
Diploma Thesis

Games for the

Linear Time µ-Calculus

Christian Dax

Supervisor

Dr Martin Lange

Submitted to

Prof Dr Martin Hofmann
Chair of Theoretical Computer Science
Ludwig-Maximilians-University Munich

1.10.2005–31.3.2006

Set in LATEX

Abstract

The Linear Time µ-Calculus (µTL) is a temporal logic for specifying ω-regular prop-
erties of a system. In this work, we consider game-theoretic characterizations of the
model-checking, satisfiability and validity problem for the µTL logic. Using an au-
tomaton based approach to encode the winning conditions of the games, a decision
procedure is developed which solves these problems in PSPACE.

iii

iv

Acknowledgements

I would like to thank my supervisor Dr Martin Lange for his excellent support during
the last years. He helped me to organize my stay abroad at the University of Edin-
burgh, he replied to all of my numerous (sometimes stupid) email-questions at once,
he showed the patience of a saint whenever I got private lessons at his white board
and furthermore, he was the key for my future position at the ETH in Zurich.

Further thanks go to Prof Martin Hofmann whose idea of using automata for detect-
ing ν-lines belongs to the main results of this work. With his constant “background-
support” he provided us with several proof sketches. At this point, I want to thank
him for all the letters of recommendation he wrote for me and for the acceptance of
all the unconventional subjects I choosed for the diploma examination.

Then, I would also like to thank Dr Jan Johannsen for his advice and his offer to
examine this work.

Finally, I would like to express my thanks to my parents for their constant support.
They gave me the opportunity to concentrate on my study and kept almost all daily-life
problems away from me.

v

vi

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not
been submitted for any other degree or professional qualification except as specified.

(Christian Dax)

vii

viii

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Infinite Words and Infinite Trees . 5
2.2 Definition of µTL . 6
2.3 Fixed Points . 12
2.4 Approximants . 15
2.5 Logical Games . 22

3 Model Checking for Words 25

3.1 Definition of the Word-Game . 25
3.2 Correctness of the Word-Game . 26

4 Model Checking for Trees 31

4.1 Definition of the Tree-Game . 31
4.2 Correctness of the Tree-Game . 33

5 Validity and Satisfiability Games 39

5.1 Validity Checking by MC Games . 39
5.2 Validity Checking Game VAL . 40
5.3 Satisfiability Checking SAT . 43

6 ν-Line Automata 51

6.1 Preliminaries . 51
6.2 Parity Automaton . 53
6.3 Transformation to Büchi Automaton 55
6.4 Deterministic Automata . 59

A Implementation 63

References 75

ix

Contents

x

There are sadistic scientists

who hurry to hunt down errors

instead of establishing the

truth.

(Marie Curie)
1 Introduction

Formal Verification

In the modern world, computer systems play an important part in our lives and it
seems that their significance in daily technology around us will increase steadily. Si-
multaneously, we are becoming more and more dependent on these electronic devices
in e.g. transportation systems, medical applications or banking. While loss of money
due to software errors might be unfortunate for people involved, the cost of failure in
a medical operation for example can become unacceptably high.

Several incidents in recent history tell us that fatal design errors occur once in a
while. In 1994 Thomas Nicely discovered a bug in the Pentium floating point unit
which causes wrong values at certain division operations. Two years later the maiden
flight of unmanned Ariane 5 rocket ended in a firework about forty seconds after
its lift-off because of a malfunction in the control software. In 2000, nearly thirty
cancer patients at the National Cancer Institute in Panama City received overdoses
of radiation due to miscalculation by the software. Eight patients died and their
physicians were indicated for murder. For more details on these examples see [Klo05]
or [Gar05].

To avoid troubles in critical applications, developers commonly try to ensure cor-
rectness of their work through simulation or testing. However, in practice, systems
tend to be large and too complex to be thoroughly tested and therefore these methods
are especially used to detect only well-defined types of faults. So, as McFarland writes
in [McF93], subtle design errors resulting in unexpected behaviour might be missed.

Another approach to guarantee that software functions correctly is formal verifi-
cation. As depicted in Table 1.1 its idea is to model behaviour of complex systems
by simple, abstract mathematical structures, e.g. words, trees or labelled transition
systems (LTS). The specification is translated (from English) into a simple but math-
ematical precise formal specification language s.t. properties required according to the
specification can be concisely represented by automata, logical formulas, etc. Having
lifted up both the behaviour of the system and the specification to an abstract level
algorithmic methods can be applied to find errors.

Besides, formal verification may allow designers to reduce developing cost. Begin-
ning at the abstract level algorithms and specifications can be checked before they
turn into real products. Hence, this approach can effectively reduce the number of
updates for repairing faulty versions of the software.

1

1 Introduction

real world: complex system fulfils specification

↑↓ ↑↓

abstraction: math. structure fulfils formal spec.
(automaton/
logical formula)

Table 1.1: Idea behind formal verification

Temporal Logics

Formal verification goes back to the 1960s where computer programs were viewed as
computing functions of sequential input-output models. Floyd-Hoare logics [Hoa83]
provide a framework to make assertions about the inputs of such programs and to
verify these by a proof system.

In contrast, different theories have been developed to model concurrent, reactive
systems (e.g. operating systems, protocols or applications with user interaction). The
behaviour of these programs is a possibly non-terminating computation with inter-
action between the system and its environment. Computer scientists represent these
types of programs by infinite linear or branching mathematical structures like words
or trees. In terms of time, these structures can be seen as time-lines with states and
properties holding at these states.

Temporal logics have been proven to be suitable to describe properties of linear and
branching time-lines. Pnueli introduced Linear Time Temporal Logic (LTL)[Pnu77]
for specifying and verifying concurrent systems. Properties of a system are turned into
questions of satisfiability or validity in temporal logic. This approach is called model
checking. LTL extends an underlying propositional logic by temporal operators next,
until and release and is interpreted over a linear time structure. A counterpart for
describing branching time structures is for example Computation Tree Logic (CTL)
which has been presented in [EH81] and [EH85].

If we extend LTL by adding minimal and maximal fixed points, we obtain the
Linear Time µ-Calculus (µTL), the logic of this work. It has been introduced in
[Var88] (with past operators) and [BKP86] and like LTL, it describes properties of
linear time structures. Kozen’s Modal µ-Calculus [Koz83] where the next operator of
µTL is replaced by two different modal operators is interpreted over branching time
structures. This logic has become widely investigated since though its syntax and
semantics are simple it has enhanced expressive power compared to LTL.

Several formal languages have been examined in which properties of mathematical
structures can be more or less defined. Generally speaking, algorithms can handle
languages which are less expressive more easily than complex ones. On the other
hand, the language for the formal specification must be expressive enough to be able
to describe properties which are required by the specification.

2

A formal specification given by an LTL formula belongs to the class of star-free
languages which is less than the class of ω-regular languages. For more detail on
star-free languages and LTL see [Kam68, GPSS80, GPSS53, Tho79]. In comparison
to LTL, the fixed point logic µTL is capable of expressing ω-regular properties, see
[Lan05, JW96].

Games

The main topic in this thesis is to find game-theoretic characterizations of model-
checking, satisfiability and validity problem for the µTL logic. We use linear time
structures to represent programs and µTL formulas to encode specifications of such
programs.

The first approach is to check whether a single run of a program – represented by
an infinite word w – fulfils the µTL formula ϕ. We will write

w
?

|= ϕ.

If for all possible runs w′ of the program the relationship w′ |= ϕ holds, we assume the
program to be correct.

Suppose our algorithm tells us that the specification ϕ does not hold for some run
w′. That is, there must be an error in the system which has to be repaired. Hence, it
might be helpful if our algorithm could report where this error occurs and why.

Games provide a natural framework to fulfil this feature. The idea of using games to
characterize model checking problems is due to Stirling. These kind of games consist
of two players, namely Eliza and Albert, competing each other. Player Eliza tries to
show that a formula holds whereas her opponent wants the opposite. Winning a game
means having a winning strategy which can be used to isolate an error of the system
by an interactive play against the designer, for example.

Synopsis

In chapter 2 we summarize necessary preliminaries of mathematical structures and
lemmas to provide a fundamental background to understand the following chapters.

Chapter 3 introduces model checking for linear infinite structures such as infinite
words. The games for this task have been developed by Stirling [Sti95, Sti97] and a
closer look into that subject will support comprehension of games for tree structures.

The heart of this work is contained in chapter 4. In [SW91] Stirling and Walker ex-
amined tableaux for solving the model checking problem for trees. Bradfield, Esparza
and Mader continued their work and presented a tableau for satisfiability checking
[BEM96]. The games of this thesis are based on their work and improve the winning
conditions (which are the equivalent to the abortion conditions in tableaux).

3

1 Introduction

Kaivola investigated the satisfiability problem for the µ-calculus using tableaux
[Kai95, Kai97]. His approach is related to the games we used for model checking
for trees. In chapter 5, we simply extract satisfiability and validity checking games
from the tree games using a “universal tree”.

In chapter 6 an automata based algorithm is presented for deciding the winner of a
tree game. Then we will estimate the complexity of all games discussed in this work.

4

In mathematics you don’t

understand things. You just get

used to them.

(von Neumann)2 Preliminaries

2.1 Infinite Words and Infinite Trees

In formal verification Kripke structures or Labeled Transition Systems (LTS) are used
to abstract the behaviour of non-terminating systems. Infinite words and infinite
trees provide a similar mathematical structure and since they are simple and directly
connected to language classes which have been widely examined, we choose them to
be our mathematical interpretations of real systems.

Definition 2.1 (Infinite Words) Let Σ = {a, b, c, ...} be a finite non-empty alpha-
bet. An infinite word (or ω-word) over Σ is a total map w : N → Σ.

We will usually write w := w(0) w(1) w(2) . . . for such a word and w[i := w(i) w(i+
1) w(i+ 2) . . . for its suffix beginning at position i ∈ N. Its prefix ending at position i
is denoted by wi].

The set of all infinite words over Σ is denoted by Σω.
Let v ∈ Σ∗ be a finite word. To represent the infinite sequence vvvv . . . we write

vω ∈ Σω. �

Example 2.2

◦ w = abaabaaabaaab . . . is an infinite word.

◦ Let w = abcdefg(abc)ω. Then w[8 = bc(abc)ω and w8] = abcdefgab.

An infinite word can be seen as a labeling of the linear and infinite sequence N =
0 1 2 3 4 5 . . . and if we represent N by a unary numeral system using one symbol, e.g.
0, this sequence is of the form N = 0 00 000 0000 . . . where each position in N is a word
in {0}∗.

A tree can be defined as a labeling of linear (and infinite) branches beginning at the
root of the tree. In a binary tree such a branch w can be specified by a sequence of
w = ε 0 1 1 . . . where ε is the root of the tree and 0 means left and 1 means right.

Definition 2.3 (Infinite Trees) A set of finite words D ⊆ N
∗ is called tree domain

if it satisfies

• D is prefix closed (in particular: ε ∈ D),

• ∀d ∈ D : d0 ∈ D,

5

2 Preliminaries

• ∀d ∈ D,∀i+ 1 ∈ N : d(i+ 1) ∈ D ⇒ di ∈ D.

Let Σ = {a, b, c, ...} be a finite non-empty alphabet. An infinite tree over Σ is a
map t : D → Σ.

Each element of D is called node and ε ∈ D is called root of the tree. Furthermore,
di ∈ D is a child of its parent d ∈ D.

A branch in t is an infinite word p ∈ D
ω s.t. for every i ∈ N : p(i + 1) is a child of

p(i). We write w ∈ t and call it a path in t iff there is a branch p in t s.t. w(i) = t(p(i))
for all i ∈ N.

Each node n ∈ D defines a subtree t[n : D
[n → Σ of t which begins at node n.

Formally, D
[n := {d | nd ∈ D} and t[n(d) := t(nd) for all d ∈ D

[n. The prefix of t
which ends in node n is a word w ∈ Σ∗ where w(i) := t(ni]) for all i = 0, 1, . . . , |n|. It
is denoted by tn].

The set of all infinite trees over Σ is denoted by T
Σ
. �

Example 2.4

◦ Every infinite word is a tree with only one branch w ∈ D = {0}∗, e.g. words of
example 2.2.

◦ An illustration of a binary tree t : D → Σ where D = {0, 1}∗ is

nodes: ε

hhhhhhhhhhhhh

MMMMMMM

t

$$ labels: a

hhhhhhhhhhhhh

MMMMMMM

0

qqqqqqq

MMMMMMM
. . .

b

qqqqqqq

MMMMMMM
. . .

00

��
��
�

88
88

8 01

��
��
�

88
88

8 c

��
��
�

88
88

8 d

��
��
�

88
88

8

.

where t[01 is the tree depicted in the dotted square. The prefix of t which ends
in node 01 is t01] = abd.

2.2 Definition of µTL

Definition 2.5 (Syntax) Let Σ = {a, b, c, . . .} be a finite non-empty alphabet and
V = {X,Y, Z, ...} be a set of variables. A µTL formula in positive normal form is
defined by the following grammar:

ϕ ::= a | X | ϕ ∧ ϕ | ϕ ∨ ϕ | Oϕ | µX.ϕ | νX.ϕ

where a ∈ Σ and X ∈ V. The connectives ∧ and ∨ are called conjunctions and
disjunction. The operator O is called next and the binders µX.ψ and νX.ψ denote
least/greatest fixed points.

We will often refer to the µ- or ν-binder by σ. �

6

2.2 Definition of µTL

Definition 2.6 The formulas true and false are abbreviated by tt := νX.OX und
ff := µX.OX, where X ∈ V. �

Definition 2.7 (Subformulas) The set of subformulas Sub(ϕ) of a µTL formula ϕ
is inductively defined as

Sub(a) := a, for all a ∈ Σ

Sub(X) := X, for all X ∈ V

Sub(ϕ1 ∧ ϕ2) := {ϕ1 ∧ ϕ2} ∪ Sub(ϕ1) ∪ Sub(ϕ2)

Sub(ϕ1 ∨ ϕ2) := {ϕ1 ∨ ϕ2} ∪ Sub(ϕ1) ∪ Sub(ϕ2)

Sub(µX.ϕ) := {µX.ϕ} ∪ Sub(ϕ)

Sub(νX.ϕ) := {νX.ϕ} ∪ Sub(ϕ). �

Definition 2.8 An occurrence of a variable X in a µTL formula ϕ is bound iff there
is a σX.ψ ∈ Sub(ϕ) s.t. X ∈ Sub(ψ). Otherwise it is free. A formula is closed iff it
has no free variables.

A bound variable is of type µ iff its binder is µX.ψ. It is also called µ-variable.
Otherwise it is of type ν.

