
From Temporal Logics to Automata
via Alternation Elimination

Christian Dax

defense talk, 2010

2

Scope & Motivation

3

4

An Execution

{} {r} {} {g} {r,g} …

5

Representing Sets of Executions

transition system M
(all system executions)

temporal logic formula F
(all allowed executions)

specification

{} {r} {} {g} {r,g} …

{r,g} {} {g} {g} {} …

{} {} {g} {} {} …

6

Generally[g --> Once(r)]

r occurs at least
once in the past

fulfills F

fulfills F

violates F

formula F

all possible
executions

executions
fulfilling F

system
executions

given by M

7

executions
violating F

Intersection empty?

model checker

8

negated formula :F
(violating executions)

transition system M
(system executions)

Translation

Yes/No

nondeterministic
Automaton N:F
(violating executions)

violating
executions

system
executions

Empty?

9

negated formula :F
(violating executions)

transition system M
(system executions)

Translation

Yes/No

nondeterministic
Automaton N:F
(violating executions)

Scope of Thesis

violating
executions

system
executions

Empty?

10

Contributions

11

LTL + Translation

DLTL + Translation

PSL + Translation

¹LTL + Translation

RLTL + Translation

NWPSL + Translation

¹NWTL + Translation

NWTL + Translation

… + Translation

CTL* + Translation

complex, exponential blow-ups

12

First Contribution: Reduction Scheme

direct, rather simple

formula F

alternating
automaton AF

nondeterministic
automaton NF

Reduction Scheme

 divide and conquer

 reduce to standard constructions
on nondeterministic automata

automaton
model with
rich structure

13

LTL + Translation
instance

DLTL + Translation
smaller results

PSL + Translation
instance

¹LTL + Translation
smaller results

RLTL + Translation
smaller result

NWPSL + Translation
instance

… + Translation

CTL* + Translation

¹NWTL + Translation
smaller results + more standard

14

Second Contribution: Complementations

Complementation Constructions

 for 2-way nondeterministic automata

 based on standard constructions

+ Reduction Scheme

new translations for logics
with past operators

15

“… many statements that arise naturally in
specifications, are easier to express using
the past operators.”

[The Glory of the Past ’85]

Amir Pnueli and others

16

PLTL + Translation
more standard

PDLTL + Translation
smaller results

PPSL + Translation
smaller results

¹PLTL + Translation
smaller results

PRLTL + Translation
smaller results

NWPPSL + Translation
smaller results

¹PNWTL + Translation
smaller results + more standard

PNWTL + Translation
flaw corrected

… + Translation

PCTL* + Translation

17

Reduction
Scheme

Past
Operators

IEEE PSL

18

Reduction
Scheme

Past
Operators

IEEE PSL

19

formula F

alternating
automaton AF

nondeterministic
automaton NF

An 2-way alternating automaton is a tuple (Q, §, ±, qI, F)

 Q : states, § : alphabet, qI : initial state

 ±: Q x § B+(Q x {-1, 0, 1}) : transition function

 Fµ Q! : acceptance condition

20

Preliminaries: Alternating Automaton

Generally[g --> Once(r)]

F := {q0q1… 2 {G, >, O}!| G occurs 1-often}

Æ

* 0

+1

acc

:g

g
0

r

:r
-1

acc

G > O

>

G G

>

G

> >
acc

acc

21

Preliminaries: Runs by Example

acc acc

OOOO

{} {r} {} {g} {r,g} …

acc

Æ

* 0

+1

acc

:g

g
0

r

:r
-1

acc

G > O

G

>

G

F := {q0q1… 2 {G, >, O}!| G occurs 1-often}

22

formula F

alternating
automaton AF

nondeterministic
automaton NF

Reduction Scheme

G G

> >

G G G

> > >

O O

acc

acc

acc acc

OO
acc

23

Prerequisite: Encoding of a Run

{} {r} {} {g} {r,g} …

Encode run as s1s2s3 …2 (Q 2Q x {-1, 0, 1})!

(sequence of successor functions)

s1 s2 s4 s5 …s3

G  { (G, 1), (>, 0) }
O  { (O, -1) }

24

Given: alternation automatonA = (Q, §, ±, qI, F)

1. Construct nondeterministic „refuter automaton“

 R := (Q, § x (Q 2Q x {-1, 0, 1}), ´, qI, Q
!\F)

 ´(q, (a, s)) := s(q) if s(q) satisfies ±(q, a),
acc otherwise.

2. Complement R

3. Project resulting automaton on §

Result: nondeterministic automaton

Reduction Scheme

accepts ,
tree is not accepting run

accepts ,
tree is an accepting run

accepts ,
9 tree that is an accepting run

25

 Extracts, improves, and generalizes “complementation idea”

 Translations seen as instances:

 Constructions and proofs become modular

 Ingredients replaceable by better standard constructions

POPL ’88
Vardi

ICALP ’98
Vardi

CONCUR ’01
Kupferman, Piterman, Vardi

Reduction
Scheme

26

Reduction
Scheme

Past
Operators

IEEE PSL

27

PLTL + Translation

PDLTL + Translation

PPSL + Translation

¹PLTL + Translation

PRLTL + Translation

NWPPSL + Translation

¹PNWTL + Translation

PNWTL + Translation

… + Translation

PCTL* + Translation

28

PLTL + Translation

PDLTL + Translation

PPSL + Translation

¹PLTL + Translation

PRLTL + Translation

NWPPSL + Translation

¹PNWTL + Translation

PNWTL + Translation

… + Translation

PCTL* + Translation

Complementation of a

nondeterministic + 2-way
refuter automaton

Reduction scheme identifies

one common ingredient

29

acceptance
type LTL, …

focus

PSL, …
breakpoint

¹LTL, …
ranking

directionality

1-way
subset

2-way
Shepherdson

construct “all runs”
representation

check: no run 2 F

choice of
complementation

eventually 1-way
2-way subset

depends on
type of refuter automaton

X

30

acceptance
type LTL, …

focus

PSL, …
breakpoint

¹LTL, …
ranking

directionality

1-way
subset

2-way
Shepherdson

construct “all runs”
representation

check: no run 2 F

choice of
complementation

eventually 1-way
2-way subset

depends on
type of refuter automaton

X

2O(n)

vs.

2O(n^2)

31

Reduction
Scheme

Past
Operators

IEEE PSL

32

PSL is an IEEE standardized temporal logic

PSL is widely used in hardware industry

PSL consists of LTL + regular expressions

Generally[r Followed_by(Eventually(g))]
r := {start; true*; end} Å {:cancel }*

BUT

PSL has (almost) no past operators

33

“… arbitrary mixing of past
and future operators
results in nonnegligible
implementation cost.”

[The ForSpec Temporal Logic ’02] Moshe Vardi and others

34

however …

We show that

PPSL is exponentially more succinct than PSL

Cost of translations

PSL PPSL

Size of
Automaton

O(32^n) 2O(2^{2n})

n := size of formula

X
O(2m 32^n)

m := number of propositions

O(32^n) O(32^n)
Size of

Transition
system

Reduction Scheme

 Extracts, improves, generalizes “complementation idea”

 Simplifies translations & correctness proofs

Complementation for 2-Way Automata over (nested) words

 Optimized translations for logics with past

 Enables symbolic model checking with PPSL

35

Conclusion

