
Mechanizing the Powerset Construction for

Restricted Classes of ω-Automata⋆

Christian Dax1, Jochen Eisinger2, and Felix Klaedtke1

1 ETH Zurich, Switzerland
2 Albert-Ludwigs-Universität Freiburg, Germany

Abstract. Automata over infinite words provide a powerful framework,
which we can use to solve various decision problems. However, the autom-
atized reasoning with restricted classes of automata over infinite words is
often simpler and more efficient. For instance, weak deterministic Büchi
automata, which recognize the ω-regular languages in the Borel class
Fσ ∩Gδ, can be handled algorithmically almost as efficient as determin-
istic automata over finite words. In this paper, we show how and when we
can determinize automata over infinite words by the standard powerset
construction for finite words. The presented construction is more efficient
than all-purpose constructions for automata that recognize languages in
Fσ ∩ Gδ. Further, based on the powerset construction, we present an
improved automata construction that handles the quantification in the
automata-based approach for FO(R, Z, +,<) much more efficiently.

1 Introduction

Around 45 years ago, Büchi and others [3, 7, 18, 19] discovered that au-
tomata over infinite words and trees are a useful mathematical tool to
understand the decidability of various logics. Nowadays, automata over
finite and infinite objects have also emerged as a powerful tool for specifi-
cation and verification of nonterminating programs [14,22] and for imple-
menting decisions procedures for logical theories [1,6,8]. For instance, the
automata-theoretic approach to model checking is easy to understand,
automatic, and thus attractive to practitioners. However, its effectiveness
is sensitive to the automata model and automata sizes.

Reasoning about or with restricted classes of automata over infinite
words is often simpler and more efficient. A prominent example are weak
deterministic Büchi automata (wdbas), which can be handled algorith-
mically almost as efficient as deterministic automata over finite words. In
contrast to Büchi automata, wdbas can be minimized efficiently [16] and
are easy to complement. wdbas can be used to represent and manipulate
sets definable in the mixed first-order logic over the reals and the integers,

⋆ This work was supported by the German Research Council (DFG) and the Swiss
National Science Foundation (SNF).

2 C. Dax, J. Eisinger, F. Klaedtke

FO(R, Z,+, <) [1]. Further, languages of temporal properties like safety
and guarantee properties can be recognized by wdbas [4]. More general,
the languages recognized by wdbas are the ω-regular languages in the
Borel class Fσ ∩Gδ [15,17]. However, it is not obvious how we can benefit
from the algorithms for wdbas if a given automaton is, e.g., a nondeter-
ministic parity automaton that accepts a language in Fσ ∩ Gδ. In [11],
Kupferman et al. observed that the standard powerset construction for
automata over finite words can be used to obtain an equivalent wdba

from a given automaton when it accepts a language in Fσ ∩Gδ. However,
no concrete algorithm is given. In particular, the crucial point how to
efficiently determine the accepting states of the wdba is not discussed.

In this paper, we show how and when we can use the powerset con-
struction to construct from some automaton an equivalent determinis-
tic Büchi automaton. We present an algorithm for the general case and
a more efficient one for the special case, where we require that the
given automaton accepts a language in Fσ ∩ Gδ. Generally speaking,
instead of using a complicated all-purpose construction for determiniz-
ing automata, like Safra’s construction [20], we suggest to use special-
ized, more efficient constructions for subclasses of ω-regular languages.
An application of our specialized algorithm is to handle the quantifica-
tion in the automata-based approach of FO(R, Z,+, <) more efficiently.
In [1], Boigelot, Jodogne, and Wolper used the breakpoint construc-
tion [13,21] to determinize weak Büchi automata that describe sets defin-
able in FO(R, Z,+, <). Using the powerset construction has the following
practical advantages over the breakpoint construction: (1) The powerset
construction builds automata that usually have fewer states than the au-
tomata obtained by the breakpoint construction. The worst case of the
powerset construction is slightly better than the worst case of the break-
point construction. (2) The powerset construction is easier to implement.
For instance, the breakpoint construction builds an automaton, where the
states are pairs of sets of states of a given co-Büchi automaton; in the
powerset construction, we only have to deal with sets of states.

Furthermore, we present another improvement for the automata-based
approach to decide FO(R, Z,+, <). In [6], we introduced so-called don’t
care words as a means to reduce the automata sizes. Experimental results
demonstrated that the savings can be significant; on many practical ex-
amples, the number of states reduces up to several orders of magnitude [6].
However, it turned out that the automata construction in [6] that handles
the quantification when using don’t care words was the bottleneck of our
implementation. We present a new construction, which is more efficient

Powerset Construction for Restricted Classes of ω-Automata 3

than the previous one. Our new implementation3 that uses the construc-
tion presented in this paper usually outperforms our old implementation
by a factor of over 50.

We proceed as follows. In §2, we give preliminaries. In §3, we show how
and when we can use the powerset construction for automata over infinite
words. In §4, we present our new construction to handle the quantification
in the automata-based approach for FO(R, Z,+, <).