For two variables X,Y ∈ Sub(ϕ) we write X <ϕ Y iff Y is free in some σX.ψ ∈
Sub(ϕ). �

Example 2.9

◦ In ϕ := µX.νY.X ∧O(Y) ∨ Z the variables X and Y are bound and variable Z
is free. X is of type µ, Y is of type ν and the type of Z is unknown.

◦ The following table

V X Y Z
V
X
Y <ϕ
Z <ϕ

depicts the <ϕ relation for all variables in ϕ := (µX.νY.X ∧ Y) ∨ (µZ.V ∧ Z).

Definition 2.10 (Substitution) Formula ϕ[ψ/X] is defined as the formula, where
all free occurrences of the variable X are simultaneously substituted by ψ.

Definition 2.11 (well-named) A µTL formula ϕ consisting of m µ-variables and n
ν-variables is well-named if

• every variable in ϕ is bound at most once, and

7

2 Preliminaries

• all µ-variables are renamed to X1, X2, . . . , Xm s.t. ∀i, j ∈ {1, 2, . . . ,m} : Xi <ϕ

Xj ⇒ i > j, and

• all ν-variables are renamed to Y1, Y2, . . . , Yn s.t. ∀i, j ∈ {1, 2, . . . , n} : Yi <ϕ

Yj ⇒ i > j.

For every formula ϕ in normal form we can define a mapping fp ϕ : V ∩ Sub(ϕ) →
Sub(ϕ), where fp ϕ maps each X to its unique binder σX.ψ. Analogously, fb ϕ :
V ∩ Sub(ϕ) → Sub(ϕ) maps each variable X to its unique fixed point body ψ. �

Any µTL formula can be transformed into a well-named form by renaming variables.
This is possible since by definition of <ϕ for any two distinct variables X <ϕ Y and
Y <ϕ X cannot hold simultaneously. Otherwise X would be in Sub(fp ϕ(Y)) and
Y ∈ Sub(fp ϕ(X)). By now, we may assume that all formulas in this work are well-
named.

Definition 2.12 (guarded form) A µTL formula ϕ is in guarded form iff every oc-
currence of a bound variable X ∈ Sub(ϕ) is in the scope of an O operator which itself
is in fb ϕ(X). �

Every µTL formula can be translated into guarded form by only a quadratic blow-
up. See for example [Mat02] and [Wal00]. From now on, we assume that all µTL
formulas are in guarded form.

Definition 2.13 (Semantics) The semantics of a µTL formula is inductively defined
over infinite words in Σω. Formulas with free variables are interpreted with respect to
an environment ρ : V → 2N which maps all free variables to positions S ⊆ N. Besides,
we write ρ[Y 7→ S] meaning that only the mapping for variable Y is changed to S.

[[a]]wρ := {i ∈ N | w(i) = a}

[[X]]wρ := ρ(X)

[[ϕ1 ∨ ϕ2]]
w
ρ := [[ϕ1]]

w
ρ ∪ [[ϕ2]]

w
ρ

[[ϕ1 ∧ ϕ2]]
w
ρ := [[ϕ1]]

w
ρ ∩ [[ϕ2]]

w
ρ

[[Oϕ]]wρ := {i ∈ N | i+ 1 ∈ [[ϕ]]wρ }

[[µX.ϕ]]wρ :=
⋂

{S ⊆ N | [[ϕ]]wρ[X 7→S] ⊆ S}

[[νX.ϕ]]wρ :=
⋃

{S ⊆ N | S ⊆ [[ϕ]]wρ[X 7→S]} �

Definition 2.14 (Model) An infinite word w ∈ Σω together with an environment ρ
is a model of a µTL formula ϕ iff the formula holds at position 0. We write

w |=ρ ϕ :⇔ 0 ∈ [[ϕ]]wρ

8

2.2 Definition of µTL

A tree t ∈ T
Σ

is a model of ϕ iff all paths in t are models of that formula, i.e.

t |=ρ ϕ :⇔ ∀w ∈ t : w |=ρ ϕ

Two formulas are equivalent iff they have exactly the same word-models. We write

ϕ ≡ ψ :⇔ ∀w ∈ Σω : w |=ρ ϕ⇔ w |=ρ ψ.

Notice that two equivalent formulas have exactly the same tree-models, as well.

For closed formulas we commonly drop ρ. �

Definition 2.15 A closed µTL formula ϕ is called

• satisfiable :⇔ ∃w ∈ Σω : w |= ϕ

• valid :⇔ ∀w ∈ Σω : w |= ϕ. �

Example 2.16

◦ The µTL formula ϕ := a∧Ob∧O(Oc∨Od) specifies the following property: At
the first position a holds, one step later b holds and at position four either c or
d holds. Another way to understand this formula is: ϕ shall hold at the first
position.

◦ A property ϕ which shall hold at every position (in LTL “generally ϕ” or G(ϕ))
can be described by the µTL formula νY.ϕ ∧O(Y).

Intuitively, we can interpret this formula by substituting variable Y by fb ϕ(Y)
infinitely often. The resulting formula looks like

ϕ ∧O(ϕ ∧O(ϕ ∧O(ϕ ∧O(ϕ ∧O(ϕ ∧O(. . .))))))

and can be read step by step.

◦ The existence of a position satisfying ϕ (in LTL “finally ϕ” or F (ϕ)) can be
expressed by µX.ϕ ∨O(X).

Intuitively, ϕ can be transformed to formula

ϕ ∨O(ϕ ∨O(ϕ ∨O(ϕ ∨O(. . . (ϕ ∨O(X)))))

where variable X is substituted by fb ϕ(X) finitely many times.

◦ Property ϕ holds until property ψ is satisfied (in LTL ϕUψ) is usually denoted
by formula µX.ψ ∨ (ϕ ∧O(X)).

9

2 Preliminaries

Negated formulas

Definition 2.17 We extend µTL by introducing a new syntactical construct ¬ϕ and
interpret it as [[¬ϕ]]wρ := N \ [[ϕ]]wρ . Let µTL¬ denote this class of formulas which uses
negation. �

Lemma 2.18 For any ω-word w ∈ Σω, any ρ and any ϕ ∈ µTL¬:

w |=ρ ϕ ⇔ w 6|=ρ ¬ϕ.

Proof

w |=ρ ϕ ⇔ 0 ∈ [[ϕ]]wρ

⇔ 0 /∈ [[¬ϕ]]wρ

⇔ w 6|=ρ ¬ϕ

Lemma 2.19 (Equivalences) Let ϕ, ψ be µTL¬ formulas and a be a letter in the
finite alphabet Σ. Then the following holds:

a) ¬a ≡
∨

b∈Σ,b 6=a b

b) ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ

c) ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

d) ¬(Oϕ) ≡ O¬ϕ

e) ¬(µX.ϕ) ≡ νX.¬(ϕ[¬X/X])

f) ¬(νX.ϕ) ≡ µX.¬(ϕ[¬X/X])

Proof Let w be an arbitrary ω-word.

a)

w |= ¬a⇔ w 6|= a

⇔ w(0) 6= a

⇔ there is a b ∈ Σ with b 6= a s.t. w(0) = b

⇔ there is a b ∈ Σ with b 6= a s.t. w |= b

⇔ w |=
∨

b∈Σ,b 6=a

b

b) , c) de Morgan

10

2.2 Definition of µTL

d)

w |= ¬(Oϕ) ⇔ 0 ∈ [[¬(Oϕ)]]wρ

⇔ 0 ∈ N \ [[Oϕ]]wρ

⇔ 0 ∈ N \ {i ∈ N | i+ 1 ∈ [[ϕ]]wρ }

⇔ 0 ∈ {i ∈ N | i+ 1 /∈ [[ϕ]]wρ }

⇔ 0 ∈ {i ∈ N | i+ 1 ∈ N \ [[ϕ]]wρ }

⇔ 0 ∈ {i ∈ N | i+ 1 ∈ [[¬ϕ]]wρ }

⇔ 0 ∈ [[O(¬ϕ)]]wρ

⇔ w |=ρ O(¬ϕ)

e)

w |= ¬(µX.ϕ) ⇔ 0 ∈ [[¬(µX.ϕ)]]w

⇔ 0 ∈ N \
⋂

{S ⊆ N | [[ϕ]]wρ[X 7→S] ⊆ S}

⇔ 0 ∈
⋃

{N \ S ⊆ N | [[ϕ]]wρ[X 7→S] ⊆ S}

⇔ 0 ∈
⋃

{S ⊆ N | [[ϕ]]w
ρ[X 7→N\S]

⊆ N \ S}

⇔ 0 ∈
⋃

{S ⊆ N | S ⊆ N \ [[ϕ]]w
ρ[X 7→N\S]

}

⇔ 0 ∈
⋃

{S ⊆ N | S ⊆ [[¬ϕ]]w
ρ[X 7→N\S]

}

⇔ 0 ∈
⋃

{S ⊆ N | S ⊆ [[¬(ϕ[¬X/X])]]w
ρ[X 7→S]

}

⇔ 0 ∈
⋃

{S ⊆ N | S ⊆ [[¬(ϕ[¬X/X])]]wρ[X 7→S]}

⇔ 0 ∈ [[νX.¬(ϕ[¬X/X])]]w

⇔ w |= νX.¬(ϕ[¬X/X])

11

2 Preliminaries

f)

w |= ¬(νX.ϕ) ⇔ 0 ∈ [[¬(νX.ϕ)]]w

⇔ 0 ∈ N \
⋃

{S ⊆ N | S ⊆ [[ϕ]]wρ[X 7→S]}

⇔ 0 ∈
⋂

{N \ S ⊆ N | S ⊆ [[ϕ]]wρ[X 7→S]}

⇔ 0 ∈
⋂

{S ⊆ N | N \ S ⊆ [[ϕ]]w
ρ[X 7→N\S]

}

⇔ 0 ∈
⋂

{S ⊆ N | N \ [[ϕ]]w
ρ[X 7→N\S]

⊆ S}

⇔ 0 ∈
⋂

{S ⊆ N | [[¬ϕ]]w
ρ[X 7→N\S]

⊆ S}

⇔ 0 ∈
⋂

{S ⊆ N | [[¬(ϕ[¬X/X])]]w
ρ[X 7→S]

⊆ S}

⇔ 0 ∈
⋂

{S ⊆ N | [[¬(ϕ[¬X/X])]]wρ[X 7→S] ⊆ S}

⇔ 0 ∈ [[µX.¬(ϕ[¬X/X])]]w

⇔ w |= µX.¬(ϕ[¬X/X])

Lemma 2.20 Every µTL formula ϕ in positive normal form can effectively be trans-
formed into a formula (in positive normal form) which is equivalent to its negation.

Proof By induction on the structure of the negated formula ¬ϕ where all equiva-
lences of Lemma 2.19 are applied.

Definition 2.21 Let ϕ ∈ µTL a formula in positive normal form. The unique formula
returned by the procedure described in Lemma 2.20 is denoted by ϕ. �

Unfortunately, · : µTL → µTL is not bijective and so ϕ does not necessarily equal
ϕ. On the other hand it is easy to see that ϕ can be inferred if its negation ϕ is given
because · : µTL→ µTL is injective.

2.3 Fixed Points

Definition 2.22 (Lattice) Let S be a partially ordered set with respect to ≤, i.e.
the following holds:

• ∀x ∈ S : x ≤ x (reflexivity)

• ∀x, y, z ∈ S : (x ≤ y) ∧ (y ≤ z) ⇒ x ≤ z (transitivity)

• ∀x, y ∈ S : (x ≤ y) ∧ (y ≤ x) ⇒ x = y (anti-symmetriy)

12

2.3 Fixed Points

Let A ⊆ S be a subset of S. A supremum of A, denoted as ⊔A, is the least element
s ∈ S s.t. ∀a ∈ A : a ≤ s. Dually, an infimum of A, denoted by ⊓A, is the greatest
element s ∈ S s.t. ∀a ∈ A : s ≤ a.

A pair (S,≤) is called lattice if ⊔{x, y} and ⊓{x, y} exist in S for all x, y ∈ S. A
lattice is complete if suprema and infima exist for all subsets of S. In this case, define
the two elements bottom ⊥:= ⊔S and top ⊤ := ⊓S. �

Example 2.23

◦ In R the set of negative real numbers R
− has no greatest element, but its supre-

mum ⊔R
− = 0 exists.

◦ (N,≤) is a lattice with ⊥= 0 and no top element.

◦ (2N,⊆) is a complete lattice. For every subset A ⊆ 2N,
⋃
A is the supremum

and
⋂
A is the infimum of A. The bottom element is ⊥= ∅ and the top element

is ⊤ = N.

Definition 2.24 (Fixed Points) Let (S,≤) be a lattice and f : S → S be a map on
S. An element x ∈ S is called

• a fixed point of f :⇔ f(x) = x

• a pre-fixed point of f :⇔ f(x) ≤ x

• a post-fixed point of f :⇔ f(x) ≥ x �

Definition 2.25 (Monotonicity) Let (S,≤) be a lattice and f : S → S be a map
on S. The map f is called monotone if ∀x, y ∈ S : x ≤ y ⇒ f(x) ≤ f(y). �

Theorem 2.26 (Knaster-Tarski) [Tar55] Let (S,≤) be a complete lattice and f :
S → S a monotone map on S. The least fixed point of f , denoted µf , exists uniquely
and is the infimum of all pre-fixed points. Dually, the greatest fixed point νf exists
uniquely and is the supremum of all post-fixed points.

µf := ⊓{x ∈ S | f(x) ≤ x}

νf := ⊔{x ∈ S | x ≤ f(x)}

A short proof of that theorem can be found in [Win93].

Lemma 2.27 Let w ∈ Σω be a word and ϕ a µTL formula. Then fϕ(A) := [[ϕ]]wρ[X 7→A] :

2N → 2N is a monotone function in (2N,⊆), where X ∈ V.

13

2 Preliminaries

Proof We will prove this lemma by induction on the structure of ϕ. Let A,B ∈ 2N

be two sets with A ⊆ B.
If ϕ = a for some a ∈ Σ then

[[a]]wρ[X 7→A] = {i ∈ N | w(i) = a} = [[a]]wρ[X 7→B].

If ϕ = X for variable X ∈ V then

[[X]]wρ[X 7→A] = A ⊆ B = [[X]]wρ[X 7→B].

If ϕ = Y 6= X for some Y ∈ V then

[[Y]]wρ[X 7→A] = ρ(Y) = [[Y]]wρ[X 7→B].

If ϕ = σX.ψ then

[[σX.ψ]]wρ[X 7→A] = [[σX.ψ]]wρ = [[σX.ψ]]wρ[X 7→B].

If ϕ = ψ1 ∨ ψ2 then

fψ1∨ψ2(A) = fψ1(A) ∪ fψ2(A)
IH

⊆ fψ1(B) ∪ fψ2(B)

= fψ1∨ψ2(B)

because of the monotonicity of ∪. Dually, we can prove that fψ1∧ψ2(A) ⊆ fψ1∧ψ2(B)
due to monotonicity of ∩.

