
From Temporal Logics to Automata
via Alternation Elimination

Christian Dax

defense talk, 2010

2

Scope & Motivation

3

4

An Execution

{} {r} {} {g} {r,g} …

5

Representing Sets of Executions

transition system M
(all system executions)

temporal logic formula F
(all allowed executions)

specification

{} {r} {} {g} {r,g} …

{r,g} {} {g} {g} {} …

{} {} {g} {} {} …

6

Generally[g --> Once(r)]

r occurs at least
once in the past

fulfills F

fulfills F

violates F

formula F

all possible
executions

executions
fulfilling F

system
executions

given by M

7

executions
violating F

Intersection empty?

model checker

8

negated formula :F
(violating executions)

transition system M
(system executions)

Translation

Yes/No

nondeterministic
Automaton N:F
(violating executions)

violating
executions

system
executions

Empty?

9

negated formula :F
(violating executions)

transition system M
(system executions)

Translation

Yes/No

nondeterministic
Automaton N:F
(violating executions)

Scope of Thesis

violating
executions

system
executions

Empty?

10

Contributions

11

LTL + Translation

DLTL + Translation

PSL + Translation

¹LTL + Translation

RLTL + Translation

NWPSL + Translation

¹NWTL + Translation

NWTL + Translation

… + Translation

CTL* + Translation

complex, exponential blow-ups

12

First Contribution: Reduction Scheme

direct, rather simple

formula F

alternating
automaton AF

nondeterministic
automaton NF

Reduction Scheme

 divide and conquer

 reduce to standard constructions
on nondeterministic automata

automaton
model with
rich structure

13

LTL + Translation
instance

DLTL + Translation
smaller results

PSL + Translation
instance

¹LTL + Translation
smaller results

RLTL + Translation
smaller result

NWPSL + Translation
instance

… + Translation

CTL* + Translation

¹NWTL + Translation
smaller results + more standard

14

Second Contribution: Complementations

Complementation Constructions

 for 2-way nondeterministic automata

 based on standard constructions

+ Reduction Scheme

new translations for logics
with past operators

15

“… many statements that arise naturally in
specifications, are easier to express using
the past operators.”

[The Glory of the Past ’85]

Amir Pnueli and others

16

PLTL + Translation
more standard

PDLTL + Translation
smaller results

PPSL + Translation
smaller results

¹PLTL + Translation
smaller results

PRLTL + Translation
smaller results

NWPPSL + Translation
smaller results

¹PNWTL + Translation
smaller results + more standard

PNWTL + Translation
flaw corrected

… + Translation

PCTL* + Translation

17

Reduction
Scheme

Past
Operators

IEEE PSL

18

Reduction
Scheme

Past
Operators

IEEE PSL

19

formula F

alternating
automaton AF

nondeterministic
automaton NF

An 2-way alternating automaton is a tuple (Q, §, ±, qI, F)

 Q : states, § : alphabet, qI : initial state

 ±: Q x § B+(Q x {-1, 0, 1}) : transition function

 Fµ Q! : acceptance condition

20

Preliminaries: Alternating Automaton

Generally[g --> Once(r)]

F := {q0q1… 2 {G, >, O}!| G occurs 1-often}

Æ

* 0

+1

acc

:g

g
0

r

:r
-1

acc

G > O

>

G G

>

G

> >
acc

acc

21

Preliminaries: Runs by Example

acc acc

OOOO

{} {r} {} {g} {r,g} …

acc

Æ

* 0

+1

acc

:g

g
0

r

:r
-1

acc

G > O

G

>

G

F := {q0q1… 2 {G, >, O}!| G occurs 1-often}

22

formula F

alternating
automaton AF

nondeterministic
automaton NF

Reduction Scheme

G G

> >

G G G

> > >

O O

acc

acc

acc acc

OO
acc

23

Prerequisite: Encoding of a Run

{} {r} {} {g} {r,g} …

Encode run as s1s2s3 …2 (Q 2Q x {-1, 0, 1})!

(sequence of successor functions)

s1 s2 s4 s5 …s3

G { (G, 1), (>, 0) }
O { (O, -1) }

24

Given: alternation automatonA = (Q, §, ±, qI, F)

1. Construct nondeterministic „refuter automaton“

 R := (Q, § x (Q 2Q x {-1, 0, 1}), ´, qI, Q
!\F)

 ´(q, (a, s)) := s(q) if s(q) satisfies ±(q, a),
acc otherwise.

2. Complement R

3. Project resulting automaton on §

Result: nondeterministic automaton

Reduction Scheme

accepts ,
tree is not accepting run

accepts ,
tree is an accepting run

accepts ,
9 tree that is an accepting run

25

 Extracts, improves, and generalizes “complementation idea”

 Translations seen as instances:

 Constructions and proofs become modular

 Ingredients replaceable by better standard constructions

POPL ’88
Vardi

ICALP ’98
Vardi

CONCUR ’01
Kupferman, Piterman, Vardi

Reduction
Scheme

26

Reduction
Scheme

Past
Operators

IEEE PSL

27

PLTL + Translation

PDLTL + Translation

PPSL + Translation

¹PLTL + Translation

PRLTL + Translation

NWPPSL + Translation

¹PNWTL + Translation

PNWTL + Translation

… + Translation

PCTL* + Translation

28

PLTL + Translation

PDLTL + Translation

PPSL + Translation

¹PLTL + Translation

PRLTL + Translation

NWPPSL + Translation

¹PNWTL + Translation

PNWTL + Translation

… + Translation

PCTL* + Translation

Complementation of a

nondeterministic + 2-way
refuter automaton

Reduction scheme identifies

one common ingredient

29

acceptance
type LTL, …

focus

PSL, …
breakpoint

¹LTL, …
ranking

directionality

1-way
subset

2-way
Shepherdson

construct “all runs”
representation

check: no run 2 F

choice of
complementation

eventually 1-way
2-way subset

depends on
type of refuter automaton

X

30

acceptance
type LTL, …

focus

PSL, …
breakpoint

¹LTL, …
ranking

directionality

1-way
subset

2-way
Shepherdson

construct “all runs”
representation

check: no run 2 F

choice of
complementation

eventually 1-way
2-way subset

depends on
type of refuter automaton

X

2O(n)

vs.

2O(n^2)

31

Reduction
Scheme

Past
Operators

IEEE PSL

32

PSL is an IEEE standardized temporal logic

PSL is widely used in hardware industry

PSL consists of LTL + regular expressions

Generally[r Followed_by(Eventually(g))]
r := {start; true*; end} Å {:cancel }*

BUT

PSL has (almost) no past operators

33

“… arbitrary mixing of past
and future operators
results in nonnegligible
implementation cost.”

[The ForSpec Temporal Logic ’02] Moshe Vardi and others

34

however …

We show that

PPSL is exponentially more succinct than PSL

Cost of translations

PSL PPSL

Size of
Automaton

O(32^n) 2O(2^{2n})

n := size of formula

X
O(2m 32^n)

m := number of propositions

O(32^n) O(32^n)
Size of

Transition
system

Reduction Scheme

 Extracts, improves, generalizes “complementation idea”

 Simplifies translations & correctness proofs

Complementation for 2-Way Automata over (nested) words

 Optimized translations for logics with past

 Enables symbolic model checking with PPSL

35

Conclusion