2 Background

We assume that the reader is familiar with the basics of automata theory
and first-order logic. The purpose of this section is to recall some back-
ground in these areas, and fix the notation and terminology used in the
remainder of the text.

2.1 Languages and Automata

Let Σ be an alphabet. We denote the set of all (finite) words over Σ by
Σ∗. We define Σ+ := Σ∗ \ {ε}, where ε is the empty word. Σω is the set
of all (infinite) words over Σ. We write |w| for the length of w ∈ Σ∗. We
often write a word w ∈ Σ∗ of length ℓ ≥ 0 as w0 . . . wℓ−1 and α ∈ Σω as
α0α1 . . . , where wi and αi denote the ith letter of w and α, respectively.

A (finite, labeled, pointed) transition system (ts) T is a tuple
(Q,Σ, δ, qI), where Q is a finite set of states, Σ is an alphabet, δ : Q×Σ →
P(Q) is the transition function, and qI ∈ Q is the initial state. For q ∈ Q,
we define Tq := (Q,Σ, δ, q). We extend δ to the function δ̂ : Q × Σ∗ →

P(Q) defined as δ̂(q, ε) := {q} and δ̂(q, bu) :=
⋃

p∈δ(q,b) δ̂(p, u), where
q ∈ Q, b ∈ Σ, and u ∈ Σ∗. T is deterministic if |δ(p, b)| = 1, for all p ∈ Q

and b ∈ Σ. In this case, we write δ(p, b) = q and δ̂(p,w) = q instead of
δ(p, b) = {q} and δ̂(p,w) = {q}, respectively. A state q ∈ Q is reachable

from p ∈ Q if there is a word w ∈ Σ∗ such that q ∈ δ̂(p,w). In the
remainder of the text, we assume that every state in a ts is reachable
from its initial state. A strongly connected component (scc) of T is a set
S ⊆ Q such that every p ∈ S is reachable from every q ∈ S and S is
maximal. A run ̺ of T on α ∈ Σω is a word ̺ ∈ Qω such that ̺0 = qI

and ̺i+1 ∈ δ(̺i, αi), for all i ≥ 0. Inf(̺) is the set of states that occur
infinitely often in ̺.

An automaton A is a tuple (T,C), where T is a ts and C is an
acceptance condition. In the following, we mainly use the Büchi and co-
Büchi conditions, which are defined as follows.4

3 Our implementation is publicly available at http://lira.gforge.avacs.org/.
4 Other standard acceptance conditions like Rabin or parity to which we sometimes

refer in the remainder of the text are given in Appendix A.

4 C. Dax, J. Eisinger, F. Klaedtke

– S ⊆ Q satisfies the Büchi condition C ⊆ Q if S ∩ C 6= ∅.
– S ⊆ Q satisfies the co-Büchi condition C ⊆ Q if S ∩ C = ∅.

A run ̺ is accepting if Inf(̺) satisfies the acceptance condi-
tion C; it is rejecting, otherwise. We define L(A) := {α ∈ Σω :
there is an accepting run ̺ on α}.

We type an automaton A = (T,C) according to its acceptance condi-
tion C. For instance, if C is the Büchi condition, A is a Büchi automaton

(ba) and if C is the co-Büchi condition, we call it a co-Büchi automa-

ton (co-ba). Further, if T is deterministic, A is a deterministic ba (dba)
or deterministic co-ba (co-dbas), respectively. A ba (T,C) is weak if
S ∩ C = ∅ or S ⊆ C, for every scc S ⊆ Q. We use the initialisms wba

for “weak Büchi automaton” and wdba for “weak deterministic Büchi
automaton.”

For L ⊆ Σω, we define the congruence relation ≈L⊆ Σ∗×Σ∗ as u ≈L v

iff uα ∈ L ⇔ vα ∈ L, for all α ∈ Σω. If ≈L has finite index, we define the
ts CL as CL := ({[v] : v ∈ Σ∗}, Σ, δ, [ε]) with δ([v], b) := [vb], where [u]
denotes the equivalence class of u ∈ Σ∗. Note that δ is well-defined.

2.2 Representing Sets of Reals with Automata

Let R be the structure (R, Z,+, <), where + and < are as expected and
Z is the unary predicate such that Z(x) is true iff x is an integer. For a
formula ϕ(x1, . . . , xr) and a1, . . . , ar ∈ R, we write R |= ϕ[a1, . . . , ar] if ϕ

is true in R when the variable xi is interpreted as ai, for 1 ≤ i ≤ r.