If ϕ = Oψ then

fOψ(A) = [[Oψ]]wρ[X 7→A]

= {i ∈ N | i+ 1 ∈ [[ψ]]wρ[X 7→A]}

IH

⊆ {i ∈ N | i+ 1 ∈ [[ψ]]wρ[X 7→B]}

= [[Oψ]]wρ[X 7→B]

= fOψ(B)

If ϕ = νY.ψ then we have to show that fνY.ψ(A) ⊆ fνY.ψ(B).

x ∈ fνY.ψ(A) ⇔ x ∈
⋃

{S ⊆ 2N | S ⊆ [[ψ]]wρ[X 7→A,Y 7→S]}

⇔ ∃S ⊆ [[ψ]]wρ[X 7→A,Y 7→S] : x ∈ S

IH
⇒ ∃S ⊆ [[ψ]]wρ[X 7→B,Y 7→S] : x ∈ S

⇔ x ∈
⋃

{S ⊆ 2N | S ⊆ [[ψ]]wρ[X 7→B,Y 7→S]}

⇔ x ∈ fνY.ψ(B)

14

2.4 Approximants

If ϕ = µY.ψ then we have to show that fµY.ψ(A) ⊆ fµY.ψ(B).

x ∈ fµY.ψ(A) ⇔ x ∈
⋂

{S ⊆ 2N | [[ψ]]wρ[X 7→A,Y 7→S] ⊆ S}

⇔ ∀S ∈ 2N : if [[ψ]]wρ[X 7→A,Y 7→S] ⊆ S then x ∈ S

(∗)
⇒ ∀S ∈ 2N : if [[ψ]]wρ[X 7→B,Y 7→S] ⊆ S then x ∈ S

⇔ x ∈
⋂

{S ⊆ 2N | [[ψ]]wρ[X 7→B,Y 7→S] ⊆ S}

⇔ x ∈ fµY.ψ(B)

(∗) holds because of the following fact: if [[ψ]]wρ[X 7→B,Y 7→S] ⊆ S then by IH and transi-

tivity of the ⊆-relation [[ψ]]wρ[X 7→A,Y 7→S] ⊆ S and therefore x ∈ S.

This lemma together with Theorem 2.26 explain our definition for the least and
greatest fixed point in Definition 2.13, namely [[µX.ψ]]wρ and [[νX.ψ]]wρ .

Lemma 2.28 For any µTL formula ϕ and any ρ:

[[ϕ[µX.ϕ/X]]]wρ = [[ϕ]]wρ[X 7→[[µX.ϕ]]wρ] = [[µX.ϕ]]wρ

Proof Directly from Lemma 2.27 and the the fixed point theorem of Knaster-Tarski
(Theorem 2.26).

2.4 Approximants

Definition 2.29 In µTL we have two kinds of approximants for the least and the
greatest fixed points. They can be defined in the following way:

µ0X.ϕ := ff µk+1X.ϕ := ϕ[µkX.ϕ/X]

ν0X.ϕ := tt νk+1X.ϕ := ϕ[νkX.ϕ/X]

where k ∈ N.

Definition 2.30 A set S together with a binary relation ≤ having the following prop-
erties is called directed.

• ∀x ∈ S : x ≤ x (reflexivity)

• ∀x, y, z ∈ S : (x ≤ y) ∧ (y ≤ z) ⇒ x ≤ z (transitivity)

• ∀x, y ∈ S : ∃z ∈ S : (x ≤ z) ∧ (y ≤ z) (directedness) �

Example 2.31

15

2 Preliminaries

◦ (N,≤) is directed (and so is any totally ordered set).

◦ Any lattice is directed because it has a supremum for any two elements.

Lemma 2.32 ({[[µiX.ϕ]]wρ | i ∈ N},⊆) is directed for any w, ρ.

Proof Relation ⊆ ensures reflexivity and transitivity. We show by induction that
[[µkX.ϕ]]wρ ⊆ [[µk+1X.ϕ]]wρ for all k ∈ N. Due to transitivity of the relation operator
any two elements [[µiX.ϕ]]wρ , [[µjX.ϕ]]wρ , where i, j ∈ N, are contained in or equal to the

element [[µmax(i,j)X.ϕ]]wρ .
For k = 0:

[[µ0X.ϕ]]wρ = ∅ ⊆ [[µ1X.ϕ]]wρ

For k + 1 → k + 2:

[[µk+1X.ϕ]]wρ = [[ϕ[µkX.ϕ/X]]]wρ

= [[ϕ]]wρ[X 7→[[µkX.ϕ]]wρ]

IH

⊆ [[ϕ]]wρ[X 7→[[µk+1X.ϕ]]wρ]

= [[ϕ[µk+1X.ϕ/X]]]wρ

= [[µk+2X.ϕ]]wρ

since the map λS.[[ϕ]]wρ[X 7→S] is monotone by Lemma 2.27.

Lemma 2.33 If (S,≤) is directed and f : S → S is a monotone map then S ′ :=
({f(s) | s ∈ S},≤) is directed.

Proof Let f(x) and f(y) be two elements of S ′, where x, y ∈ S. Since S is directed
there is a z s.t. x ≤ z and y ≤ z. Therefore there is a f(z) ∈ S ′ s.t. f(x) ≤ f(z) and
f(y) ≤ f(z) because f is monotone.

Lemma 2.34 For every word w ∈ Σω and every environment ρ : V → 2N :

a) w |=ρ µX.ψ ⇔ ∃k ∈ N : w |=ρ µ
kX.ψ

b) w 6|=ρ νX.ψ ⇔ ∃k ∈ N : w 6|=ρ ν
kX.ψ

Proof a) First we will prove the “⇐” direction.

∀w ∈ Σω : if ∃k ∈ N : w |=ρ µ
kX.ϕ then w |=ρ µX.ϕ

⇔ ∀w ∈ Σω : if w 6|=ρ µX.ϕ then ∀k ∈ N : w 6|=ρ µ
kX.ϕ

⇔ ∀w ∈ Σω : ∀k ∈ N : (if w 6|=ρ µX.ϕ then w 6|=ρ µ
kX.ϕ)

⇔ ∀w ∈ Σω : ∀k ∈ N : (if w |=ρ µ
kX.ϕ then w |=ρ µX.ϕ)

⇔ ∀w ∈ Σω : ∀k ∈ N : [[µkX.ϕ]]wρ ⊆ [[µX.ϕ]]wρ

16

2.4 Approximants

Let w ∈ Σω be an arbitrary word. We prove the last line by induction on k:
If k = 0 then

[[µkX.ϕ]]wρ = [[ff]]wρ = ∅ ⊆ [[µX.ϕ]]wρ

The induction step k → k + 1:

[[µk+1X.ϕ]]wρ = [[ϕ[µkX.ϕ/X]]]wρ
= [[ϕ]]wρ[X 7→[[µkX.ϕ]]wρ]

⊆ [[ϕ]]wρ[X 7→[[µX.ϕ]]wρ]

=1[[µX.ϕ]]wρ

The inclusion holds because of [[µkX.ϕ]]wρ ⊆ [[µX.ϕ]]wρ by IH and monotonicity of [[ϕ]]
according to Lemma 2.27.

The “⇒” direction can be shown by fixed point induction in the following way.

∀w ∈ Σω : if w |=ρ µX.ϕ then ∃k ∈ N : w |=ρ µ
kX.ϕ

⇔ ∀w ∈ Σω : if w |=ρ µX.ϕ then w |=ρ

∨

k∈N

µkX.ϕ

⇐ ∀w ∈ Σω : [[µX.ϕ]]wρ ⊆ [[
∨

k∈N

µkX.ϕ]]wρ

⇔ ∀w ∈ Σω : [[µX.ϕ]]wρ ⊆
⋃

k∈N

[[µkX.ϕ]]wρ

To prove the last line we have to show that
⋃

k∈N
[[µkX.ϕ]]wρ is a prefixed point of

λS.[[ϕ]]wρ[X 7→S]. In particular

[[ϕ]]wρ[X 7→
S

k∈N
[[µkX.ϕ]]wρ] ⊆

⋃

k∈N

[[µkX.ϕ]]wρ .

Since [[µX.ϕ]]wρ is the least of all prefixed points of λS.[[ϕ]]wρ[X 7→S] the inclusion of the
last line holds. Let w be an arbitrary ω-word in Σω. Then

[[ϕ]]wρ[X 7→
S

k∈N
[[µkX.ϕ]]wρ]

(∗)

⊆
⋃

k∈N

[[ϕ]]wρ[X 7→[[µkX.ϕ]]wρ]

=
⋃

k∈N,k>0

[[ϕ]]wρ[X 7→[[µk−1X.ϕ]]wρ] ∪ [[µ0X.ϕ]]wρ

=
⋃

k∈N,k>0

[[µkX.ϕ]]wρ ∪ [[µ0X.ϕ]]wρ

=
⋃

k∈N

[[µkX.ϕ]]wρ

1by Lemma 2.28

17

2 Preliminaries

The inclusion (∗) is proved by induction on the structure of the formula ϕ. First
define a shorthand for the argument: Mk := [[µkX.ϕ]]wρ .

If ϕ = a for some letter a then

[[a]]wρ[X 7→
S

k∈N
Mk] = [[a]]wρ =

⋃

k∈N

[[a]]wρ =
⋃

k∈N

[[a]]wρ[X 7→Mk]

If ϕ = Y for some variable Y 6= X then

[[Y]]wρ[X 7→
S

k∈N
Mk] = [[Y]]wρ =

⋃

k∈N

[[Y]]wρ =
⋃

k∈N

[[Y]]wρ[X 7→Mk]

If ϕ = σX.ψ then

[[σX.ψ]]wρ[X 7→
S

k∈N
Mk] = [[σX.ψ]]wρ =

⋃

k∈N

[[σX.ψ]]wρ =
⋃

k∈N

[[σX.ψ]]wρ[X 7→Mk]

If ϕ = X then by definition

[[X]]wρ[X 7→
S

k∈N
Mk] ⊆

⋃

k∈N

Mk

If ϕ = ϕ1 ∨ ϕ2 then

[[ϕ1 ∨ ϕ2]]
w
ρ[X 7→

S
k∈N

Mk] = [[ϕ1]]
w
ρ[X 7→

S
k∈N

Mk] ∪ [[ϕ2]]
w
ρ[X 7→

S
k∈N

Mk]

I.H.

⊆
⋃

k∈N

[[ϕ1]]
w
ρ[X 7→Mk] ∪

⋃

k∈N

[[ϕ2]]
w
ρ[X 7→Mk]

=
⋃

k∈N

[[ϕ1 ∨ ϕ2]]
w
ρ[X 7→Mk]

If ϕ = ϕ1 ∧ ϕ2 then

[[ϕ1 ∧ ϕ2]]
w
ρ[X 7→

S
k∈N

Mk] = [[ϕ1]]
w
ρ[X 7→

S
k∈N

Mk] ∩ [[ϕ2]]
w
ρ[X 7→

S
k∈N

Mk]

IH

⊆
⋃

k∈N

[[ϕ1]]
w
ρ[X 7→Mk] ∩

⋃

k∈N

[[ϕ2]]
w
ρ[X 7→Mk]

⊆
⋃

k∈N

[[ϕ1 ∧ ϕ2]]
w
ρ[X 7→Mk]

18

2.4 Approximants

The last line holds since

x ∈ (
⋃

k∈N

[[ϕ1]]
w
ρ[X 7→Mk] ∩

⋃

k∈N

[[ϕ2]]
w
ρ[X 7→Mk])

⇔ x ∈
⋃

k∈N

[[ϕ1]]
w
ρ[X 7→Mk] and x ∈

⋃

k∈N

[[ϕ2]]
w
ρ[X 7→Mk]

⇔ ∃i ∈ N : x ∈ [[ϕ1]]
w
ρ[X 7→Mi]

and ∃j ∈ N : x ∈ [[ϕ2]]
w
ρ[X 7→Mj]

⇒2 ∃k ∈ N : x ∈ [[ϕ1]]
w
ρ[X 7→Mk] and x ∈ [[ϕ2]]

w
ρ[X 7→Mk]

⇔ ∃k ∈ N : x ∈ [[ϕ1 ∧ ϕ2]]
w
ρ[X 7→Mk]

⇔ x ∈
⋃

k∈N

[[ϕ1 ∧ ϕ2]]
w
ρ[X 7→Mk]

If ϕ = µY.ψ then it is to show that [[µY.ψ]]wρ[X 7→
S

i∈N
Mi]

⊆
⋃

i∈N
[[µY.ψ]]wρ[X 7→Mi]

. If we

check that the right hand side is a prefixed point of λS.[[ψ]]wρ[X 7→
S

i∈N
Mi,Y 7→S] : 2N → 2N

then this inclusion holds because [[µY.ψ]]wρ[X 7→
S

i∈N
Mi]

is the infimum of all prefixed

points, i.e. it is contained or equal to any prefixed point.

[[ψ]]wρ[X 7→
S

i∈N
Mi,Y 7→

S
j∈N

[[µY.ψ]]w
ρ[X 7→Mj]

]

IH

⊆
⋃

i∈N

[[ψ]]wρ[X 7→Mi,Y 7→
S

j∈N
[[µY.ψ]]w

ρ[X 7→Mj]
]

IH

⊆
⋃

i∈N

⋃

j∈N

[[ψ]]wρ[X 7→Mi,Y 7→[[µY.ψ]]w
ρ[X 7→Mj]

]

=3
⋃

k∈N

[[ψ]]wρ[X 7→Mk,Y 7→[[µY.ψ]]w
ρ[X 7→Mk]

]

=4
⋃

k∈N

[[µY.ψ]]wρ[X 7→Mk]

and the second inclusion holds because λS.[[µY.ψ]]wρ[X 7→S] is monotone. Therefore the

set {[[µY.ψ]]wρ[X 7→Mj]
|j ∈ N} is directed (Lemma 2.33) and we can apply the induction

hypothesis again.

2because of Lemma 2.32 and Lemma 2.33
3because of directedness and monotonicity
4because [[µY.ψ]]wρ[X 7→Mj]

] is a fixed point of λS.[[µY.ψ]]wρ[X 7→Mk,Y 7→S]

19

2 Preliminaries

If ψ = νY.ψ then

[[νY.ψ]]wρ[X 7→
S

i∈N
Mk] =

⋃

{T | T ⊆ [[ψ]]ρ[X 7→
S

k∈N
Mk,Y 7→T]}

IH

⊆
⋃

{T | T ⊆
⋃

k∈N

[[ψ]]ρ[X 7→Mk,Y 7→T]}

(**)

⊆
⋃ ⋃

k∈N

{T | T ⊆ [[ψ]]ρ[X 7→Mk,Y 7→T]}

=
⋃

k∈N

⋃

{T | T ⊆ [[ψ]]ρ[X 7→Mk,Y 7→T]}

=
⋃

k∈N

[[νY.ψ]]ρ[X 7→Mk]

The inclusion (**) holds because

T ∈ {T ′ | T ′ ⊆
⋃

k∈N

[[ψ]]ρ[X 7→Mk,Y 7→T ′]}

⇒ T ′ ⊆
⋃

k∈N

[[ψ]]ρ[X 7→Mk,Y 7→T ′]

and since (Mk)k∈N is a monotonically increasing sequence (Lemma 2.32) the sequence
([[ψ]]ρ[X 7→Mk,Y 7→T])k∈N is monotonically increasing as well (Lemma 2.33). Therefore
there is a least element s.t.

