Alternation Elimination by Complementation

Christian Dax, Felix Klaedtke ETH Zurich

Recent results and ongoing work

ETH Zurich, August 12th, 2008

Motivation: Finite-State Model Checking

- Consider the problem:
 - Given: finite-state system M (system traces)
 - Given: specification as temporal formula $\phi \Rightarrow \neg \phi$ (bad traces)

- Automata-based approach:
 - 1. View M as nondeterministic automaton
 - 2. Translate \neg_{Φ} to nondeterministic automaton B
 - 3. Represent intersection via product automaton $M \times B$
 - 4. Check emptiness of $M \times B$

Motivation: Alternation Elimination

- Translation via alternating automaton:
 - 1. **Direct/efficient:** formula to alternating automaton
 - 2. Complex/crucial: alternating to nondeterministic automaton
 - 3. Easy/efficient: emptiness check
- This talk: focus on step 2.

Outline

- 1. Background: automata
- 2. From alternating to nondeterministic automata
- 3. From PSL logic + past operators to nondeterministic automata (includes ongoing work)

Background: Automata

Deterministic Automata (DA)

- A **DA** is a tuple (Q, Σ , δ , q₀, \mathcal{F})
 - $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$ transition function
 - $\mathcal{F} \subseteq \mathbf{Q}^{\omega}$ set of sequences over **Q** that are accepting
 - Remark: Büchi/co-Büchi condition given as F ⊆ Q
 Büchi: *F*_F = {π ∈ Q^ω | π visits F-states ∞-often}
 co-Büchi: *F*_F = {π ∈ Q^ω | π does not visit F-states ∞-often}

Nondeterministic/Universal Automata (NA/UA)

- An **NA/UA** is a tuple (Q, Σ , δ , q₀, \mathcal{F})
 - $\delta: \mathbb{Q} \times \Sigma \rightarrow 2^{\mathbb{Q}}$ transition function
- For a word $w = w_0 w_1 \dots$
 - A nondeterministic run q₀q₁... is a sequence of states with q_{i+1} ∈ δ(q_i, w_i)
 - w is **accepted** : \Leftrightarrow there is a run on w that is in \mathcal{F}

y w_0 w_0 w_0 w_0 w_1 w_1 w_1 w_2 w_3 w_4 w_3 w_4 w_4 w_6 w_1 w_1 w_2 w_3 w_4 w_1 w_2 w_3 w_4 w_4 w_1 w_2 w_3 w_4 w_1 w_2 w_3 w_4 w_1 w_2 w_3 w_4 w_4 w_1 w_2 w_3 w_4 w_1 w_2 w_3 w_4 w_1 w_2 w_3 w_4 w_4 w_1 w_2 w_3 w_4 w_1 w_2 w_3 w_4 $w_$

- A universal run is a Q-labeled tree
 - the root is labeled by q_0 , and
 - a q-labeled node in level i has children labeled by $\delta(\mathbf{q}, \mathbf{w_i})$
- w is **accepted** : \Leftrightarrow every path in the run is in \mathcal{F}

Alternating Automata (AA)

- An **AA** is a tuple (Q, Σ , δ , q₀, \mathcal{F})
 - $\delta: \mathbb{Q} \times \Sigma \longrightarrow \mathcal{B}^+(\mathbb{Q})$ transition function
 - Here, we assume that $\delta(q, a)$ is in DNF, for all (q, a)
- For a word $w = w_0 w_1 \dots$
 - A alternating run is a Q-labeled tree, where
 - the root is labeled by q₀, and
 - a q-labeled node in level i has children that are labeled by one of the monomials of $\delta(q, w_i)$
 - w **accepted** : \Leftrightarrow there is a run s.t. every path is in \mathcal{F}

From Alternating to Nondeterministic Automata

Related Work

- We use building blocks that appeared in
 - Vardi (POPL '88, ICALP '98),
 - Miyano-Hayashi (TCS '92),
 - Lange-Stirling (LICS '01),
 - Kupferman-Piterman-Vardi (CONCUR '01),
 - Gastin-Oddoux (CAV '01, MFCS '03),
 - Dax-Hofmann-Lange (FSTTCS '06).
- We unify and generalize building blocks:
 - The papers mentioned above solve particular translation problems.
 - We identify and refine the main ingredients of these translations.
 - We present one scheme that unifies + simplifies constructions and proofs.

Step 1 of 2: Run as Word

- Memoryless automata
 - We use that Rabin, parity, ... automata are memoryless.
 - A run is memoryless :⇔ equally labeled nodes in the same level have equally labeled subtrees
 - An AA is memoryless :⇔ every accepted word has a memoryless accepting run
- Memoryless run as word:
 - Merge equally-labeld nodes in same level
 - Encode memoryless run as word $\mathbf{r}_0 \mathbf{r}_1 \mathbf{r}_2 \dots \in (\mathbf{Q} \rightarrow \mathbf{2}^{\mathbf{Q}})^{\omega}$
 - r_i(q): 'labels of children of q-labeled node in level i'
 - Example: $r_0(p) = \{p, q\}$ $r_1(p) = \{p, q\}, r_1(q) = \{q, r\}$ $r_2(p) = ..., r_2(q) = ..., r_2(r) = ...$

not memoryless

Step 2 of 2: Alternation Elimination

- Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, \mathcal{F})$ be an AA and $\Gamma := Q \rightarrow 2^Q$
- A word w is accepted
 - \Leftrightarrow there is a run on w s.t. every path is in \mathcal{F}
 - $\Leftrightarrow \exists$ r: r \in runs(w) $\land \forall \pi \in$ r: $\pi \in \mathcal{F}$
 - $\Leftrightarrow \exists r: \neg (r \notin runs(w) \lor \exists \pi \in r: \pi \notin \mathcal{F}) \bigstar$
 - $\Leftrightarrow \exists r: \neg \mathcal{B}(w, r)$

- It is easy to build an NA \mathcal{B} over $\Sigma \times \Gamma$ for \bigstar
 - $\mathcal{B} := (\mathbf{Q}, \Sigma \times \Gamma, \eta, \mathbf{q}_0, \mathbf{Q}^{\omega} \setminus \mathcal{F})$
 - $\eta(q, (a,r)) := \begin{bmatrix} r(q) & r(q) \text{ is monomial in } \delta(q, a) \\ \{acc-sink\} & otherwise \end{bmatrix}$
- Finally: complement the NA \mathcal{B} and project it on Σ .