In [1], Boigelot, Jodogne, and Wolper show that for every first-order
definable set X ⊆ R

r in R, there is a wdba A that describes X. More-
over, they show that A can be effectively constructed from a formula
ϕ(x1, . . . , xr) that defines X, i.e., X = {a ∈ R

r : R |= ϕ[a]}. We recall
the precise correspondence between subsets of Rr and languages from [1].
Let Σ be the alphabet {0, 1}.5 For r ≥ 1, we define:

1. Vr is the set of all words over the alphabet Σr ∪ {⋆} of the form v ⋆ γ,
where v ∈ (Σr)+ and γ ∈ (Σr)ω.

2. A word v ⋆ γ ∈ Vr represents the vector of reals with r components

〈〈v ⋆ γ〉〉 := −2|v|−1 +
∑

0<i<|v| 2
|v|−i−1 · vi +

∑

i≥0 2−i−1 · γi

where vector addition and scalar multiplication are componentwise.
3. For a formula ϕ(x1, . . . , xr), we define L(ϕ) :={α ∈ Vr : R |= ϕ[〈〈α〉〉]}.

5 To simplify matters, we use the 2’s complement representation. A generalization to
the p’s complement representation for any p > 1 is straightforward.

Powerset Construction for Restricted Classes of ω-Automata 5

Note that in a word v ⋆ γ ∈ Vr the symbol ⋆ plays the role of a decimal
point, separating the integer part v from the fractional part γ. Further,
note that every vector in R

r can be represented by a word in Vr. However,
the representation is not unique. First, we can repeat the first letter arbi-
trary often without changing the represented vector. Second, a vector that
contains in a component a rational whose denominator has only the prime
factor 2 has distinct representations, e.g., 〈〈0⋆10ω〉〉 = 〈〈0⋆01ω〉〉 = 1

2 . For
α ∈ Vr, let L(α) := {β ∈ Vr : 〈〈α〉〉 = 〈〈β〉〉}.

3 Determinization with the Powerset Construction

In this section, we investigate when and how we can use the powerset
construction to determinize automata over infinite words. The powerset

transition system of a ts T = (Q,Σ, δ, qI) is P(T) := (P(Q), Σ, δP, {qI})
with δP(R, b) :=

⋃

q∈R δ(q, b), for R ⊆ Q and b ∈ Σ.

Lemma 1. Let A = (T,C) be an automaton. If the dba (CL(A), E) ac-

cepts L(A), for some E then there is an F such that the dba (P(T), F)
accepts L(A).

Proof. Assume that T = (Q,Σ, δ, qI). We define F := {P ⊆ Q : δ̂(qI, u)=
P and [u] ∈ E, for some u ∈ Σ∗}. For α ∈ Σω, let ̺ be the run of CL(A)

and ̺′ be the run of P(T). We show that ̺i ∈ E iff ̺′i ∈ F , for all
i ≥ 0. Let v := α0 . . . αi−1. Note that ̺i = [v]. The direction from left to
right holds by the definition of F . For the other direction, assume that
̺′i ∈ F , i.e., there is a word u ∈ Σ∗ with δ̂(qI, u) = ̺′i and [u] ∈ E. Since
̺′i = δ̂(qI, u) = δ̂(qI, v), we have u ≈L(A) v and hence, [u] = [v] = ̺i. ⊓⊔

The converse direction of Lemma 1 does not hold in general. To see this,
let L be the language {α ∈ {0, 1}ω : 1 occurs infinitely often in α}. Since
≈L has only one equivalence class, it is straightforward to see that there is
no set E such that (CL, E) accepts L. However, there is a dba A = (T,C)
that accepts L and since T is deterministic, there is obviously a set F such
that the dba (P(T), F) accepts L.

An application of Lemma 1 is to use the powerset construction to de-
terminize an automaton A whenever the dba consisting of the ts CL(A)

with an appropriate set of accepting states E accepts the language L(A).
Unfortunately, checking for an automaton A whether there is a set E such
that L(CL(A), E) = L(A) is PSPACE-hard. This can be shown by a simi-
lar argumentation as in the proof of Theorem 4.2 in [12]. However, there
are important classes of ω-regular languages L for which there is always
a set E such that L(CL, E) = L. For instance, the ω-regular languages in

6 C. Dax, J. Eisinger, F. Klaedtke

1: if S has no loop then return REJECTING
2: Let R be some state in S.
3: Let w be some word in Σ+ such that δ̂P(R, w) = R.
4: for each q ∈ R do

5: if wω ∈ L(Tq , C) then return ACCEPTING
6: return REJECTING

Fig. 1. Algorithm to determine whether an scc S of P(T) is accepting or rejecting.

the Borel class Fσ∩Gδ satisfy this condition. Relevant classes of temporal
properties define languages in Fσ ∩Gδ , e.g., safety and guarantee proper-
ties [4] and languages definable in the first-order logic over R are also in
Fσ ∩ Gδ [1]. In the next subsection, we present an algorithm that deter-
minizes automata for such languages more efficiently than by using other
constructions, like the breakpoint construction or Safra’s construction.

3.1 Powerset Construction for Languages in Fσ ∩ Gδ

For this subsection, assume that the automaton A = (T,C) accepts a
language in the Borel class Fσ ∩ Gδ, where T = (Q,Σ, δ, qI). We present
an algorithm that determinizes A by using the powerset construction.