⇒ ∃k ∈ N : T ′ ⊆ [[ψ]]ρ[X 7→Mk,Y 7→T ′]

⇒ T ∈
⋃

k∈N

{T ′ | T ′ ⊆ [[ψ]]ρ[X 7→Mk,Y 7→T ′]}

b) directly from a). But first, we check by induction that [[¬µkX.¬ϕ[¬X/X]]]wρ =
[[νkX.ϕ]]wρ for all k ∈ N and arbitrary w, ρ.

If k = 0 then

[[¬µ0X.¬ϕ[¬X/X]]]wρ = [[¬ff]] = [[tt]] = [[ν0X.ϕ]]wρ

For k → k + 1:

[[¬(µk+1X.¬ϕ[¬X/X])]]wρ = [[¬(¬ϕ[¬X/X, (µkX.¬ϕ[¬X/X])/X])]]wρ

= [[ϕ[¬(µkX.¬ϕ[¬X/X])/X]]]wρ
IH
= [[ϕ[νkX.ϕ/X]]]wρ

= [[νk+1X.ϕ]]wρ

20

2.4 Approximants

By now the proof of b) is straight forward.

w 6|=ρ νX.ϕ⇔ w |=ρ ¬νX.ϕ

⇔ w |=ρ µX.¬ϕ[¬X/X]

⇔ ∃k ∈ N : w |=ρ µ
kX.¬ϕ[¬X/X]

⇔ ∃k ∈ N : w 6|=ρ ¬µ
kX.¬ϕ[¬X/X]

⇔ ∃k ∈ N : w 6|=ρ ν
kX.ϕ

Signatures

Usually, a signature (S, f) is a set with a map f : S → N which assigns a number
to each element of S. In this work we will use signatures to interpret open formu-
las. Compared with environments ρ, signatures additionally provide a partial order
relation. This extra property will be needed later in proofs.

Definition 2.35 (Signature) Let ϕ be a well-named µTL formula with exactly m
µ-variables. A µ-signature for ϕ is a tuple κ = (k1, k2, . . . , km) ∈ N

m. We write κ ≤ κ′

if κ is less than or equals κ′ in lexicographic ordering. Note that this ordering is total
and well-founded.

A µ-signature can be seen as a finite word in N
m. So we will use the same abbre-

viations as in definition 2.1, i.e. we write κ(Xi) or κ(i) for the i-th projection to ki.
Besides, both κXi] and κi] denote the truncation of κ to (k1, k2, . . . , ki).

All these notations are defined for ν-signatures in the same way. �

Definition 2.36 Let ϕ be a µTL-formula and κ = (k1, k2, . . . , km) be a µ-signature
for ϕ. Furthermore, let Z1, Z2, . . . , Zn denote all variables in ϕ in increasing order,
i.e. ∀i, j ∈ {1, 2, . . . , n} : Zi <ϕ Zj ⇒ i < j (less variables get higher indices). Let
ψ ∈ Sub(ϕ) be a sub-formula of ϕ. Then we define

ψ ◦ κ :⇔ ((ψ ◦ sκ(Z1)) ◦ . . .) ◦ sκ(Zn)

where χ ◦ sκ(Z) substitutes variable Z in formula χ by its approximant σkZ.fb (Z) if
some κ(Z) exists. Otherwise Z is substituted by its fixed point σZ.fb (Z).

Again, all these notations are defined for ν-signatures in the same way. �

Example 2.37

◦ Let ϕ := µZ3.νZ2.(Z3 ∨Z2 ∨ µZ1.(Z3 ∧Z1)) be a µTL formula with sub-formula

21

2 Preliminaries

ψ = Z3 and µ-signature κ = (30, 10). Then ψ ◦ κ is the following formula

ψ ◦ κ = Z3 ◦ s1(Z1) ◦ s2(Z2) ◦ s3(Z3)

= Z3[µ
30Z1.(Z3 ∧ Z1)/Z1] ◦ s2(Z2) ◦ s3(Z3)

= µ30Z1.(Z3 ∧ Z1) ◦ s2(Z2) ◦ s3(Z3)

= µ30Z1.(Z3 ∧ Z1)[νZ2.(Z3 ∨ Z2 ∨ µZ1.(Z3 ∧ Z1))/Z2] ◦ s3(Z3)

= µ30Z1.(Z3 ∧ Z1) ◦ s3(Z3)

= µ30Z1.(Z3 ∧ Z1)[µ
10Z3.νZ2.(Z3 ∨ Z2 ∨ µZ1.(Z3 ∧ Z1))/Z3]

= µ30Z1.(µ
10Z3.νZ2.(Z3 ∨ Z2 ∨ µZ1.(Z3 ∧ Z1)) ∧ Z1)

Lemma 2.38 Let ϕ be a closed µTL formula and κ a σ-signature for ϕ. Then for
every ψ ∈ Sub(ϕ) the formula ψ ◦ κ is closed.

Proof Define ψ0 := ψ and ψi+1 := ψi◦s(Zi+1), where Z1, Z2, . . . , Zn are the variables
and s is the substitution given in Definition 2.36.

ψ ◦ κ = ψ ◦ s(Z1) ◦ . . . ◦ s(Zi)
︸ ︷︷ ︸

=: ψi

◦ . . . ◦ s(Zn)

We show by induction on i that ψi does not contain any free variable Z1, Z2, . . . , Zi
for all i = 1, 2, . . . , n.

For i = 1 variable Z1 is not free in ψ1 = ψ ◦ s(Z1) since Z1 gets bound by the
substitution s(Z1).

For i → i + 1 the formula ψi+1 is of the form ψi ◦ s(Zi+1). By IH there is no free
variable Zj in ϕi, where j < i. Besides, these variables do not occur free in fp (Zi+1).
Otherwise let Zj be free in fp (Zi+1) for some j < i + 1, i.e. Zi+1 <ϕ Zj. But then
i + 1 < j which contradicts the naming of the variables. Altogether, there is no free
variable Z1, Z2, . . . , Zi in ψi+1. Since Zi+1 gets bound by s(Zi+1) there is no free Zi+1

in ψi+1, as well.
The formula ψ ◦ κ equals ψn and hence, ψ ◦ κ contains no free variable, i.e. it is

closed.

2.5 Logical Games

All games in this thesis are played by two players ∃ and ∀, called Eliza and Albert.
We will define games with respect to a µTL formula ϕ and show that ϕ has certain
properties depending on the winner of the game.

Every play starts in an initial configuration and proceeds according to the game
rules. During that play both players compete each other and try to win by using
their strategies. But usually only one player has a winning strategy and therefore the
opponent is doomed to lose in advance.

22

2.5 Logical Games

C0

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~
~~

~~

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Ci : ∀

zz
zz

zz
zz

zz
zz

zz
zz

MMMMMMM

Cj : ∃

qqqqqqq

MMMMMMM

∃

qqqqqqq

MMMMMMM ∀

��
��
�

88
88

8 ∀

qqqqqqq

MMMMMMM

.

Figure 2.1: A game with all possible plays

Definition 2.39 (Game) A game G is a quadruple (C, C0,R,W) where

• C is the set of configurations,

• C0 ∈ C is the initial configuration,

• R is a finite set of rewriting rules which stipulates the transition between con-
figurations,

• W is a finite set of winning conditions.

A play P is a finite or infinite sequence of configurations P = C0C1C2... where for all
i ∈ N : (Ci, Ci+1) is an instance of some rule R ∈ R. Game rules are usually written
as

r
D

D1, . . . , Dn

p i ∈ {1, . . . , n}

meaning: if the actual configuration Ci in a play is of the form D then player p
performs a choice i ∈ {1, . . . , n} and then the next configuration Ci+1 must be of the
form Di. Define P as the set of all possible plays in the game.

Winning conditions assign a winner to each play in a game. Notice that a play
might be infinite. �

Definition 2.40 (Strategy) A strategy for player p in a game G = (C, C0,R,W)
is a partial map ς : Pp → N which determines player p’s possible choices, where
Pp := {P = C0C1 . . . Cn ∈ P | p may perform a choice at Cn}.

A winning strategy for player p is a strategy ς : Pp → N s.t. a play is enforced which
player p wins, regardless of its opponent’s choices. We say, player p wins the game iff
it has a winning strategy.

A strategy ς : C → N which maps just one configuration C, instead of a whole play,
to a configuration is called positional. �

23

2 Preliminaries

24

3 Model Checking for Words

As described in the introduction the model-checking problem for words is to decide
whether a certain property, specified as a µTL formula, is preserved in a linear infinite
word-model. That is, let w ∈ Σω be an infinite word and ϕ ∈ µTL be a closed formula.
Is w a model of ϕ, i.e. does w |= ϕ hold?

In this chapter we define a game MC(w,ϕ) which has been introduced by Stirling,
see for example [Sti95], and show that player Eliza has a winning strategy if and only
if w is a model of the formula ϕ.

3.1 Definition of the Word-Game

Definition 3.1 (MC Game) Let w ∈ Σω and ϕ ∈ µTL be a closed formula. The
model-checking game MC(w,ϕ) := (C, C0,R,W) is a quadruple where

• configurations C = {w[i | i ∈ N} × Sub(ϕ), written as w[i ⊢ ψ,

• initial configuration C0 = w ⊢ ϕ,

• rules R

(∨)
w[i ⊢ ψ1 ∨ ψ2

w[i ⊢ ψc
∃c ∈ {1, 2} (∧)

w[i ⊢ ψ1 ∧ ψ2

w[i ⊢ ψc
∀c ∈ {1, 2}

(µ)
w[i ⊢ µX.ψ

w[i ⊢ X
(ν)

w[i ⊢ νY.ψ

w[i ⊢ Y

(X)
w[i ⊢ X

w[i ⊢ fb ϕ(X)
(Y)

w[i ⊢ Y

w[i ⊢ fb ϕ(Y)

(O)
w[i ⊢ Oψ

w[i+1 ⊢ ψ

The rules are read as described in Definition 2.39. For example, if a configuration
is of the form w[i ⊢ ψ1 ∨ψ2 then player Eliza may choose one disjunct ψ1 or ψ2.
Then the next configuration is of the form w[i ⊢ ψc.

25

3 Model Checking for Words

• and winning conditions W

An infinite play of MC is called µ-line if the greatest variable with respect to
<ϕ which occurs infinitely often is of type µ. Otherwise, we call it ν-line.

Player ∃ wins a play if

a) the play ends with Cn = w[i ⊢ a, where a ∈ Σ and w(i) = a,

b) the play is a ν-line.

Player ∀ wins a play if

c) the play ends with Cn = w[i ⊢ a, where a ∈ Σ and w(i) 6= a,

d) the play is a µ-line. �

3.2 Correctness of the Word-Game

Lemma 3.2 Every play in the game MC(w,ϕ) has a unique winner.

Proof For every configuration of the form w ⊢ ψ where ψ /∈ Σ there is a rule s.t. the
play can continue. Hence, a play ends in a configuration w ⊢ a where a ∈ Σ or the
play is infinite.

If the play is finite it ends in w ⊢ a for some letter a. Then the winning conditions
a) and c) uniquely determine the winner.

As shown in [Sti97] an infinite play is either a µ-line or a ν-line: All rules except for
(X) and (Y) reduce the size of the formula of a configuration. Therefore at least one
variable Z must occur infinitely often in an infinite play. Let {Z1, Z2, . . . , Zn} be the set
of variables which occur infinitely often. For each i, j ∈ {1, . . . , n} either Zi <ϕ Zj or
Zj <ϕ Zi holds (but not both of them). Therefore there is a greatest variable according
to transitivity of <ϕ. Then the winning conditions b) and d) uniquely determine the
winner.

Lemma 3.3 Every game MC(w,ϕ) has a unique winner.

Proof By Martin’s theorem [Mar75] every two player game with perfect information
and winning conditions which are contained in the Borel hierarchy has a determined
winner. Note that the winning conditions are parity conditions and these are in the
closure of the second level of the Borel hierachy [Tho03].

Theorem 3.4 (Completeness) If w |= ϕ then player Eliza wins MC(w,ϕ).

Proof This theorem can be proved by contradiction. Assume player Albert wins the
game, i.e. he has a winning strategy for MC(w,ϕ). We will define a winning strategy
for player Eliza s.t. for the unique resulting play P = C0C1C2 . . ., where Ci =: vi ⊢ ϕi,
the following holds

26

3.2 Correctness of the Word-Game

α) for every Ci in P there is a µ-signature κi s.t. vi |= ϕi ◦ κi

and if P is infinite then

β) there is a Cm in P s.t. for all Ci in P where m < i there is a i′ ∈ N : κi+i′ < κi

Therefore, if player Albert wins by winning condition c) then the play ends in
Cn = w[i ⊢ a where a ∈ Σ and w(i) 6= a. But there is no µ-signature κn s.t.
w[i |= a ◦ κn. This is a contradiction to α).

If player Albert wins by winning condition d) then the play is an infinite µ-line.
Therefore there is a µ variable X which occurs infinitely often. Since β) holds there is
n ∈ N s.t. Cn = vn ⊢ X, κn(X) = 0 and vn |= X ◦ κn holds. But vn is never a model
of ff = X ◦ κn.

Now we define the strategy for player Eliza and prove the properties mentioned
above.

Let Ci = vi ⊢ ψ1 ∨ ψ2 be a configuration where player Eliza has to select one
disjunct. Besides, let κ be the least µ-signature s.t. v |= (ψ1 ∨ψ2) ◦κ. Then we define
Eliza’s strategy as ς(Ci) := ψc s.t. v |= ψc ◦ κ still holds. Notice that this positional
strategy only exists if there is such a κ.

We proceed to prove the properties. It is clear that α) holds for C0 for any κ
by precondition since ϕ0 is closed. Furthermore, all game rules preserve α): Let
Ci = vi ⊢ ϕi and vi |= ϕi ◦ κi.