Some Instances

- Remark: scheme also works for 2-way automata
 - 2-way automata can move the read-only head in both directions.

Number of states of resulting 1-way NBAs

	1-Weak Büchi LTL (+ Past)	Büchi PSL (+ Past)	Parity μ LTL (+ Past)	Rabin
1-way	O(n2 ⁿ)	O(2 ²ⁿ)	O(2 ^{nk log n})	O(2 ^{nk log nk})
2-way	O(n2 ³ⁿ)	O(2 ^{n*n})	O(2 ^{nk*nk})	
2-way + loop-free	O(n2 ²ⁿ)	O(2 ⁴ n)	in progress	in progress

From PSL with Past to Nondeterministic Büchi Automata (NBAs)

(includes ongoing work)

Motivation: Property Specification Language (PSL)

- PSL is an IEEE standard and increasingly used in hardware industry
- linear-time fragment of PSL \approx LTL + regular expressions + syntactic sugar
- Past operators for concise and natural specification

 $\neg 0$

Α

В

M×B

Background: 2-Way Nondet. Büchi Automata (2NBA)

- A 2NBA is a tuple (Q, Σ , δ , q₀, F)
 - $\delta: \mathbb{Q} \times \Sigma \rightarrow 2^{\mathbb{Q} \times \{-1, 0, 1\}}$ transition function
 - Additional info where to move the read-only head
- For a word $w = w_0 w_1 \dots$
 - A configuration (q, j) is a pair in Q×'head positions'
 - A run (q₀, j₀) (q₁, j₁) ... is a sequence of configurations with (q_{i+1}, j_{i+1} - j_i) ∈ δ(q_i, w_j_i)
 - w accepted \Leftrightarrow ex. run on w that visits F-states ∞ -often

Outline: From PSL to NBA

- Loop-freeness
 - A **run is loop-free** : \Leftrightarrow for every path, no configuration occurs twice on the path
 - An **AA is loop-free** :⇔ every run is loop-free
- PastPSL to 1-way NBA
 - PastPSL formula \rightarrow 2-way ABA (ongoing work) 1.
 - Construction scheme: 2.
 - Lemma: if AA is loop-free then \mathcal{B} is loop-free. -
 - Construct loop-free 2-way co-NBA \mathcal{B} over $\Sigma \times \Gamma$ -
 - Complement with **2-way Miyano-Hayashi**
 - Project resulting 1-way NBA on Σ

- A loop-free co-2NBA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ accepts w : \Leftrightarrow ex. run on w that does not visit F-states ∞ -often
- 1-way NBA for the complement
 - w rejected \Leftrightarrow every run of \mathcal{A} on w visits F ∞ -often
 - 1. Guess sequence $R_0R_1... \in (2^Q)^{\omega}$ that represents all runs on w ordered by head positions (**black** lines).
 - 2. Check locally that guess is correct: if $p \in R_i$ and $(q, d) \in \delta(p, w_i)$ then $q \in R_{i+d}$

- A loop-free co-2NBA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ accepts w : \Leftrightarrow ex. run on w that does not visit F-states ∞ -often
- 1-way NBA for the complement
 - w rejected \Leftrightarrow every run of \mathcal{A} on w visits F ∞ -often
 - 1. Guess sequence $R_0R_1... \in (2^Q)^{\omega}$ that represents all runs on w ordered by head positions (**black** lines).
 - 2. Check locally that guess is correct: if $p \in R_i$ and $(q, d) \in \delta(p, w_i)$ then $q \in R_{i+d}$
 - 3. Guess breakpoints:
 - partitioning of the R-sequence in segments
 - each run starting at the previous breakpoint visits
 F before reaching the next breakpoint

- A loop-free co-2NBA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ accepts w : \Leftrightarrow ex. run on w that does not visit F-states ∞ -often
- 1-way NBA for the complement
 - w rejected \Leftrightarrow every run of \mathcal{A} on w visits F ∞ -often
 - 4. Guess sequence $S_0S_1... \in (2^{Q \setminus F})^{\omega}$ that represents all runs from q_0 or a breakpoint to an F-state (red lines).
 - 5. Check locally that guess is correct: if $p \in S_i$, $(q, d) \in \delta(p, w_i)$ and $q \notin F$ then either $q \in S_{i+d}$ or $S_{i+d} = \emptyset$ (breakpoint).

Conclusion

- Construction scheme for translating AAs to NAs
 - Requires complementation construction for NA with co-acceptance condition
 - Requires AA to accept by memoryless runs
 - 3 novel translations
 - Previous translations can be seen as instances: unifies and simplifies constructions and proofs
- Novel complementation construction for loop-free co-2NBAs
 - 1-way Miyano-Hayashi and constructions by Gastin-Oddoux are special cases
 - Efficient automata constructions for PastPSL possible
- Ongoing and future work
 - Scheme for automata that do not accept by memoryless runs
 - Translations for PSL and μ LTL with past operators
 - Practical experiences of translating 2-way AAs to NAs