We make the following observation. From [17], we know that some
dba (CL(A), E) accepts L(A). It follows from Lemma 1 that some dba

(P(T), F) accepts L(A). According to Theorem 5.2 in [1], all sccs of
(P(T), F) contain only accepting or only rejecting loops. Define G as the
union of all states of sccs with at least one accepting loop. Note that
(P(T), G) is a wdba that accepts L(A).

To determinize A we proceed in two steps. First, we construct P(T).
Then, we use the algorithm in Figure 1 to compute the set G.6 If an scc

S has no loop then its states are not in G by definition. Otherwise, let
R ∈ S and w ∈ Σ+ such that δ̂P(R,w) = R. Lemma 2 states that S is
accepting, i.e., S ⊆ G iff wω ∈ L(Tq, C), for some q ∈ R.

Lemma 2. Let R be a state in P(T) and w ∈ Σ+ such that δ̂P(R,w) = R.

Then, (Tq, C) accepts wω, for some q ∈ R iff the scc of R is accepting.

Proof. Let u in Σ∗ such that δ̂P({qI}, u) = R. “If case:” If (Tq, C) accepts
wω, for some q ∈ R then A accepts uwω. Since L(P(T), G) = L(A),
(P(T), G) also accepts uwω. Since (P(T), G) is a wdba and R occurs
infinitely often in the run on uwω, the scc of R is accepting. “Only if
case:” If the scc of R is accepting, (P(T), G) accepts uwω. So, A accepts
uwω. Since δ̂(qI, u) = R, (Tq, C) accepts wω, for some q ∈ R. ⊓⊔

6 In [11], it is claimed that for a ba A = (T, C) for which there is a wdba that
accepts L(A), the Büchi condition for P(T) can be chosen as {P : P ∩ C 6= ∅}. A
counterexample for this claim is the ts ({r, s, t}, {0}, δ, r) with δ(r, 0) = {r, s} and
δ(s, 0) = δ(t, 0) = {t} and the Büchi condition {s}.

Powerset Construction for Restricted Classes of ω-Automata 7

1: R← ∅
2: A← ∅
3: Let G be the graph (V, E) with V :=S and E :={(p, q) : δ(p, b)=q, for some b ∈ Σ}.
4: while there is a loop π = v0 . . . vℓ in G with 0 < ℓ ≤ |S| and v0 ∈ V \R and

there is no X ∈ A such that X ⊆ {v0, . . . , vℓ} do

5: Let u ∈ Σ∗ be a word with δ̂(qI, u) = v0.
6: Let w ∈ Σ+ be a word of length ℓ− 1 with δ(vi, wi) = vi+1, for all 0 ≤ i < ℓ.
7: if uwω 6∈ L(A) then

8: R← R ∪ {v0, . . . , vℓ}
9: Update A, i.e., remove the vis in every X ∈ A.

10: else

11: A← A ∪
˘

{vi : 0 ≤ i ≤ ℓ and vi /∈ R}
¯

12: end if

13: while there is a vertex v ∈ V with {v} ∈ A do

14: Delete vertex v in G.
15: Update A, i.e., remove X ∈ A whenever v ∈ X.
16: end while

17: end while

18: return S \R

Fig. 2. Algorithm to determine the set of accepting states for an scc S for T .

It remains to answer the question whether (Tq, C) accepts wω or equiv-
alently whether {wω} ∩ L(Tq, C) = ∅. We can easily construct an au-
tomaton that accepts {wω} ∩L(Tq, C) and check its emptiness efficiently
according to the acceptance condition (see [5, 9, 10] for details).

3.2 The General Case

In this subsection, we consider a more general case: A problem instance
consists of an automaton A and a deterministic ts T . We want to compute
an F such that the dba (T, F) accepts L(A). We require that there is at
least one F ′ such that the dba (T, F ′) accepts L(A). In the remainder of
this subsection, assume that T = (Q,Σ, δ, qI).

Observe that we can consider each scc of T separately, i.e., for each
scc S, we can compute a set FS ⊆ Q without taking into account the
other sccs of T . However, note that such a set FS is not uniquely deter-
mined and there might be dependencies on the states in S that we have
to take care off. F is then the union of the sets FS , for all sccs S of T .
The algorithm in Figure 2 returns such a set FS , for an scc S of T .