If rule (∧) is applied on Ci then ϕi =: ψ1 ∧ ψ2.

vi |= ϕi ◦ κi ⇔ vi |= (ψ1 ∧ ψ2) ◦ κi

⇔ vi |= ψ1 ◦ κi and vi |= ψ2 ◦ κi

Define κi+1 := κi and then α) holds for Ci+1 regardless of player Albert’s choice.
If rule (∨) is applied on Ci then ϕi =: ψ1 ∨ ψ2.

vi |= ϕi ◦ κi ⇔ vi |= (ψ1 ∨ ψ2) ◦ κi

⇒ vi |= (ψ1 ∨ ψ2) ◦ κ

⇔ vi |= ψ1 ◦ κ or vi |= ψ2 ◦ κ

where κ is the least µ-signature s.t. vi |= (ψ1 ∨ ψ2) ◦ κ holds. Define κi+1 := κ and
apply Eliza’s strategy. Then α) holds for Ci+1, as well.

If rule (O) is applied on Ci then ϕi =: Oψ.

vi |= ϕi ◦ κi ⇔ vi |= Oψ ◦ κi

⇔ v
[1
i |= ψ ◦ κi

So, the first property holds for Ci+1.

27

3 Model Checking for Words

If rule (µ) is applied on Ci then ϕi =: µX.ψ.

vi |= ϕi ◦ κi ⇔ vi |= µX.ψ ◦ κi

⇔1 ∃k ∈ N : vi |= µkX.ψ ◦ κi

⇔ ∃k ∈ N : vi |= X ◦ κi[X 7→ k]

Define κi+1 := κi[X 7→ k]. Then α) holds for Ci+1, too.
If rule (ν) is applied on Ci then ϕi =: νY.ψ.

vi |= ϕi ◦ κi ⇔ vi |= νY.ψ ◦ κi

⇔ vi |= Y ◦ κi

where κi+1 := κi. Note that νY.ψ ◦ κi = Y ◦ κi by definition of the substitution
according to κi. Again, α) holds for Ci+1.

If rule (X) is applied on Ci then ϕi =: X.

vi |= ϕi ◦ κi ⇔ vi |= X ◦ κi

⇔2 vi |= fb ϕ(X) ◦ κi[X 7→ κi(X) − 1]

Define κi+1 := κi[X 7→ κi(X) − 1] and then α) holds for Ci+1.
If rule (Y) is applied on Ci then ϕi =: Y .

vi |= ϕi ◦ κi ⇔ vi |= Y ◦ κi

⇔ vi |= fb ϕ(Y)[νY.fb ϕ(Y)/Y] ◦ κi

⇔ vi |= fb ϕ(Y) ◦ κi

Define κi+1 := κi and then α) holds for Ci+1.

It remains to check property β). Let P be an infinite play. Notice that only after
rule (µ) is applied on some configuration Ci the µ-signature κi+1 might be greater than
κi. All other rules produce a κi+1 which is less or equal to κi. We will show that this
may only happen finitely many times.

P = . . . Cm

(µ)

��
Cm+1

(X)

��
Cm+2 . . . Ci

(X)

��
Ci+1 . . . Cj

(X)

��
Cj+1 . . . Ck

(X)

��
Ck+1 . . .

κm+1 < κm+2 < κi+1 < κj+1 < κk+1

Let X be the greatest variable in P which occurs infinitely often. Notice that
there must be a configuration Cm where formula µX.fb ϕ(X) occurs the last time

1because of Lemma 2.34
2by Definition 2.29

28

3.2 Correctness of the Word-Game

since µX.fb ϕ(X) /∈ Sub(fb ϕ(Z)) for any variable Z ≤ X and X is the greatest of all
variables which occur infinitely often. That is, rule (µ) is applied on a configuration
with formula X the last time. Hence, β) holds because rule (X) is applied infinitely
often and therefore κi(X) is only counted down. Since X is the greatest of all variables
which occur infinitely often even κi decreases.

Soundness of the game, i.e. “if w 6|= ϕ then player Albert wins MC(w,ϕ)”, can be
proved in a similar way using ν-signatures. Player Albert’s strategy is to choose the
conjunct s.t. the 6|= relationship of the following configuration holds. For infinite plays,
the ν-signature κ can be counted down until a configuration Cn = vn ⊢ tt is reached.

Another approach is to use negation of a µTL formula and show that player Albert
wins MC(w,ϕ) if player Eliza wins MC(w,ϕ).

Theorem 3.5 (Soundness) If w 6|= ϕ then player Albert wins MC(w,ϕ).

Proof This theorem can be transformed to

w 6|= ϕ⇔ w |= ϕ

⇔ Eliza wins MC(w,ϕ)

⇒ Albert wins MC(w,ϕ)

and so the only thing to show is the last implication.
If Eliza wins the game MC(w,ϕ) she has a positional winning strategy ς which

determines her moves in the game. We will define a strategy ς for player Albert and
show that he wins every play in MC(w,ϕ) using that strategy.

Define Albert’s strategy in MC(w,ϕ) as

ς(v ⊢ ϕ1 ∧ ϕ2) := ς(v ⊢ ϕ1 ∨ ϕ2)

Now assume player Eliza wins MC(w,ϕ) despite player Albert’s strategy ς just
defined. That is, player Eliza wins the resulting play P = C0C1

Next, we show that P := C0C1 . . . is a prefix of a play in MC(w,ϕ) where player
Eliza uses her strategy ς.

Eliza wins P = C0

r0

??C1

r1

??C2

r2

??C3

r3

??C4

r4

??C5

r5

>>. . .

Albert wins P = C0

r0

??C1

r1

??C2

r2

??C3

r3

??C4

r4

??C5

r5

>>. . .

The play starts with C0 = ϕ which is a valid initial configuration in MC(w,ϕ).

29

3 Model Checking for Words

If rule (∨) is played between Ci and Ci+1 and player Eliza chooses disjunct ϕc
then rule (∧) can be played between Ci and Ci+1 where player Albert choses conjunct
ϕc. That is, player Albert chooses conjuncts according to player Eliza’s strategy in
MC(w,ϕ).

If rule (∧) is played between Ci and Ci+1 and player Albert chooses conjunct ϕc
then

ς(Ci) =: ς(v ⊢ ϕ1 ∧ ϕ2) = ς(v ⊢ ϕ1 ∨ ϕ2)

Therefore rule (∨) can be played between Ci and Ci+1 where player Eliza chooses ϕc
according to her strategy!

If rule (µ) is played between Ci and Ci+1 then rule (ν) can be played between Ci

and Ci+1. The case for (ν) is dual.
If rule (X), rule (Y) or rule (O) is played between Ci and Ci+1 then the same rule

can be played between Ci and Ci+1. Notice that each µ-variable in MC(w,ϕ) becomes
a ν-variable in MC(w,ϕ) and ν-variables become µ-variables.

If the play P is finite it ends with an configuration Cn = v ⊢ a where v(0) = a.
Therefore P ends with Cn = v ⊢ a and player Eliza is doomed to loose at most
|Σ| − 1 steps later with configuration Cn+|Σ|−1 = v ⊢ b where b ∈ Σ and b 6= a = v(0),
regardless which disjuncts she chooses.

If P is infinite then it is a ν-line. But then P must be a µ-line since the types of
variables are changed and hence, player Albert wins P .

We have seen that player Albert wins P . On the other hand, during the play P
player Eliza uses her winning strategy which exists by the precondition. So we get
a contradiction and therefore player Eliza cannot enforce a play in MC(w,ϕ) which
she wins.

30

4 Model Checking for Trees

In this chapter we will extend the model checking problem for words using trees as
interpretations. The question to be solved is now: let t ∈ T

Σ
be a tree over Σ and ϕ a

µTL-formula, is t a model of ϕ, i.e. does t |= ϕ hold?
Again, we will define a model checking game MC(t, ϕ), where player Eliza wins if

and only if t |= ϕ. Basically, player Albert’s goal is to show that t 6|= ϕ, i.e. that for
some path w ∈ t : w 6|= ϕ. Therefore, if t is not a model of ϕ then player Albert can
choose that path w ∈ t non-deterministically before the play begins. After that he
certainly wins MC(w,ϕ) which provides a counter-example.

In practice, it is impossible to check for all paths w ∈ t whether player Albert wins
MC(w,ϕ) or not. Hence, we permit Albert to gradually determine its chosen path
at every application of rule (O). But then there are some cases where player Albert
can beat his counterpart Eliza effectively even though the trees are models of the
formulas:

Let t be a tree with only two paths w1 = xaω and w2 = xbω where x is the label
of the root. Then t surely is a model of the µTL-formula ϕ := Oa ∨ Ob since both
w1 |= ϕ and w2 |= ϕ hold:

x
����
�� ��2

22 |= Oa ∨Ob
a]] b]]

But player Eliza would be defeated in the following way:

x ⊢ Oa ∨Ob
∃

x ⊢ Ob
∀ : a

a ⊢ b

b ⊢ Oa
∀ : b

b ⊢ a

As we have seen, player Albert becomes too strong because he does not need to
reveal his counter-example w ∈ t before the play begins. Therefore we also strengthen
player Eliza by allowing her to choose both disjunctions at rule (∨) simultaneously.
Thus, configurations of the resulting game definition become sets of formulas.

4.1 Definition of the Tree-Game

Definition 4.1 (MC game) Let t ∈ T
Σ

be a tree over Σ and let ϕ be a closed µTL-
formula. The model checking game MC(t, ϕ) := (C, C0,R,W) consists of

31

4 Model Checking for Trees

• configurations C = {w ∈ Σ∗ | w ∈ t}×2Sub(ϕ), written as w ⊢ Φ where Φ denotes
a set of formulas from Sub(ϕ),

• start configuration C0 := ε ⊢ ϕ0,

• rules R:

(∨)
w ⊢ ψ1 ∨ ψ2,Φ

w ⊢ ψ1, ψ2,Φ
(∧)

w ⊢ ψ1 ∧ ψ2,Φ

w ⊢ ψc,Φ
∀ c

(µ)
w ⊢ µX.ψ,Φ

w ⊢ X,Φ
(ν)

w ⊢ νY.ψ,Φ

w ⊢ Y,Φ

(X)
w ⊢ X,Φ

w ⊢ fb (X),Φ
(Y)

w ⊢ Y,Φ

w ⊢ fb (Y),Φ

(O)
w ⊢ Oψ1, . . . , Oψm, a1, . . . , an

wa ⊢ ψ1, . . . , ψm
∀ a ∈ Σ s.t. wa ∈ t

Let P = C0C1 . . . be a play. A principal formula (PF) of a configuration Ci ∈ P
is a formula which is rewritten according to the rule which is applied on Ci. Note
that all rules except for rule (O) rewrites just one formula of a configuration.

In the play P we can connect each formula of a configuration Ci+1 to the formula
of the previous configuration Ci where it comes from. The connection relation
ConP = N × Sub(ϕ0) × Sub(ϕ0) is defined as

a) (i, ψ, ψ) ∈ ConP :⇔ ψ ∈ Ci and ψ is no PF and ψ ∈ Ci+1.

b) (i, ψ, ψ′) ∈ ConP :⇔ ψ ∈ Ci and ψ is a PF and ψ rewrites to ψ′.

A line in a play is a finite or infinite sequence of formulas L = ϕ0ϕ1ϕ2 . . . s.t.

ϕ0 ∈ C0 and for all i = 0, 1, 2, . . . : (i, ϕi, ϕi+1) ∈ ConP

An infinite line is called µ-line if the greatest variable which occurs infinitely
often is of type µ. Otherwise, we call it ν-line.

• winning conditions (WC) W :
Player ∃ wins a play, if

a) the play reaches a configuration Cn = w ⊢ a,Φ, where w(|w| − 1) = a ∈ Σ,

b) the play is infinite and there is a ν-line in the play.

Player ∀ wins a play, if

32

4.2 Correctness of the Tree-Game

c) the play reaches a configuration Cn = w ⊢ a1, . . . , am, where w(|w| − 1) 6=
ai ∈ Σ for all i = 1, 2, . . . ,m,

d) the play is infinite and there is no ν-line in the play. �

4.2 Correctness of the Tree-Game

Lemma 4.2 Every play in the game MC(t, ϕ) has a unique winner.

Proof Every play P = C0C1 . . . which does not end in a configuration of the form
CA := w ⊢ a,Φ, where w(|w|−1) = a, or CB := w ⊢ a1, . . . , am, where w(|w|−1) 6= ai
for all ai, can continue. Assume the P get stuck in configuration Cn := wn ⊢ Φn

which is not of the form of CA and CB, i.e. Phin does not contain the proposition
wn(|wn| − 1) and Φn is not a set of propositions. Thus, there must be at least one
formula ϕ in Φn which is not a proposition. But then at least one game rule can be
applied.

If P is finite then its last configuration Cn := wn ⊢ Φn is of the form CA or CB.
According to the winning conditions a) and c) player Eliza wins if and only if Φn

contains the proposition w(|w| − 1).
If P is infinite then by winning conditions b) and d) player Eliza wins if and only

if P has a ν-line.

Theorem 4.3 (Soundness) If t 6|= ϕ0 then player Albert wins MC(t, ϕ0).

Proof This theorem is proved in two steps. First we define a strategy s∀ for player
Albert which enforces a play P = C0C1 . . . since player Eliza never intervenes in these
games. Then, due to Lemma 4.2, it remains to show that player Eliza does not win
the play P . Define Ci =: vi ⊢ Φi as the path and the formula set of configuration Ci.

In this paragraph we define a strategy for player Albert. By the precondition t 6|= ϕ0,
there is an path w ∈ t s.t. w 6|= ϕ0. Thus, at every (O) rule in the play player Albert
can choose a successor a ∈ Σ of the path according to w.

s∀(v ⊢ Oψ1, . . . , Oψm, a1, . . . , an) := va ⊢ ψ1, . . . , ψm

s.t. va is a prefix of w.
If rule (∧) is applied on a configuration Ci := vi ⊢ Φi with principal formula ψ1∧ψ2 ∈

Φi then Albert calculates the least ν-signature κ s.t. vi 6|= (ψ1 ∧ ψ2) ◦ κ. Then either
vi 6|= ψ1 ◦ κ or vi 6|= ψ2 ◦ κ holds by definition. Player Albert’s strategy for this kind of
configuration is defined as

s∀(v ⊢ ψ1 ∧ ψ2) := v ⊢ ψc, where c ∈ {1, 2}

33

4 Model Checking for Trees

Φ0 = {ϕ0}

zz
Φ1 = { ϕ1

$$

. . . }

Φ2 = { ϕ2

&&

. . . }

Φ3 = { . . . ϕ3

��

}

Φ4 = { . . . ϕ4

}

.

Table 4.1: One possible line in the enforced play P .

s.t. v 6|= ψc ◦ κ. Note that we have to show that such a κ always exists! This is done
in the next paragraph.

Let L := ϕ0ϕ1 . . . be a line in the play P . We will construct a sequence of ν-
signatures K = κ0κ1 . . . s.t. for all formulas ϕi on the line w[|vi| 6|= ϕi ◦ κi holds. See
Table 4.1.

