
Christian Dax, Felix Klaedtke

ETH Zurich

Recent results and ongoing work

ETH Zurich, August 12th, 2008

Alternation Elimination by Complementation

 Consider the problem:

 Given: finite-state system M (system traces)

 Given: specification as temporal formula) : (bad traces)

 Question: M ²

 Automata-based approach:

1. View M as nondeterministic automaton

2. Translate : to nondeterministic automaton B

3. Represent intersection via product automaton M£B

4. Check emptiness of M£B

Motivation: Finite-State Model Checking

2Speaker: Christian Dax

traces of M
bad traces :

Empty? (= no bad
system trace?)

:

BM

M£B

Empty?

 Translation via alternating automaton:

1. Direct/efficient: formula to alternating automaton

2. Complex/crucial: alternating to nondeterministic automaton

3. Easy/efficient: emptiness check

 This talk: focus on step 2.

Motivation: Alternation Elimination

3Speaker: Christian Dax

:

BM

M£B

A

Empty?

alternating

1. Background: automata

2. From alternating to nondeterministic automata

3. From PSL logic + past operators to nondeterministic automata
(includes ongoing work)

Outline

4Speaker: Christian Dax

:

BM

M£B

A

Background: Automata

5Speaker: Christian Dax

 A DA is a tuple (Q, , ±, q0, F)

 ±: Q£§ Q transition function

 F µ Q! set of sequences over Q that are accepting

 Remark: Büchi/co-Büchi condition given as F µ Q
Büchi: FF = {¼ 2 Q!| ¼ visits F-states 1-often}
co-Büchi: FF = {¼ 2 Q! | ¼ does not visit F-states 1-often}

 For a word w = w0w1…

 A run q0q1… is a sequence of states with qi+1 = ±(qi, wi)

 w is accepted :, the run ¼ = q0 q1 … on w is in F

 Syntax: ‘automaton as relation over words’

 A(w) :, word w is accepted by automaton A

Deterministic Automata (DA)

6Speaker: Christian Dax

w0

…

wi

wi+1

q0

…

qi

qi+1

¼ 2 F

unique run on w

Nondeterministic/Universal Automata (NA/UA)

 An NA/UA is a tuple (Q, §, ±, q0, F)

 ±: Q£§ 2Q transition function

 For a word w = w0w1…

 A nondeterministic run q0q1… is a sequence of states
with qi+1 2 ±(qi, wi)

 w is accepted :, there is a run on w that is in F

 A universal run is a Q-labeled tree

- the root is labeled by q0, and

- a q-labeled node in level i has children labeled by
±(q, wi)

 w is accepted :, every path in the run is in F

7Speaker: Christian Dax

¼ 2 F

every ¼ 2 F

w0

…

wi

wi+1

w0

…

wi

wi+1

unique run on w

all runs on w

q0

q0

 An AA is a tuple (Q, §, ±, q0, F)

 ±: Q£§ B+(Q) transition function

 Here, we assume that ±(q, a) is in DNF, for all (q, a)

 For a word w = w0w1…

 A alternating run is a Q-labeled tree, where

- the root is labeled by q0 , and

- a q-labeled node in level i has children that are
labeled by one of the monomials of ±(q, wi)

 w accepted :, there is a run s.t. every path is in F

Alternating Automata (AA)

8Speaker: Christian Dax

q

r s

±(q, wi)= (r Æ s) Ç (s Æ t)

q0 w0

…
wi

wi+1

w0

…

wi

wi+1

every ¼ 2 F

all runs on w

q0

q0
q0

q0
q0

q0

From Alternating to Nondeterministic Automata

9Speaker: Christian Dax

:

BM

M£B

A

 We use building blocks that appeared in

 Vardi (POPL ’88, ICALP ‘98),

 Miyano-Hayashi (TCS ’92),

 Lange-Stirling (LICS ’01),

 Kupferman-Piterman-Vardi (CONCUR ’01),

 Gastin-Oddoux (CAV ’01, MFCS ‘03),

 Dax-Hofmann-Lange (FSTTCS ’06).

 We unify and generalize building blocks:

 The papers mentioned above solve particular translation problems.

 We identify and refine the main ingredients of these translations.

 We present one scheme that unifies + simplifies constructions and proofs.

Related Work

10Speaker: Christian Dax

Step 1 of 2: Run as Word

 Memoryless automata

 We use that Rabin, parity, … automata are memoryless.