Due to space limitation we only sketch the algorithm. We iteratively
investigate loops π in the scc S from which we gain additional informa-
tion about which of the states in S have to be accepting or rejecting. Note
that a loop is a sequence of vertices v0 . . . vℓ with ℓ > 0, v0 = vℓ, and for all
0 ≤ i < ℓ, there is an edge from vi to vi+1. For a loop π = v0 . . . vℓ, there
is a word w ∈ Σ+ that visits the states in π in the same order. More-
over, there is a word u ∈ Σ∗ with δ̂(qI, u) = v0. We check if A rejects

8 C. Dax, J. Eisinger, F. Klaedtke

uwω. If this is the case, we know that the states v0, . . . , vℓ are rejecting.
If A accepts uwω, we know that at least one of the states v0, . . . , vℓ is
accepting. The algorithm maintains a set R, where R contains the states
that have to be rejecting. The algorithm also maintains a set A of sets of
states, where X ∈ A means that at least one of the states in X has to
be accepting. Initially, R and A are empty. For example, if we derive the
fact that a state p ∈ S is rejecting, we put p in R and delete p in every
X ∈ A. Further, if A contains a singleton {q}, we know that q has to be
accepting and we remove the sets X from A that contain q. Moreover, the
algorithm maintains a graph G. Intuitively speaking, G together with A

describe the loops of the scc S that we still need to investigate. Initially,
G is the transition graph of the scc S.

Note that we need not to investigate loops in G that visit a state for
which we already know that it is accepting. Thus, as soon as we conclude
that a state p is accepting, we delete p in G (and all its in-going and
out-going edges). That means, that no loop in the updated graph will
visit p. Further, a loop π has to visit at least a state for which we do not
know whether it is accepting or rejecting. With out loss of generality, we
assume that the first state in π is such a state. Moreover, we can restrict
ourselves to loops π for which the set of visited states is not a superset
of any X ∈ A. The reason for this is that at least one state in X has to
be accepting and thus, A also accepts the word corresponding to the loop
π. Therefore, we do not obtain any new information by investigating π.
Finally, note that it suffices to check loops of length at most |S| + 1.

The algorithm in Figure 2 terminates since it only checks finitely many
loops. However, in the worst case it checks exponentially many loops. For
instance, the scc graph

•
''NN

NN
• . . . •

((QQ
QQ •

''NN
NN

1
•

77pppp

''NN
NN

2
•

77pppp

''NN
NN

n−1
•

66mmmm

((QQ
QQ

n
•

ECD@GF
��

•

77pppp
• . . . •

66mmmm •

77pppp

has 2n−1 loops of length 2n. If all words corresponding to these loops are
accepted, the algorithm checks all loops of length 2n. We remark that
from smaller loops we obtain more information. In particular, from a self-
loop we immediately see if the state in it has to be accepting or rejecting.
So, a heuristic is to check loops ordered increasingly by their lengths.

We want to remark that the algorithm in Figure 2 can be easily
adapted such that we can use it to obtain a set F ⊆ Q for the co-Büchi
condition, i.e., that the co-dba (T, F) accepts L(A). However, note that
if A is a co-ba we can also already the breakpoint construction to obtain
an equivalent co-dba. The problem for other acceptance conditions is left
open.

Powerset Construction for Restricted Classes of ω-Automata 9

4 Quantification with Don’t Care Words

In this section, we optimize the automata-based approach to decide the
first-order logic over R. In §4.1, we recall previous work on don’t care
words and in §4.2, we present a new construction to handle the quantifi-
cation in the first-order logic over R more efficiently.

4.1 Don’t Care Words

In [6], so-called don’t care words are used as a means to reduce the au-
tomata sizes. The intuition of a don’t care word is that it is irrelevant
whether it belongs to a language or not. More formally: for languages
L,L′,D ⊆ Σω, we write L ≡D L′ if L \ D = L′ \ D. That means, L and
L′ are equivalent modulo the language D. We call D a don’t care set.
Observe that a don’t care set D gives us the flexibility to add and remove
words in D from a language L such that the automata representation of
L can be made smaller.

In the following, we focus on the following don’t care sets. Fix r ≥ 0
and Σ := {0, 1}. A word α ∈ (Σr ∪{⋆})ω is a don’t care word if there are
t ∈ {1, . . . , r} and k ∈ N such that αi ∈ Σr and (αi)↾t = 1, for all i ≥ k,
where b↾t denotes the tth coordinate of b ∈ Σr. DCr is the set of all don’t
care words in (Σr ∪ {⋆})ω .

In [6], we extend many automata constructions so that they take
a don’t care set with certain properties into account. For instance, the
unique minimal wdba with respect to the don’t care set DCr exists and
we can compute it efficiently. Unfortunately, handling the quantification
in the first-order logic over R becomes more involved when using don’t
care words. Note that when we delete a “track” in a word α ∈ DCr+1,
we might obtain a word α′ 6∈ DCr. Hence, by just deleting the projected
“track” in the words of a language, we may obtain a language that con-
tains too many words. It turned out that the given construction in [6] is
the bottleneck of our implementation. In the following, we present a new
construction, which is much more efficient.

4.2 Optimized Construction

For this subsection, let ϕ(x1, . . . , xr) be a formula and A a wdba such that
L(ϕ) ≡DCr

L(A). Our construction of a wdba B with L(∃x1ϕ) ≡DCr−1

L(B) consists of two separate steps. The first step takes care of the words
α ∈ DCr ∩L(¬ϕ) that are accepted by the given wdba and for which the
deletion of the first “track” yields a word not in DCr−1. The second step
uses the powerset construction presented in §3.1 with minor modifications.