By the precondition, w[|v0| 6|= ϕ0 ◦ κ0 holds for any κ0 since w[|v0| = w and ϕ0 is
assumed to be closed. Define κ0 := (0, . . . , 0) for example. Next, we show that the
rules and player Albert’s strategy preserve that property, i.e. for each position i ∈ N

on the line where w[|vi| 6|= ϕi ◦ κi we will find a κi+1 s.t. w[|vi+1| 6|= ϕi+1 ◦ κi+1. Let
w[|vi| 6|= ϕi ◦ κi.

Case 1: If ϕi is not a principal formula of its configuration Ci then ϕi+1 = ϕi and
|vi+1| = |vi| since rule (O) is not applied. Define κi+1 := κi and hence w[|vi+1| 6|=
ϕi+1 ◦ κi+1.

Case 2: If ϕi is a principal formula of its configuration Ci then we have to deal with
the following sub-cases:

• If ϕi = ψ1∨ψ2 then ϕi+1 = ψc for some c = 1, 2 and |vi+1| = |vi|. By assumption
w[|vi| 6|= (ψ1 ∨ ψ2) ◦ κi, i.e. w[|vi| 6|= ψ1 ◦ κi and w[|vi| 6|= ψ2 ◦ κi. But then define
κi+1 := κi and so w[|vi+1| 6|= ψc ◦ κi+1 holds for any c = 1, 2.

• If ϕi = ψ1 ∧ ψ2 then ψi+1 = ψc for some c = 1, 2 and |vi+1| = |vi|. Player
Albert calculates the least κ s.t. w[|vi| 6|= (ψ1 ∧ ψ2) ◦ κ. The existence of such
a ν-signature κ ≤ κi follows directly from assumption. Thus, we can define

34

4.2 Correctness of the Tree-Game

κi+1 := κ and player Albert can choose that conjunct ϕc s.t. w[|vi+1| 6|= ψc ◦ κi+1

according to its strategy.

• If ϕi = Oψ then ϕi+1 = ψ and |vi+1| = |vi| + 1. Define κi+1 := κi and by
assumption w[|vi| 6|= Oψ ◦ κi+1 holds and therefore w[|vi+1| 6|= ψ ◦ κi+1 holds, as
well.

• If ϕi = µX.ψ then ϕi+1 = X and |vi+1| = |vi|. Define κi+1 := κi and so
w[|vi+1| 6|= X ◦ κi+1 since X is substituted by µX.ψ ◦ κi+1.

• If ϕi = X then ϕi+1 = fb ϕ0(X) and |vi+1| = |vi|. Define κi+1 := κi and then
w[|vi+1| 6|= fb ϕ0(X) ◦ κi+1 since all free variables X are substituted by its fixed
points µX.fb ϕ0(X) (see Lemma 2.28).

• If ϕi = νY.ψ then ϕi+1 = Y and |vi+1| = |vi|. From assumption we can infere
that there exists a least k ∈ N s.t. w[|vi+1| 6|= νkY.ψ ◦ κi. Notice that ϕi does not
contain the free variable Y . Therefore we can define κi+1 := κi and then update
the ν-signature to the appropriate index of the approximant κi+1(Y) := k. Then
w[|vi+1| 6|= Y ◦ κi+1 holds, as well.

• If ϕi = Y then ϕi+1 = fb ϕ0(Y) and |vi+1| = |vi|. Define κi+1 := κi and update
κi+1(Y) to κi+1(Y) − 1. Then w[|vi+1| 6|= fb ϕ0(Y) ◦ κi+1 by definition of approx-
imants (Definition 2.29). Notice that the ν-signature strictly decreases at rule
(Y), i.e. κi > κi+1!

By now we defined a strategy s∀ and checked that player Albert is able to use it in
the play. It remains to enshure that player Albert wins the enforced play P .

Case 1: Assume player Eliza wins P = C0C1 . . . Cn by WC a), i.e. Cn = vn ⊢ a,Ψ′
n

and vn(|vn| − 1) = a ∈ Σ. But then there is a line L = ϕ0ϕ1 . . . ϕn which ends in
formula ϕn = a. Therefore the suffix of the counter-model w[|vn| = a . . . begins with
letter a and hence w[|vn| |= a ◦ κ′ for any κ′. But this result contradicts the existence
of κn.

Case 2: Assume player Eliza wins P = C0C1 . . . by WC b), i.e. there is a ν-line
L = ϕ0ϕ1 . . . in that play. Let Y be the greatest variable on that line which occurs
infinitely often.

First notice that there must be a position m where formula ϕm = νY.ψ occurs the
last time in the line since νY.ψ /∈ Sub(fb (Y ′)) for any Y ′ ≤ Y . Besides, only variables
Y ′ <ϕ0 Y occur after position m.

Furthermore κ
Y]
i+1 ≤ κ

Y]
i for all i ≥ m since κi+1 is constructed s.t. κi+1 ≤ κi in all

cases except for case ϕi = νY ′.ψ. But after position m only variables Y ′ < Y occur
and therefore the prefix of κi+1 is not touched.

Since variable Y occurs infinitely often the sequence (κi(Y))i=m,m+1,... strictly de-
creases. The ordering of κ is well-founded and hence we will reach a position n where

35

4 Model Checking for Trees

ϕn = Y and κn(Y) = 0. In other words, this leads to the contradiction w[|vn| 6|= Y ◦κn
where Y ◦ κn ≡ tt.

Theorem 4.4 (Completeness) If t |= ϕ0 then player Eliza wins MC(t, ϕ0).

Proof The idea behind this proof is very similar to the proof of Theorem 4.3.
Assume player Albert wins this game, i.e. he has a winning strategy s∀ and can

enforce a play P := C0C1 . . . which he wins. Let w be the path chosen by him during
the play and let Ci =: vi ⊢ Φi denote the path and the formula set of configuration
Ci. Since this game is only influenced by one player, namely player Albert, there is no
need to give a strategy for player Eliza.

We can show the following property of the play P : There is a line L = ϕ0ϕ1 . . . in
this play P and a sequence of µ-signatures K = κ0κ1 . . . s.t. for all formulas ϕi on the
line w[|vi| |= ϕi ◦ κi holds.

We will construct the line L and the sequence K step by step. For the initial
configuration w[|v0| |= ϕ0 ◦ κ0 for any κ0 by the precondition since w[|v0| ∈ t and ϕ0 is
assumed to be closed. Define κ0 := (0, . . . , 0) for example. Assume w[|vi| |= ϕi ◦ κi.

Case 1: If ϕi is not a principal formula then ϕi+1 = ϕi. Define κi+1 := κi and hence
w[|vi+1| |= ϕi+1 ◦ κi+1 is trivially true.

Case 2: If ϕi is a principal formula then there are several sub-cases to deal with:

• If ϕi = ψ1 ∨ ψ2 then |vi+1| = |vi|. By assumption w[|vi| |= (ψ1 ∨ ψ2) ◦ κi and
therefore w[|vi| |= ψc ◦κi holds for at least one of the disjuncts ϕc ∈ {ψ1, ψ2}. De-
fine ϕi+1 := ϕc and κi+1 := κi and the property holds for the next configuration
Ci+1.

• If ϕi = ψ1∧ψ2 then |vi+1| = |vi|. Since w[|vi| |= (ψ1∧ψ2)◦κi holds by assumption
both w[|vi| |= ψ1 ◦ κi and w[|vi| |= ψ2 ◦ κi hold. Define the next position of the
line ϕi+1 := s∀(Ci) and κi+1 := κi. Then w[|vi+1| |= ϕi+1 ◦ κi+1 holds as well,
regardless of which conjunct player Albert chooses.

• If ϕi = Oψ then ϕi+1 = ψ and |vi+1| = |vi| + 1. Define κi+1 := κi. Then
w[|vi+1| |= ϕi+1◦κi+1 can easily be inferred from the assumption and the semantics
definition of O.

• If ϕi = µX.ψ then ϕi+1 = X and |vi+1| = |vi|. By assumption we can infer
that w[|vi+1| |= µX.ψ ◦ κi+1 holds. Therefore, there is a k ∈ N s.t. w[|vi+1| |=
µkX.ψ ◦ κi+1. Define κi+1 := κi and update the index of variable X in this
µ-signature to κi+1(X) := k. Then w[|vi+1| |= X ◦ κi+1 holds, as well.

• If ϕi = X then ϕi+1 = fb ϕ0(X) and |vi+1| = |vi|. Define κi+1 := κi and
then decrease the index of the approximant κi+1(X) by one, i.e. κi+1(X) :=
κi(X)−1. By definition of the approximants w[|vi+1| |= fb ϕ0(X)◦κi+1 holds (see
Definition 2.29).

36

4.2 Correctness of the Tree-Game

• If ϕi = νY.ψ then ϕi+1 = X and |vi+1| = |vi|. We define κi+1 := κi and hence
w[|vi+1| |= Y ◦ κi+1 holds because Y is substituted by νY.ψ ◦ κi+1.

• If ϕi = Y then ϕi+1 = fb ϕ0(Y) and |vi+1| = |vi|. Define κi+1 := κi and then
w[|vi+1| 6|= fb ϕ0(Y) ◦ κi+1 since all free variables Y are substituted by its fixed
points νY.fb ϕ0(Y) (see Lemma 2.28).

In the first part of the proof we demonstrated that a line L ∈ P and a sequence of
µ-signatures K exist s.t. for every ϕi on the line w[|vi| |= ϕi ◦ κi. Now we prove that
Albert cannot win that play P .

Case 1: Assume player Albert wins by WC c), i.e. the play P ends with a config-
uration Cn := vn ⊢ a1, a2, . . . , am where none of the propositions aj ∈ Σ is equal to
the last letter of vn, or mathematically speaking for all aj ∈ Σ : vn(|vn| − 1) 6= aj.
But then each line L′ = ϕ0ϕ1 . . . ϕn of the play ends in some symbol of Cn. Therefore
w[|vn| |= ϕn ◦ κn cannot hold since w[|vn| begins with a letter which is not in Φn. This
contradicts the existence of the line L.

Case 2: If the play P is infinite then our constructed line must be infinite as well.
Suppose L ends in a symbol a ∈ Σ in configuration Cm. Then w[|vm| |= a ◦ κm holds
and hence the word w[|vm| must begin with letter a and vm must end with letter a.
But then player Eliza would win the play by winning condition a). Now assume that
player Albert wins by WC d), i.e. the infinite play P has no ν-line. Hence, our infinite
line L must be a µ-line. Let X be the greatest variable on L which occurs infinitely
often. Notice that there is a position m s.t. ϕm = µX.ψ occurs the last time on line
L. Furthermore the prefix of the µ-signatures κ

X]
i strictly decreases from time to time

for i ≥ m, because only variables X ′ <ϕ0 X occurs after position m and variable Y
occurs infinitely often. So, we will reach a position ϕn = X with κn(X) = 0, i.e.
w[|vn| |= X ◦ κn where X is substituted by ff.

37

4 Model Checking for Trees

38

5 Validity and Satisfiability Games

5.1 Validity Checking by MC Games

The tree games of Chapter 4 already provide a method for checking the validity of a
µTL formula ϕ. The idea is to play the game MC(t, ϕ) on a tree t which consists of
all possible words w ∈ Σ. In our definition the root of that tree can only be annotated
by exactly one letter. Therefore we have to adjust this idea a little bit.

Definition 5.1 A universal tree tΣ : D → Σ with Σ = {a0, a1, . . . , an} is defined in
the following way. D := {0, 1, ..., n}∗ and t is given by

t(ε) := a0

t(wi) := ai

where w ∈ D and i = 0, 1, . . . , n. �

A universal tree tΣ for Σ = {a0, . . . , an} is depicted in Table 5.1. It is easy to see

that the set of all paths in the tree t
[0
Σ – the tree which begins at the first child with

label a0 – equals to the set of all infinite words in Σ which begins with letter a0. Hence,
the set of all infinite words over Σ equals to

⋃

i=0,...,n{w ∈ Σω | w ∈ t
[i
Σ}.

Lemma 5.2 Let ϕ be a closed µTL formula. Then Player Eliza wins MC(tΣ, Oϕ) iff
ϕ is valid.

a0

��qqdddddddddddddddddddddd

uukkkkkkkk

))RRRRRRRR

a0

��uukkkkkkkk

##FFFF a1

��||xxxx
##FFFF . . . an

��||xxxx
##FFFF

a0

��||xxxx
##FFFF . . . an a0 . . . an . . . a0 . . . an

a0 . . . an . . .

. . .

Table 5.1: A universal tree for Σ = {a0, . . . , an}

39

5 Validity and Satisfiability Games

Proof

Eliza wins MC(tΣ, Oϕ) ⇔ tΣ |= Oϕ

⇔ for all w ∈ t : w |= Oϕ

⇔ for all w ∈ t : w[1 |= ϕ

⇔ for all i = 0, 1, . . . , |Σ| : for all w ∈ t[i : w |= ϕ

⇔ for all w ∈ Σω : w |= ϕ

⇔ ϕ is valid

5.2 Validity Checking Game VAL

Definition 5.3 (VAL Game) Let ϕ be a closed µTL formula. The validity checking
game VAL(ϕ) = (C, C0,R,W) consists of

• configurations C = 2Sub(ϕ)

• start configuration C0 = ϕ

• rules R:

(∨)
ψ1 ∨ ψ2,Φ

ψ1, ψ2,Φ
(∧)

ψ1 ∧ ψ2,Φ

ψj,Φ
∀ j

(µ)
µX.ψ,Φ

X,Φ
(ν)

νY.ψ,Φ

Y,Φ

(X)
X,Φ

fb ϕ(X),Φ
(Y)

Y,Φ

fb ϕ(Y),Φ

(O)
Oψ1, . . . , Oψm, a1, . . . , an

ψ1, . . . , ψm

For the definition of a principal formula, µ-line and ν-line see Definition 4.1.

• winning conditions (WC) W :
Player ∃ wins a play if

a) the play reaches a configuration Cn = (a1, . . . , am,Φ), where m = |Σ|,

b) the play is infinite and there is a ν-line in the play.

Player ∀ wins a play if

40

5.2 Validity Checking Game VAL

c) the play reaches a configuration Cn = (a1, . . . , am), where m < |Σ|,

d) the play is infinite and there is no ν-line in the play. �

Lemma 5.4 Let ϕ be a closed µTL formula and tΣ a universal tree over Σ. Player
Albert wins MC(tΣ, Oϕ) iff he wins VAL(ϕ).