 A run is memoryless :, equally labeled nodes in the
same level have equally labeled subtrees

 An AA is memoryless :, every accepted word has a
memoryless accepting run

 Memoryless run as word:

 Merge equally-labeld nodes in same level

 Encode memoryless run as word r0r1r2… 2 (Q 2Q)!

 ri(q) : ‘labels of children of q-labeled node in level i’

 Example:

11Speaker: Christian Dax

q q

not memoryless

r0(p) = {p, q}

r1(p) = {p, q}, r1(q) = {q, r}

r2(p) = …, r2(q) = …, r2(r) = … r

p

p q

qp q
…

p

qp

w0

…

wi

wi+1

q0

 Let A = (Q, §, ±, q0, F) be an AA and ¡ := Q 2Q

 A word w is accepted

 , there is a run on w s.t. every path is in F

 ,9 r: r 2 runs(w) Æ 8 ¼ 2 r: ¼ 2 F

 ,9 r: : (r runs(w) Ç 9 ¼ 2 r: ¼ F) F
 ,9 r: : B(w, r)

 It is easy to build an NA B over §£¡ for F
 B := (Q, §£¡, ´, q0, Q! \ F)

 ´(q, (a,r)) := r(q) r(q) is monomial in ±(q, a)
{acc-sink} otherwise

 Finally: complement the NA B and project it on §.

Step 2 of 2: Alternation Elimination

12Speaker: Christian Dax

w0

…

wi

wi+1

¼ F

‘refuter’s strategy’

 Remark: scheme also works for 2-way automata

 2-way automata can move the read-only head in both directions.

 Number of states of resulting 1-way NBAs

1-Weak Büchi
LTL (+ Past)

Büchi
PSL (+ Past)

Parity
¹LTL (+ Past)

Rabin

1-way O(n2n) O(22n) O(2nk log n) O(2nk log nk)

2-way O(n23n) O(2n*n) O(2nk*nk)

2-way +
loop-free

O(n22n) O(24n)
-- in progress -- -- in progress --

Some Instances

13Speaker: Christian Dax

From PSL with Past to

Nondeterministic Büchi Automata (NBAs)

(includes ongoing work)

14Speaker: Christian Dax

:

BM

M£B

A

 PSL is an IEEE standard and increasingly used in hardware industry

 linear-time fragment of PSL ¼ LTL + regular expressions + syntactic sugar

 Past operators for concise and natural specification

Motivation: Property Specification Language (PSL)

15Speaker: Christian Dax

PastPSL formula
size n

2ABA
size n

NBA
size 2O(n*n)

loop-free 2ABA
size n

NBA
size 24n

ongoing work

next slides

PSL formula
size n

ABA
size n

NBA
size 22n

standard our suggestion

:

BM

M£B

A

Background: 2-Way Nondet. Büchi Automata (2NBA)

 A 2NBA is a tuple (Q, §, ±, q0, F)

 ±: Q£§ 2Q x {-1, 0, 1} transition function

 Additional info where to move the read-only head

 For a word w = w0w1…

 A configuration (q, j) is a pair in Q£‘head positions’

 A run (q0, j0) (q1, j1) … is a sequence of configurations
with (qi+1, ji+1 - ji) 2 ±(qi, w_ji)

 w accepted , ex. run on w that visits F-states 1-often

 For AAs: Q£‘head positions’-labeled run-trees

16Speaker: Christian Dax

¼ 2 F

w0

…

wi

wi+1

all runs on w

all runs on w
ordered by
head position

(p,0)

(q,1)

(q,2)

(r,3)

(r,1)

(q,0)

(s,0)

w2w0

Outline: From PSL to NBA

 Loop-freeness

 A run is loop-free :, for every path, no configuration
occurs twice on the path

 An AA is loop-free :, every run is loop-free

 PastPSL to 1-way NBA

1. PastPSL formula 2-way ABA (ongoing work)

2. Construction scheme:

- Lemma: if AA is loop-free then B is loop-free.

