From Temporal Logics to Automata
via Alternation Elimination

Christian Dax

defense talk, 2010

Scope & Motivation

NOKIA

©) BOSCH Connecting People
e AMD!

5.

o
@
[Jin|]
b
iy

||”I|||

Micresoft
SIEMENS

< e ' /g
-~ I : o . y
-~ s o o
5 =K y
J s i ! 11
f = E LR f
- g 3
& | j > f
| PN - 71449
N ; flssr
R N LS pesrill’
AR F R BN S e -
N B e N .‘i“ / 7/ s
2 a 2 a g / f (5
~ 2 A l‘ 8 4
U B . /; F—
PR i‘ < T “‘V
) . Y
S) & ’ .
) A ' .
AN" i 'y . 753
< ’)
< < .‘,“I’A // £ 53
« \ v, 5> e
L= Y B 4]
L B P)
o ~ :)
2 ‘ J
g / &
« {3 5
& 4)
>
S OLUTIOME
= —

An Execution

e

*—>@ —>@- —@ —>—>

{} iy U {gt {ng}..

Representing Sets of Executions

transition system M
M (all system executions)

\ temporal logic formula F
(all allowed executions)
~

specification

/ formula F

Generally[g --> Once(r)]

|
r occurs at least
once in the past

M = >@® >@® >@® >0—>

{} {r} {} {g} {r,g}... fulfills F
{r,g} {} {gt {g} {}.. fulfillsF
{} {} {g} {} {}.. violatesF

/ executions \

fulfilling F

system
executions
given by M

executions
violating F

Intersection empty?

negated formula —F
(violating executions)

Translation

N

transition system M nondeterministic

(system executions) Automaton N c
(violating executions)

~

system
executions

violating
executions

Scope of Thesis

transition system M
(system executions

~

system
executions

violating
executions

K\egated formula —-IN

(violating executions)

Translation

nondeterministic

Automaton N_;
(violating executions)

Contributions

A

10

PSL + Translation

LTL + Translation NWTL + Translation

. ... + Translation
DLTL + Translation

RLTL + Translation

uNWTL + Translation \
NWPSL + Translation

pLTL + Translation
’ CTL* + Translation

11

First Contribution: Reduction Scheme

direct, rather simple

alternating automaton

automaton A model with
F rich structure

Reduction Scheme

= divide and conquer

" reduce to standard constructions
on nondeterministic automata

— nondeterministic
automaton N

12

PSL + Translation
instance

LTL + Translation
instance

_ ... + Translation
DLTL + Translation

smaller results

RLTL + Translation

uNWTL + Translation smaller result
smaller results + more standard
ation

NWPSL + Transl
pLTL + Translation instance

smaller results CTL* + Translation

13

Second Contribution: Complementations

Complementation Constructions

= for 2-way nondeterministic automata %

= based on standard constructions

+ Reduction Scheme

new translations for logics
with past operators

14

Amir Pnueli and others

“... many statements that arise naturally in
specifications, are easier to express using
the past operators.”

[The Glory of the Past '85]

15

PPSL + Translation

ELTL + Translation smaller results ENWTL + Translatio

more standard flaw corrected

..+ Translation
PDLTL + Translation

smaller results

PRLTL + Translation

[.LENWTL + Translation smaller results
smaller results + more standard

NWPPSL + Translatior
uPLTL + Translation smaller results

csmaller results PCTL* + Translation

16

Reduction
Scheme

Past
Operators

IEEE PSL

17

Reduction
Scheme

Past
Operators

IEEE PSL

18

alternating
automaton A,

nondeterministic
automaton N,

19

Preliminaries: Alternating Automaton

An 2-way alternating automaton is a tuple (Q, X, 9, q,, F)
= (Q:states,) : alphabet, q, : initial state
= 5:Qx XY — Bf(Qx{-1,0,1}) : transition function

= JF C QY¥:acceptance condition

Generally[g --> Once(r)]

F = {qoql... € {G, >, O}¥| G occurs oo-often}

20

Preliminaries: Runs by Example

{ ry U 8 ngl..

~
7

daCC

dCC dCC

F = {qoql... € {G, >, O}¥| G occurs oo-often}

A

21

|

alternating
automaton A,
Reduction Scheme l

nondeterministic

automaton N

22

Prerequisite: Encoding of a Run

Encode run as s;5,5; € (Q — 2@xt1.0 1w
(sequence of successor functions)

U ry U 8 ngh..

>
v v 7 v 7
LaJcc acce Tacc ¢ $
€€ ¢}
acc acc
S, S, S, S, S¢ .

G—{(G,1),(>0)}
O0—{(0,-1)}

23

Reduction Scheme

Given: alternation automaton A= (Q, X, §, q, F)

1. Construct nondeterministic ,refuter automaton”

= R:= (Q’ 3 x (Q SN 2Qx{-1, 0, 1})’ m, q, Q“’\]:) accepts &

tree is not accepting run

= n(g, @,s):= [slq) ifs(q)satisfies o(q, aJ,
acc otherwise.

2. Complement R = accepts <

tree is an accepting run

3. Project resulting automaton on X

Result: nondeterministic automaton Z accepts =
d tree that is an accepting run

24

POPL ’88 ICALP '98 CONCUR'01 Reduction
Vardi Vardi Kupferman, Piterman, Vardi Scheme

= Extracts, improves, and generalizes “complementation idea”

® Translations seen as instances:
= Constructions and proofs become modular
= |ngredients replaceable by better standard constructions

25

Reduction
Scheme

Past
Operators

IEEE PSL

26

PPSL + Translation

PLTL + Translation PNWTL + Translatio

..+ Translation
PDLTL + Translation

PRLTL + Translation
pPNWTL + Translation

NWPPSL + Translatior

©PLTL + Translation
< PCTL* + Translation

27

-

P

Complementation of a

nondeterministic + 2-way

refuter automaton

~

Reduction scheme identifies
one common ingredient

28

type of refuter automaton

/directionality

=3

eventually 1-way
2-way subset

Shep' .« *dson

depends on

/acce ptance

type Gt
focus

PSL, ...
breakpoint

pLTL, ...
ranking

(U

)

choice of

complementation

representation

construct “all runs”

BN

J

check: norun € F

N\

S

)

29

~

directionality |
eventually 1-way
2-way subset

Shep' .« *dson

20(n)

VS.

ZO(n"Z)

30

Reduction
Scheme

Past
Operators

IEEE PSL

31

PSL is an |IEEE standardized temporal logic
PSL is widely used in hardware industry

PSL consists of LTL + regular expressions

Generally[r Followed_by(Eventually(g))]

r := {start; true*; end} N {—cancel }*

BUT

PSL has (almost) no past operators

32

“... arbitrary mixing of past
and future operators
results in nonnegligible
implementation cost.”

[The ForSpec Temporal Logic '02]

Moshe Vardi and others

33

however ...

We show that
PPSL is exponentially more succinct than PSL

Cost of translations

s

Size of 0(32"n) ZOX{ZH})
Automaton
O(Zm 32’\n)
Size of
Transition 0(3%2"") 0(3%"")
system

n := size of formula
m := number of propositions

34

Conclusion

= Extracts, improves, generalizes “complementation idea”

Reduction Scheme

= Simplifies translations & correctness proofs

Complementation for 2-Way Automata over (nested) words
= Optimized translations for logics with past
= Enables symbolic model checking with PPSL

35