Proof “⇒” We start with the “only if” direction. Suppose Player Albert wins the
game MC(tΣ, Oϕ), i.e. he has a winning strategy for this game and can enforce a play

P = C0C1C2 . . .

which he wins. Let Ci =: vi ⊢ Φi for all configurations Ci in the play. Notice that
these games are one-player games and therefore only player Albert can influence the
course of a play. Define

P ′ := Φ1Φ2 . . .

as the sequence of formula sets in the play P .
In MC(tΣ, Oϕ) only rule (O) can be applied on the first configuration C0. So Φ1

must be formula ϕ.
Moreover, it is easy to see that for all configurations Ci in the play P the following

fact holds: if (Ci, Ci+1) is an instance of some rule in MC(tΣ, Oϕ) then there is a
rule in VAL(ϕ) where (Φi,Φi+1) is an instance of. This is due to the fact that the
rule schemata of the game VAL(ϕ) are almost the same as in the game MC(tΣ, Oϕ).
Only the first component of a configuration, namely the position in tΣ, is disregarded.
Hence, P ′ is a play in VAL(ϕ) which can be enforced by player Albert.

It remains to check that player Albert wins the play P ′ in VAL(ϕ).
Case 1: If P = C0C1 . . . Cn is finite then player Albert wins MC(tΣ, Oϕ) by winning

condition c), i.e. Cn = vn ⊢ b1, b2, . . . , bm where m < |Σ| and the last letter of vn
is not a symbol in Cn. Notice that there cannot be a configuration in P of the form
Ci = vi ⊢ a1, a2, . . . , am where m = |Σ| for i < n. Otherwise the play would be finished
at position i with winner Eliza since vi’s last letter must be in Σ. Hence the play P ′

in VAL(ϕ) does not finish before configuration Φm occurs and then player Albert wins
by winning condition c).

Case 2: If P is infinite then it contains no ν-line. Therefore P ′ is infinite and
contains no ν-line either. Thus, player Albert wins P ′ by winning condition d).

“⇐” The other direction of the proof is similar. If player Albert wins the VAL(ϕ)
game, he has a winning strategy and can guide the game into a play P ′ = Φ1Φ2 . . .
which he wins.

Since the formula ϕ is guarded there is only a finite number of configurations between
two subsequent configurations Φi and Φj where rule (O) is applied on. We can define

41

5 Validity and Satisfiability Games

a function f : N → N which maps a configuration in P ′ – identified by its position – to
the position of the next configuration Φi where the game has applied rule (O). This is

f(i) := min({j ∈ N | j ≥ i and (O) is applied on Φj} ∪

{n ∈ N | P ′ ends with Φn})

P ′ = Φ1

f

NNΦ2
f

<<. . . Φi

(O)

��
Φi+1

f

LLΦi+2
f

::. . . Φj

(O)

��
Φj+1 . . .

Again, let Φi and Φj be some subsequent configurations in P ′ where rule (O) is
applied on. Let letters(Φ) denote the set of letters in configuration Φ. According to
the rules of VAL(ϕ) no letter in a configuration can be a principal formula, i.e. the
number of letters of a configuration increases until rule (O) gets rid of them. Formally,
letters(Φk) ⊆ letters(Φk+1) for all k = i, i+ 1, . . . , j − 1.

Furthermore, the set of letters in any configuration Φ in play P ′ is not equal to Σ.
Otherwise, player Eliza would have won that play by winning condition a). In other
words, for every configuration Ci there is always a letter b ∈ Σ which is not in the
following before-(O)-configuration f(i)!

With these preface we are able to define a play P = C0C1 . . . of the gameMC(tΣ, Oϕ)
and show that player Eliza will lose this play. Define

P := (v0 ⊢ Oϕ)(v1 ⊢ Φ1)(v2 ⊢ Φ2) . . .

where v0 is some arbitrary letter in Σ and for all i = 1, 2, . . . : vi is a prefix of vi+1 for
all i = 1, 2, . . . and every vi ends with a letter b which is not in f(i).

This sequence is a play in MC(tΣ, Oϕ) since it starts with formula Oϕ and (Ci, Ci+1)
is an instance of some rule in MC(tΣ, Oϕ) for each i ∈ N. This holds because the rule
schemata which operate on the formula set are identical to the rules in VAL(ϕ) and
because the positions, namely the vis, only change after an application of rule (O).

Now we ensure that player Albert wins the play P :
Case 1: Player Eliza cannot win a finite play P = C0C1 . . . Cn in MC(tΣ, Oϕ) by

winning condition a), i.e. Cn = vn ⊢ a,Φ′
n where the last letter of vn is a, since for

all configurations Ci in P : the last letter of vi is not in letters(f(i)) which contains
letters(Ci).

Case 2: She cannot win by winning condition b), i.e. there is a ν-line in P , because
then she would win the game VAL(ϕ) by the same winning condition.

Theorem 5.5 Let ϕ be a closed µTL formula. ϕ is valid iff player Eliza wins
VAL(ϕ).

42

5.3 Satisfiability Checking SAT

Proof Directly from Lemma 5.2 and Lemma 5.4:

ϕ valid ⇔ ∃ wins MC(tΣ, Oϕ)

⇔ ∃ wins VAL(ϕ)

5.3 Satisfiability Checking SAT

Definition 5.6 (SAT game) Let ϕ be a closed µTL formula. The satisfiability check-
ing game SAT (ϕ) = (C, C0,R,W) consists of

• configurations C = 2Sub(ϕ)

• start configuration C0 = ϕ

• rules R:

(∨)
ψ1 ∨ ψ2,Φ

ψc,Φ
∃ c (∧)

ψ1 ∧ ψ2,Φ

ψ1, ψ2,Φ

(µ)
µX.ψ,Φ

X,Φ
(ν)

νY.ψ,Φ

Y,Φ

(X)
X,Φ

fb ϕ(X),Φ
(Y)

Y,Φ

fb ϕ(Y),Φ

(O)
Oψ1, . . . , Oψm, a1, . . . , an

ψ1, . . . , ψm

For the definition of a principal formula, µ-line and ν-line see Definition 4.1.

• winning conditions (WC) W :
Player ∃ wins a play if

a) the play reaches a configuration Cn = a, where a ∈ Σ,

b) the play is infinite and there is no µ-line in the play.

Player ∀ wins a play if

c) the play reaches a configuration Cn = (a, b,Φ), where a, b ∈ Σ and a 6= b,

d) the play is infinite and there is a µ-line in the play. �

43

5 Validity and Satisfiability Games

SAT (ϕ0) VAL(ϕ0)

(∧) ψ1∧ψ2,Φ

ψ1,ψ2,Φ
(∨) ψ1∨ψ2,Φ

ψ1,ψ2,Φ

∃ wins: a) Cn = a a) Cn = a1, . . . , a|Σ|,Φ
b) no µ-line b) ν-line

∀ wins: c) Cn = a, b,Φ c) Cn = a1, . . . , am, m< |Σ|
d) µ-line d) no ν-line

Table 5.2: Duality of VAL and SAT

Lemma 5.7 Let ϕ be a closed µTL formula. Then ϕ is satisfiable iff Albert wins
VAL(ϕ).

Proof

ϕ satisfiable ⇔ there is a w ∈ Σω : w |= ϕ

⇔ there is a w ∈ Σω : w 6|= ϕ

⇔ ϕ is not valid

⇔ ∀ wins VAL(ϕ)

Lemma 5.8 Let ϕ be a closed µTL formula. Player Eliza wins SAT (ϕ0) iff player
Albert wins VAL(ϕ0).

Proof First notice that both games actually are one-player games, i.e. only one of
the players really have the possibility to influence a play. In Table 5.2 the differences
of both games are depicted.

“⇒” We start with the “only if” direction. If player Eliza wins the game SAT (ϕ)
then she has a winning strategy and can enforce a play P = C0C1 . . . which she wins.

Let C be a configuration in P . Define

C := {ϕ[Z1/Z1, . . . , Zn/Zn] ∈ Sub(ϕ0) | ϕ ∈ C}

containing all formulas of C in negated form, where Z1, . . . , Zn are all variables of ϕ0.
Within two steps we construct a play P ′ in VAL(ϕ0) which player Albert wins. First
define P := C0C1

We show that for any two subsequent configurations Ci, Ci+1 in the play P the
following holds. If (Ci, Ci+1) is an instance of some rule R\ (O) in the game SAT (ϕ0)
then there is also a rule r′ in the game rules of VAL(ϕ0) s.t. (Ci, Ci+1) is an instance
of r′.

44

5.3 Satisfiability Checking SAT

If (Ci, Ci+1) is an instance of rule (∧) then Ci = ϕ1 ∧ ϕ2,Φ and Ci+1 = ϕ1, ϕ2,Φ.
By definition Ci = ϕ1 ∧ ϕ2,Φ = ϕ1 ∨ϕ2,Φ and so (Ci, Ci+1) is an instance of rule (∨)
in VAL(ϕ0).

If (Ci, Ci+1) is an instance of rule (∨) then Ci = ϕ1 ∨ϕ2,Φ and Ci+1 = ϕc,Φ, where
player Eliza chooses c. By definition Ci = ϕ1 ∨ ϕ2,Φ = ϕ1 ∧ ϕ2,Φ and so (Ci, Ci+1)
is an instance of rule (∧) in the VAL(ϕ0) game, where player Albert may choose the
disjunct ϕc.

If (Ci, Ci+1) is an instance of rule (µ) then Ci = µZ.ϕ,Φ and Ci+1 = Z,Φ. By

definition Ci = µX.ϕ,Φ = νZ.ϕ[X/X],Φ and so (Ci, Ci+1) is an instance of rule (ν)
in VAL(ϕ0). The case for rule (ν) is similar. Observe that a variable Z in play P is
of the other type in sequence P .

If (Ci, Ci+1) is an instance of rule (X) then Ci = X,Φ and Ci+1 = fb ϕ0(X),Φ.

By definition Ci = X,Φ and Ci+1 = fb ϕ0(X),Φ = fb ϕ0
(X),Φ. So (Ci, Ci+1) is an

instance of rule (X) in VAL(ϕ0). The case for rule (Y) is similar.
What we have so far is the following sequence

P = C0

r0

NNC1
. . . Ci−1

ri−1

NNCi

(O)

��
Ci+1

ri+1

NNCi+2 . . . Cj−1

rj−1

NNCj

(O)

��
Cj+1

rj+1

MMCj+2 . . .

P = C0

r′0

NNC1
. . . Ci−1

r′i−1

NNCi

(?)

��
Ci+1

r′i+1

MMCi+2
. . . Cj−1

r′j−1

MMCj

(?)

��
Cj+1

r′j+1

MMCj+2
. . .

Unfortunately P is still not a play in VAL(ϕ0). The transition between Ci and Ci+1

might not be defined if (Ci, Ci+1) is an instance of rule (O). We need to insert some
extra configurations between Ci and Ci+1 in the sequence P .

Let Ci be a configuration in P where rule (O) is applied on.
Case 1: If Ci is of the form Oϕ1, . . . , Oϕm then Ci is of the form Oϕ1, . . . , Oϕm.

That is equal to Oϕ1, . . . , Oϕm by definition and hence rule (O) can transform Ci to
Ci+1, at once.

Case 2: If Ci is of the form Oϕ1, . . . , Oϕm, a, where a is a letter in Σ, then
Oϕ1, . . . , Oϕm, a. That is equal to Oϕ1, . . . , Oϕm, a by definition. Now rule (∨) is
deterministically applied |Σ| − 2 times on a =

∨

b∈Σ,b 6=a b with resulting configura-
tion C ′

i+|Σ|−2 := Oϕ1, . . . , Oϕm, b1, . . . , b|Σ|−1. Afterwards rule (O) can rewrite this
configuration to Ci+1.

Case 3: If Ci is of the form Oϕ1, . . . , Oϕm, a1, . . . , am for more than one letter
a1, . . . , am then player Albert would win by winning condition c). Therefore this case
does not occur.

45

5 Validity and Satisfiability Games

Notice that in all configurations between Ci and Ci+1 the number of letters are less
than |S|.

Define P ′ as the sequence P where additional configurations C ′
i+1, . . . , C

′
i+|Σ|−2 are

inserted to flatten the disjunction a s.t. rule (O) can be applied. Then P ′ is a play in
VAL(ϕ0):

P ′ = C0

r0

NNC1
. . . Ci−1

ri−1

NNCi

(∨)

��
C ′
i+1

(∨)

��
C ′
i+2

. . . C ′
i+|Σ|−2

(O)

��
Ci+1

ri+1

MMCi+2
. . .

Finally, it remains to show that player Albert wins that play.
Case 1: If P = C0 . . . Cn in SAT (ϕ0) is finite then P ′ is finite as well. By definition

of P ′ there is a Cn = a =
∨

b∈Σ,b 6=a b for some a ∈ Σ and therefore this play will end
in configuration C ′

n+|Σ|−2 = b1, . . . , bm where m = |Σ| − 1. Hence, player Albert wins
by WC c).

Case 2: If P = C0C1 . . . is infinite then it does not contain a µ-line. Otherwise
player Albert would win SAT (ϕ0) by WC d). Notice that Eliza cannot win the play
P ′ by winning condition a) since each negated configuration C does not contain a
single letter a ∈ Σ. This is because there is no formula ϕ s.t. ϕ = a. Secondly, in
the additional inserted configurations C ′

i+1 . . . C
′
i+|Σ|−2 the maximal number of letters

is restricted by |Σ| − 1 as mentioned above. Therefore the play P ′ is infinite as well
and contains no ν-line, by definition. Remember that a variable in P is of contrary
type in P ′. But then player Albert wins that play by WC d).

“⇐” If player Albert wins VAL(ϕ0) =: (C, ϕ,R,W), he has a winning strategy
and can enforce a play P := C0C1 . . . which he wins. Notice that the order of the
application of rules R\ (O) does not matter. So, we may assume that formulas of the
form a, where a ∈ Σ, become principal formulas last. That is, no rule is applied on
such a formula until all remaining formulas in the configuration are of the form Oϕ, a
or a.

Let Cj1 , Cj2 , . . . denote the configurations in P where rule (O) is applied on. Addi-
tionally, let Cik be the configuration with the following properties

• Cik precedes Cjk , and

• Cik is the first configuration after the last application of rule (O) which contains
a negated letter a as principal formula.

This designation is depicted in the following figure:

46

5.3 Satisfiability Checking SAT

P = C0

no (O)

C1
. . . Ci1

(∨) on some a

NNCi1+1 . . . Cj1

(O)

��
Cj1+1

no (O)

. . . Ci2

(∨) on some a

NNCi2+1 . . . Cj2

(O)

��
Cj2+1 . . .

Notice the following facts: (i) the configurations C0, . . . , Ci1 and all configurations
between Cjk−1

and Cik+1 for k = 2, 3, . . . do not contain any letter a ∈ Σ. A letter a in

ϕ only occurs as an argument of a disjunction b for some negated letter b ∈ Σ, where
a 6= b. Since we assumed that formulas of the form b become principal formulas last
there cannot be a letter in these configuration.