10 C. Dax, J. Eisinger, F. Klaedtke

For the first step, we use the following automata construction. Let
D = (U,G) and D′ = (U ′, G′) be wdbas with U = (Q,Σr ∪{⋆}, δ, qI) and
U ′ = (Q′, Σr ∪ {⋆}, δ′, q′I). We define the wdba D⊗D′ := (U ⊗U ′, E) as
U ⊗ U ′ := (Q × Q′, Σr ∪ {⋆}, η, (qI, q

′
I)), where η and E are as follows.

– For (p, p′) ∈ Q × Q′, we define η((p, p′), ⋆) :=
(

δ(p, ⋆), δ′(p′, ⋆)
)

.
– For the initial state (qI, q

′
I), c ∈ {0, 1}, and b ∈ {0, 1}r−1, we define

η((qI, q
′
I), (c, b)) :=

{

(

δ(qI, (0, b)), δ̂(qI, (01, bb))
)

if c = 0,
(

δ(qI, (1, b)), δ
′(q′I, (0, b))

)

if c = 1.

– For a state (p, p′) 6= (qI, q
′
I), c ∈ {0, 1}, and b ∈ {0, 1}r−1, we define

η((p, p′), (c, b)) :=

{

(

δ(p, (0, b)), δ(p, (1, b))
)

if c = 0,
(

δ(p, (1, b)), δ′(p′, (0, b))
)

if c = 1.

– The states of an scc S of U ⊗U ′ are in E iff there is a state (p, q) ∈ S

such that p ∈ F and η((p, q), (0, b)) ∈ S, for some b ∈ {0, 1}r−1.

Lemma 3. The wdba A ⊗ A accepts only words in Vr. Moreover, for

α ∈ Vr the following properties hold.

1. If α ∈ L(ϕ) then L(A ⊗ A) ∩ L(α) 6= ∅.
2. If α 6∈ L(ϕ) then (L(A⊗A) \D)∩L(α) = ∅, where D :={v ⋆ γ ∈ Vr :

there are k ∈ N and t ∈ {2, . . . , r} such that (γi)↾t =1, for all i ≥ k}.

Intuitively, the first component of the states of the wdba A⊗A are used
to simulate the runs of the wdba A. A⊗A will not accept a word α ∈ DCr

if there exists a k ≥ 0 such that (αi)↾1 = 1, for all i ≥ k. If, however,
α ∈ L(ϕ) then there is a β ∈ L(α) such that (βi)↾1 = 0, for all i ≥ k and
β ∈ L(A⊗A). The second component of the states are used to detect the
case whether the first “track” of α eventually becomes 1 or not.

In the second step, we use the wdba A⊗A to construct an auxiliary
wba C = (U,G) such that L(C) ≡DCr−1

L(∃x1ϕ). This construction step
is straightforward and is mainly done by ignoring the first component of a
letter in the transition function of the wdba A⊗A. Intuitively speaking,
C guesses the bits of x1.

7 Now, we define the wdba B as (P(U), G), where
we adapt the algorithm described in §3.1 to determine G. For determining
whether an scc S of P(U) has to be accepting or rejecting, we pick in line 3
of the algorithm in Figure 1 a word w ∈ (Σr−1)+ such that wω 6∈ DCr−1.
That means, for every t ∈ {1, . . . , r − 1}, there is an integer i such that
0 ≤ i < |w| and (wi)↾t 6= 1. If no such word exists, it is irrelevant whether
S is accepting or rejecting, since by eventually staying in S when reading
a word we accept or reject a don’t care word.

7 Some additional work is needed for the sign bit, see, e.g., [1, 2] for details.

Powerset Construction for Restricted Classes of ω-Automata 11

References

1. B. Boigelot, S. Jodogne, and P. Wolper, An effective decision procedure for
linear arithmetic over the integers and reals, ACM Trans. Comput. Log., 6 (2005),
pp. 614–633.

2. B. Boigelot and L. Latour, Counting the solutions of Presburger equations
without enumerating them, Theoret. Comput. Sci., 313 (2004), pp. 17–29.

3. J. Büchi, On a decision method in restricted second order arithmetic, in Logic,
Methodology and Philosophy of Science (Proc. 1960 Int. Congr.), Stanford Uni-
versity Press, 1962, pp. 1–11.

4. E. Chang, Z. Manna, and A. Pnueli, The safety-progress classification, in Logic
and Algebra of Specifications, F. Bauer, W. Brauer, and H. Schwichtenberg, eds.,
NATO Advanced Science Institutes Series, Springer-Verlag, 1991, pp. 143–202.

5. E. M. Clarke, E. A. Emerson, and A. P. Sistla, Automatic verification of
finite-state concurrent systems using temporal logic specifications, ACM Trans. Pro-
gram. Lang. Syst., 8 (1986), pp. 244–263.