- Construct loop-free 2-way co-NBA B over §£¡

- Complement with 2-way Miyano-Hayashi

- Project resulting 1-way NBA on §

17Speaker: Christian Dax

loop-free co-2NBA
over §£¡

loop-free 2ABA
over §

NBA
over §£¡

NBA
over §

2-way Miyano-Hayashi
(next slides)

PastPSL formula

1-Way Miyano-Hayashi Complementation

 A co-NBA A = (Q, §, ±, q0, F) accepts a word w
:, ex. run on w that does not visit F-states 1-often

 NBA for the complement

 w rejected , each run of A on w visits F 1-often

 B := (2Q£2Q, §, ´, ({q0},;), 2Q £{;})

 ´((R, ;), a) := (±(R,a), ±(R,a) \ F)

 ´((R, S), a) := (±(R,a), ±(S,a) \ F)

 Subset-construction with R-component:
compute all runs in parallel (black lines)

 States of S-component have to visit F (red lines)

 2Q£{;} is visited 1-often , every run visits F 1-often

18Speaker: Christian Dax

w0

…

wi

wi+1

all runs on w

every path in 2nd

segment visited F

every path in 1st

segment visited F

2F

F

2-Way Miyano-Hayashi Complementation

 A loop-free co-2NBA A = (Q, §, ±, q0, F) accepts w
:, ex. run on w that does not visit F-states 1-often

 1-way NBA for the complement

 w rejected , every run of A on w visits F 1-often

1. Guess sequence R0R1… 2 (2Q)! that represents all runs
on w ordered by head positions (black lines).

2. Check locally that guess is correct:
if p 2 Ri and (q, d) 2 ±(p, wi) then q 2 Ri+d

19Speaker: Christian Dax

q0
w0

…

wi-1

wi

wi+1

all runs on w
ordered by
head position

Ri-1

Ri

Ri+1

2-Way Miyano-Hayashi Complementation

 A loop-free co-2NBA A = (Q, §, ±, q0, F) accepts w
:, ex. run on w that does not visit F-states 1-often

 1-way NBA for the complement

 w rejected , every run of A on w visits F 1-often

1. Guess sequence R0R1… 2 (2Q)! that represents all runs
on w ordered by head positions (black lines).

2. Check locally that guess is correct:
if p 2 Ri and (q, d) 2 ±(p, wi) then q 2 Ri+d

3. Guess breakpoints:

- partitioning of the R-sequence in segments

- each run starting at the previous breakpoint visits
F before reaching the next breakpoint

20Speaker: Christian Dax

q0
w0

…

wi-1

wi

wi+1

all runs on w
ordered by
head position

2-Way Miyano-Hayashi Complementation

 A loop-free co-2NBA A = (Q, §, ±, q0, F) accepts w
:, ex. run on w that does not visit F-states 1-often

 1-way NBA for the complement

 w rejected , every run of A on w visits F 1-often

4. Guess sequence S0S1… 2 (2Q \ F)! that represents all
runs from q0 or a breakpoint to an F-state (red lines).

5. Check locally that guess is correct:
if p 2 Si, (q, d) 2 ±(p, wi) and q F then either q 2 Si+d

or Si+d = ; (breakpoint).

21Speaker: Christian Dax

q0

all runs on w
ordered by
head position

w0

…

wi-1

wi

wi+1

Si-1

Si

Si+1

2-Way Miyano-Hayashi Complementation

 A loop-free co-2NBA A = (Q, §, ±, q0, F) accepts w
:, ex. run on w that does not visit F-states 1-often

 1-way NBA for the complement

 w rejected , every run of A on w visits F 1-often

4. Guess sequence S0S1… 2 (2Q \ F)! that represents all
runs from q0 or a breakpoint to an F-state (red lines).

5. Check locally that guess is correct:
if p 2 Si, (q, d) 2 ±(p, wi) and q F then either q 2 Si+d

or Si+d = ; (breakpoint).

6. Check that pattern ‘Si = ;, Si+1 = Ri+1 \ F’ occurs 1-often.

22Speaker: Christian Dax

q0

every path in 1st

segment visited F

every path in 2nd

segment visited F

all runs on w
ordered by
head position

w0

…

wi-1

wi

wi+1

 Construction scheme for translating AAs to NAs

 Requires complementation construction for NA with co-acceptance condition

 Requires AA to accept by memoryless runs

 3 novel translations

 Previous translations can be seen as instances: unifies and simplifies
constructions and proofs

 Novel complementation construction for loop-free co-2NBAs

 1-way Miyano-Hayashi and constructions by Gastin-Oddoux are special cases

 Efficient automata constructions for PastPSL possible

 Ongoing and future work

 Scheme for automata that do not accept by memoryless runs

 Translations for PSL and ¹LTL with past operators

 Practical experiences of translating 2-way AAs to NAs

Conclusion

23Speaker: Christian Dax

