \backslash F\right)^{\omega}$ that represents all runs from q_{0} or a breakpoint to an F -state (red lines).
5. Check locally that guess is correct:
if $\mathrm{p} \in \mathrm{S}_{\mathrm{i}},(\mathrm{q}, \mathrm{d}) \in \delta\left(\mathrm{p}, \mathrm{w}_{\mathrm{i}}\right)$ and $\mathrm{q} \notin \mathrm{F}$ then either $\mathrm{q} \in \mathrm{S}_{\mathrm{i}+\mathrm{d}}$ or $S_{i+d}=\emptyset$ (breakpoint).
6. Check that pattern ' $S_{i}=\emptyset, S_{i+1}=R_{i+1} \backslash F^{\prime}$ occurs ∞-often.
every path in $2^{\text {nd }}$
segment visited F

Conclusion

- Construction scheme for translating AAs to NAs
- Requires complementation construction for NA with co-acceptance condition
- Requires AA to accept by memoryless runs
- 3 novel translations
- Previous translations can be seen as instances: unifies and simplifies constructions and proofs
- Novel complementation construction for loop-free co-2NBAs
- 1-way Miyano-Hayashi and constructions by Gastin-Oddoux are special cases
- Efficient automata constructions for PastPSL possible
- Ongoing and future work
- Scheme for automata that do not accept by memoryless runs
- Translations for PSL and μ LTL with past operators
- Practical experiences of translating 2-way AAs to NAs