6. J. Eisinger and F. Klaedtke, Don’t care words with an application to the
automata-based approach for real addition, in Proc. of the 18th Int. Conf. on Com-
puter Aided Verification, vol. 4144 of Lect. Notes Comput. Sci., 2006, pp. 67–80.

7. C. C. Elgot and M. O. Rabin, Decidability and undecidability of extensions of
second (first) order theory of (generalized) successor, J. Symbolic Logic, 31 (1966),
pp. 169–181.

8. J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klarlund, R. Paige,

T. Rauhe, and A. Sandholm, Mona: Monadic second-order logic in practice,
in Proc. of the 1st Int. Workshop on Tools and Algorithms for Construction and
Analysis of Systems, vol. 1019 of Lect. Notes Comput. Sci., 1996, pp. 89–110.

9. M. R. Henzinger and J. A. Telle, Faster algorithms for the nonemptiness of
Streett automata and for communication protocol pruning, in Scandinavian Work-
shop on Algorithm Theory, 1996, pp. 16–27.

10. V. King, O. Kupferman, and M. Y. Vardi, On the complexity of parity word
automata, in Proc. of the 4th Int. Conf. on Foundations of Software Science and
Computation Structures (FoSSaCS), Lect. Notes Comput. Sci., 2001, pp. 276–286.

11. O. Kupferman, G. Morgenstern, and A. Murano, Typeness for ω-regular
automata, Int. J. Found. Comput. Sci., 17 (2006), pp. 869–884.

12. O. Kupferman and M. Vardi, Freedom, weakness, and determinism: From
linear-time to branching-time, in Proc. of the 13th Annual IEEE Symp. on Logic
in Computer Science, IEEE Computer Society Press, 1998, pp. 81–92.

13. , Weak alternating automata are not that weak, ACM Trans. Comput. Log.,
2 (2001), pp. 408–429.

14. R. P. Kurshan, Computer Aided Verification of Coordinating Processes, Prince-
ton University Press, 1994.

15. L. H. Landweber, Decision problems for ω-automata, Math. Syst. Theory, 3
(1969), pp. 376–384.

16. C. Löding, Efficient minimization of deterministic weak ω-automata, Inform. Pro-
cess. Lett., 79 (2001), pp. 105–109.

17. O. Maler and L. Staiger, On syntactic congruences for omega-languages, The-
oret. Comput. Sci., 181 (1997), pp. 93–112.

18. M. O. Rabin, Decidability of second-order theories and automata over infinite
trees, Trans. Amer. Math. Soc., 141 (1969), pp. 1–35.

12 C. Dax, J. Eisinger, F. Klaedtke

19. , Decidable theories, in Handbook of Mathematical Logic, J. Barwise, ed.,
vol. 70 of Studies in Logic, North-Holland, 1977, pp. 595–629.

20. S. Safra, Complexity of Automata on Infinite Objects, PhD thesis, The Weizman
Institute of Science, Rehovot, Israel, 1989.

21. T. H. Satoru Miyano, Alternating finite automata on ω-words, Theoret. Comput.
Sci., 32 (1984), pp. 321–330.

22. M. Vardi and P. Wolper, An automata-theoretic approach to automatic pro-
gram verification, in Proc. of the 1st Symp. on Logic in Computer Science, IEEE
Computer Society Press, 1986, pp. 322–331.

Powerset Construction for Restricted Classes of ω-Automata 13

A Acceptance Conditions

We recall other acceptance conditions for automata over infinite words.
Let A = (Q,Σ, δ, qI, C) be an automaton. For S ⊆ Q, we define the
following acceptance conditions:
– S satisfies the Muller condition C ⊆ P(Q) if S ∈ C.
– S satisfies the parity condition C : Q → N if min{C(q) : q ∈ S} is

even.
– S satisfies the Rabin condition C ⊆ P(Q) × P(Q) if there is a pair

(E,F) ∈ C such that S ∩ E 6= ∅ and S ∩ F = ∅.
– S satisfies the Streett condition C ⊆ P(Q) × P(Q) if for all pairs

(E,F) ∈ C, it holds that S ∩ E = ∅ or S ∩ F 6= ∅.
Note that the Büchi condition is dual to the co-Büchi condition: S sat-
isfies the Büchi condition iff S does not satisfy the co-Büchi condition.
Similarly, the Rabin condition is dual to the Streett condition. Further
note that the Rabin condition is a disjunction of conjunctions of Büchi
and co-Büchi conditions, and a Streett condition is a conjunction of dis-
junctions of Büchi and co-Büchi conditions.

B Additional Proof Details

B.1 Proof of Lemma 3

Proof. The proof that L(A⊗A) ⊆ Vr is straightforward. For the remain-
der of the proof, assume that α ∈ Vr.

1. Without loss of generality, we assume that α 6∈ DCr. Let ̺ = q0q1 . . . ∈
Qω be the run of A = (T,C) on α. Note that ̺ is accepting. There is
an integer k ≥ 0, such that qi ∈ C, for all i ≥ k. Let ̺′ be the run
of A ⊗ A = (T ⊗ T,E) on α. By definition, the run ̺′ has the form
̺′ = (q0, q

′
0)(q1, q

′
1) . . . ∈ (Q × Q)ω, for some q′0, q

′
1, . . . ∈ Q. We have to

show that ̺′ is accepting.

There is an scc S ⊆ Q×Q and an integer ℓ ≥ k such that (qi, q
′
i) ∈ S,

for all i ≥ ℓ. Note that qi ∈ C, for all i ≥ ℓ. Since α 6∈ DCr, there is a
j ≥ ℓ such that (αj)↾1 = 0 and η((qj , q

′
j), αj) ∈ S. Thus, by definition, S

is accepting.

2. Let ̺ = q0q1 . . . ∈ Qω be the run of A on an ω-word β ∈ L(α) and
let ̺′ be the run of A ⊗ A on β. By definition, ̺′ has the form ̺′ =
(q0, q

′
0)(q1, q

′
1) . . . ∈ (Q × Q)ω, for some q′0, q

′
1, . . . ∈ Q.

First, assume that ̺ is rejecting, i.e., there is an integer k ≥ 0 such
that qi 6∈ C, for all i ≥ k. Moreover, there is an scc S ⊆ Q×Q of A⊗A

14 C. Dax, J. Eisinger, F. Klaedtke

and an integer ℓ ≥ k such that (qi, q
′
i) ∈ S and qi 6∈ C for all i ≥ ℓ.

We have to show that S is not accepting. By definition, S can only be
accepting if there is a state (p, p′) ∈ S with p ∈ C. This is not possible,
since A is weak and thus p and qℓ cannot be in the same scc of A.

Second, assume that ̺ is accepting. Note that β ∈ DCr, since β 6∈ L(ϕ)
and β ∈ L(A). If β ∈ D then there is nothing to prove. In the following,
assume that β 6∈ D. We conclude that only the first track of β is a don’t
care word.

Since ̺ is accepting, there is an integer k ≥ 0 such that qi ∈ C, for
all i ≥ k. Moreover, there is an scc S ⊆ Q × Q of A ⊗ A and an integer
ℓ ≥ k such that (qi, q

′
i) ∈ S and qi ∈ C, for all i ≥ ℓ. We have to show

that S is rejecting.

For the sake of contradiction, assume that S is accepting. By defini-
tion, there is a state (p, p′) ∈ S such that η((p, p′), (0, b)) ∈ S, for some
b ∈ {0, 1}r . It follows that there are words u, v ∈ ({0, 1}r)+ such that

(1) η̂((qℓ, q
′
ℓ), u) = η̂((qℓ, q

′
ℓ), v) = (qℓ, q

′
ℓ),

(2) (uj)↾1 = 0, for some integer j with 0 ≤ j < |u|,

(3) (vj)↾1 = 1, for all integers j with 0 ≤ j < |v|, and

(4) for every 0 ≤ j < |v|, there is an integer i such that 2 ≤ i ≤ r and
(vj)↾i = 0.

Note that we can require (4), since we assume that β 6∈ D. Intuitively
speaking, u describes a loop through the accepting state (p, q′) and v

describes the loop β will take.

Let B = (P, {0, 1}r ∪ {⋆}, µ, pI, G) be a wdba with L(B) = L(ϕ). We
use B to define an infinite sequence of words w(0), w(1), . . . ∈ ({0, 1}r ∪
{⋆})∗. Let w(0) := β0 . . . βℓ−1. For i > 0, we define w(i) := w(i−1)w,
where the definition of the word w ∈ ({0, 1}r)+ depends on the state
µ̂(pI, w

(i−1)).

– Case 1: µ̂(pI, w
(i−1)) 6∈ G. We define w := (uv)n, where n ≥ 1 is some

integer such that µ̂(pI, w
(i−1)(uv)n) ∈ G. Such an integer n exists,

since w(i−1)(uv)ω ∈ L(A)\DCr and thus, B has to accept w(i−1)(uv)ω .

– Case 2: µ̂(pI, w
(i−1)) ∈ G. We define w := vn, where n ≥ 1 is some

integer such that µ̂(pI, w
(i−1)vn) 6∈ G. Such an integer n exists, since

A rejects the “normalized word” of w(i−1)vω. This fact can be shown
by constructing the run on the “normalized word” of w(i−1)vω on A

from the second component of the state pairs in the run ̺′ of A⊗ A.

Note that for every i ≥ 0, we have that η̂((qI, qI), w
(i)) = (qℓ, q

′
ℓ). This

follows from the definition of w(0) and from (1).

Powerset Construction for Restricted Classes of ω-Automata 15

Let γ be the ω-word that is the limit of this sequence w(0), w(1), . . .

of words. The run of B on γ infinitely alternates between accepting and
rejecting states. This contradicts the weakness of B. ⊓⊔