Secondly, (ii) there is at most one negated letter a in any configuration of P . Assume
there is a configuration C = a, b,Φ in P where a 6= b. Then this configuration will
eventually be rewritten to C ′ = a1, . . . , a|Σ|,Φ

′ and there is nothing player Albert can
do about it. But that means player Eliza wins the play by WC a).

P = C0

(i) no a

(ii) at most one a

C1
. . . Ci1 Ci1+1 . . . Cj1

(O)

��
Cj1+1

(i) no a

. . . Ci2 Ci2+1 . . . Cj2

(O)

��
Cj2+1 . . .

Combining (i) and (ii), for any k the configuration Cik must look like

Cik = Oϕ1, . . . , Oϕm,

or Cik = Oϕ1, . . . , Oϕm, a,

i.e. the configuration Cik contains at most one negated letter. Note that on these
configurations Cik for k = 1, 2, . . . ri either rule (∨) or rule (O) can be applied.

Next we delete all configurations in P which are between Cik and Cjk and show that
the resulting sequence Q is a“negation”of a possible play in SAT (ϕ) =: (C′, ϕ,R′,W ′):

Q = D0

r0

NND1

r1

NND2 . . . := C0

r0

NNC1

r1

NNC2
. . . Ci1

?

��
Cj1 . . . Ci2

?

��
Cj2 . . .

where ri ∈ R denotes the rule which is applied on configuration Di according to the
play P .

Define the negation of a configuration C like in the first part of the proof, namely

C := {ϕ[Z1/Z1, . . . , Zn/Zn] ∈ Sub(ϕ0) | ϕ ∈ C}.

47

5 Validity and Satisfiability Games

Then the following holds: “Let Di and Di+1 be two subsequent configurations in
Q and let C be a configuration s.t. C = Di. Then there is a rule r′ ∈ R′ s.t.
r′(C) = Di+1.” We write r(C) for the configuration which results from application of
rule r on configuration C. Let us prove this fact:

Let ψ be the principal formula in Di. Since C = Di there must be a formula ϕ in
C s.t. ϕ = ψ. There are several chases:

If ϕ = a for some letter in Σ then ri operates on ψ = a, i.e. by definition of Q
Di = Oψ1, . . . , Oψm, a and Di+1 = ψ1, . . . , ψm. Furthermore configuration C must
be of the form Oϕ1, . . . , Oϕm, a where ϕj = ψj for all j. This fact holds due to

Oϕj = Oϕj = Oψj for all j and because there is no other formula χj s.t. χj = Oψj
for any j.

If ϕ = ϕ1 ∧ ϕ2 then ri operates on ψ = ϕ1 ∨ ϕ2. Therefore r′ := (∧) applied
on C with principal formula ϕ yields a set r′(C) s.t. r′(C) = (C \ ϕ) ∪ {ϕ1, ϕ2} =
(Di \ ψ) ∪ {ϕ1, ϕ2} = Di+1.

If ϕ = ϕ1∨ϕ2 then playerAlbert chooses a conjunct in ψ = ϕ1∧ϕ2 using rule r = (∧).
Hence rule r′ := (∨) can rewrite ϕ where player Eliza chooses the corresponding
disjunct. Again r′(C) = (C \ ϕ) ∪ {ϕj} = (Di \ ψ) ∪ {ϕj} = Di+1.

If ϕ = Oϕ′ then ψ = Oϕ′ and rule ri = (O). Moreover, Di must be of the form
(Oψ1, . . . , Oψm) without any letter a because there is no formula χ s.t. χ = a and
therefore there would not be a configuration C s.t. C = Di otherwise. As in the first
case, C = (Oϕ1, . . . , Oϕm) where ϕj = ψj for all j. If we apply rule r′ = (O) on C we

get r′(C) = {ϕ1, . . . , ϕm} = {ψ1, . . . , Oψm} = Di+1.

If ϕ = µZ.ϕ′ then ψ = νZ.ψ′[Z/Z] and rule r = (ν). Define r′ := (µ) and apply
it on C to obtain r′(C) = (C \ µZ.ϕ′) ∪ {Z} = (Di \ νZ.ϕ) ∪ {Z} = Di+1. The case
ϕ = νZ.ϕ′ is dual. Notice that a variable Z in the sequence Q is of the other type in
the play P ′.

If ϕ = X then ψ = X, as well (see the definition of C). We can apply the same
rule r′ := r and get r′(C) = Di+1 since fb (X) according to Sub(ϕ0) is the negation of
fb (X) with respect to Sub(ϕ0).

This leads to a definition of the possible play P ′ := C ′
0C

′
1 . . . in SAT (ϕ0):

C0 := D0

Ci := r′(Ci), s.t. r′(Ci) = Di

Next, we show that player Eliza wins the play P ′ = C ′
0C

′
1 . . . in SAT (ϕ0). Assume

her opponent Albert wins by winning condition c), i.e. the play ends in a configuration
of the form Cn = a, b,Φ for some distinct letters a and b. But then Dn must contain
two negated letters which is impossible by fact (ii) and definition of Q.

If player Albert wins by winning condition d), i.e. there is a µ-line in P , then there
must be a ν-line in Q because the type of the variables changes. Then P also contains
a ν-line since in the parts of the play which are dropped to define Q the rules only

48

5.3 Satisfiability Checking SAT

operate on negated letters. So, player Eliza would win P by winning condition b)
which contradicts the precondition.

Theorem 5.9 Let ϕ be a closed µTL formula. Then ϕ is satisfiable iff player Eliza
wins SAT (ϕ).

Proof Directly from Lemma 5.7 and Lemma 5.8:

ϕ satisfiable ⇔ Albert wins VAL(ϕ)

⇔ Eliza wins SAT (ϕ)

49

5 Validity and Satisfiability Games

50

6 ν-Line Automata

In the preceding chapters we presented tree-games to solve the model checking prob-
lem. Furthermore, we showed how to adapt these games for deciding validity and
satisfiability of closed µTL formulas. The winning conditions for infinite plays in these
games depend on the existence of a µ- or ν-line but we have not given an effective
algorithm for detecting such lines, so far.

In this chapter we introduce an automaton based approach to find ν-lines in a play.
Automata seem to be appropriate to solve this task because they consist of elementary
mathematical structures like sets and relations on sets which on the one hand can easily
be examined in terms of mathematical theorems and proofs and which on the other
hand are simple enough to be implemented in a common programming language. For
deeper insight into automata theory see for example [Tho97, GTW02, HMU02].

Our aim in this chapter is to construct an automaton which reads a play P =
C0C1 . . . of a game and outputs whether there is a ν-line in that play. If this automaton
is deterministic we can annotate each configuration of the play by a state of the
automaton. Thus, it will be possible to create a decision procedure for the validity
game which is in PSPACE because no extra branching due to the non-determinism of
the automaton is needed.

We will define two kinds of automata. Parity automata have a complex acceptance
condition and hence, we can directly define these kinds of automata for detecting a
ν-line. Next we will transform these automata into Büchi automata where we follow
a standard construction from Parity to Büchi. The advantage of Büchi automata are
that there exist standard procedures for converting them into deterministic Muller
automata. We will use an optimal algorithm which has been introduced by Safra
[Saf89].

6.1 Preliminaries

Definition 6.1 (Büchi Automaton) A non-deterministic Büchi automaton (NBA)
is a quintuple AB = (S,A, δ, s0, F) where

• S is a finite set of states,

• A is a finite alphabet,

• δ ⊆ S × A× S is called transition relation,

51

6 ν-Line Automata

• s0 ∈ S is the initial state,

• F ⊆ S is the set of finite states.

A run of AB on an infinite word w ∈ Aω is a sequence of states R = s0s1 . . . s.t.
(si, w(i), si+1) ∈ δ for all i ∈ N. A run is accepting if it contains a state s ∈ F which
occurs infinitely often. We say that AB accepts a word w if there is an accepting run
on w. �

Definition 6.2 (Parity Automaton) A nondeterministic parity automaton (NPA)
is a quintuple AP = (S,A, δ, s0, F) where

• S,A, δ, s0 are defined as in Büchi automata,

• F : S → N is a priority function which assigns a priority to each state.

A run of AP on an infinite word w ∈ Aω is a sequence of states R = s0s1 . . . s.t.
(si, w(i), si+1) ∈ δ for all i ∈ N. A run is accepting if the least priority of all states,
which occur infinitely often, is even. We say that AP accepts a word w if there is an
accepting run on w. �

Concise Representation of a Play

A play in a game MC(t, ϕ0) can be concisely represented by just storing the rules
between its configurations. Since the principal formula of a configuration uniquely
determines which rule is applied we only have to remember which conjunct player
Albert chooses at rule (∧).

Definition 6.3 Given a play P = C0C1 . . . of a game MC(t, ϕ0) then the concise
representation for P is defined as P̃ = r0r1 . . . where

ri :=







ψ , if ψ is the PF in Ci and ψ 6= · ∧ · and ψ 6= O·

ψ1 ∧1 ψ2 , if ψ1 ∧ ψ2 is the PF in Ci and player Albert chooses ψ1

ψ1 ∧2 ψ2 , if ψ1 ∧ ψ2 is the PF in Ci and player Albert chooses ψ2

O , if the PF in Ci is of the form Oψ

for all i = 0, 1,
The set of principal rules is defined as

R̃ :={ψ | ψ ∈ Sub(ϕ0), ψ 6= · ∧ · and ψ 6= O·}

∪ {ψ1 ∧1 ψ2 | ψ1 ∧ ψ2 ∈ Sub(ϕ0)}

∪ {ψ1 ∧2 ψ2 | ψ1 ∧ ψ2 ∈ Sub(ϕ0)}

∪ {O | Oψ ∈ Sub(ϕ0) for some ψ}. �

52

6.2 Parity Automaton

6.2 Parity Automaton

We will construct an automaton which accepts a play of the form P̃ if and only if
it has a ν-line. All lines in a play begin at ϕ0, the formula which the game starts
with. Only at rule (∨) a line can continue in two different directions. The idea behind
the automaton is to follow a single line in the play non-deterministically and detect
whether it is a ν-line or not.

Definition 6.4 Let ϕ0 be a closed µTL formula. The NPA AP (ϕ0) := (S,A, δ, ϕ0, F)
is defined by

• S := Sub(ϕ0)

• A := R̃

• δ :=

(ψ1 ∧ ψ2, ψ1 ∧1 ψ2, ψ1)
(ψ1 ∧ ψ2, ψ1 ∧2 ψ2, ψ2)

(ψ1 ∧ ψ2, r, ψ1 ∧ ψ2) , where r ∈ R̃ \ {ψ1 ∧1 ψ2, ψ1 ∧2 ψ2}

(ψ1 ∨ ψ2, ψ1 ∨ ψ2, ψ1)
(ψ1 ∨ ψ2, ψ1 ∨ ψ2, ψ2)

(ψ1 ∨ ψ2, r, ψ1 ∨ ψ2) , where r ∈ R̃ \ {ψ1 ∨ ψ2}

(Oψ, O, ψ)

(Oψ, r, Oψ) , where r ∈ R̃ \ {Oψ}

(νY.ψ, νY.ψ, Y)

(νY.ψ, r, νY.ψ) , where r ∈ R̃ \ {νY.ψ}

(Y, Y, fb ϕ0(Y))

(Y, r, Y) , where r ∈ R̃ \ {Y }

(µX.ψ, µX.ψ, X)

(µX.ψ, r, µX.ψ) , where r ∈ R̃ \ {µX.ψ}

(X, X, fb ϕ0(X))

(X, r, X) , where r ∈ R̃ \ {X}

• Let Z1, Z2, . . . , Zn denote all variables in S s.t. for all i, j ∈ N : Zi <ϕ0 Zj ⇒ i >
j. (greater variables first)

F (Zi) :=

{

2i , if Zi is of type ν

2i+ 1 , if Zi is of type µ

F (ψ) := 2n+ 1, for all remaining states ψ ∈ S \ V . �

53

6 ν-Line Automata

Theorem 6.5 Let P be a play in MC(t, ϕ0) where t is a tree and ϕ0 is a closed µTL
formula.

AP (ϕ0) accepts P̃ iff there is a ν-line in P .

Proof “⇒” First we show the“only if”direction. Suppose the NPA AP (ϕ0) accepts
P̃ . Then there is an infinite run R = s0s1 . . . s.t. the least priority of all states which
occur infinitely often is even. Intuitively, the automaton AP (ϕ0) draws the line R on
the play by marking a formula si ∈ Ci for each configuration Ci in the play.

Since s0 = ϕ0 it remains to show that every possible connection (i, si, si+1) ∈ Conϕ0

for all i ∈ N. If si is not a principal formula in Ci then AP (ϕ0) remains in the same
state, i.e. only transitions of the form (si, r, si) can be applied where r ∈ R̃ is a rule
which does not change si. Otherwise, if si is not a principal formula in Ci then AP (ϕ0)
changes its state to the formula si+1 ∈ Ci+1. In other words, all transitions (si, r, si+1)
which are applicable result in a state si+1 ∈ Ci+1 s.t. (i, si, si+1) ∈ Con.

In addition, the acceptance condition of AP (ϕ0) assures that there must be a ν-
variable which occurs infinitely often on R. Let Y be the variable which occurs in-
finitely often with the least priority. There cannot be a greater µ-variable X, which
occurs infinitely often, because otherwise F (X) < F (Y) would hold. But that contra-
dicts the acceptance of run R. Therefore there is a ν-line R in P .

⇐ Now we will show the “if” direction. Let L = ϕ0ϕ1 . . . be the ν-line in P and
let Y be the greatest ν-variable which occurs infinitely often on P . We will prove that
L is an accepting run for AP (ϕ0) on P̃ = ϕ̃0ϕ̃1

The run starts with ϕ0 as expected. So, we only have to ensure that the transition
(ϕi, ϕ̃i, ϕi+1) exists in δ. If ϕi is not a principal formula in Ci then ϕi+1 = ϕi and ϕ̃i
does not rewrite formula ϕi. But this transition (ϕi, r, ϕi) where r does not operate
on ϕi is in δ. If ϕi is a principal formula in Ci then we have to deal with the following
cases:

If ϕi = ψ1 ∧ψ2 is a conjunction then ϕi+1 = ψj, j ∈ {1, 2} is the conjunct chosen by
player Albert. Hence, ϕ̃i = ψ1 ∧j ψ2 and transition (ψ1 ∧ ψ2, ψ1 ∧j ψ2, ψj) exists in δ.

If ϕi = ψ1 ∨ ψ2 is a disjunction then ϕi+1 = ψj, j ∈ {1, 2}. But there are two
transitions (ψ1 ∨ ψ2, ψ1 ∨ ψ2, ψj) ∈ δ.

If ϕi is of the form Oψ, µX.ψ, νY.ψ, X or Y then ϕi+1 and ϕ̃i are deterministically
defined. And for each form there is a transition (ϕi, ϕ̃i, ϕi+1) ∈ δ in AP (ϕ0), as well.

At last, we check that AP (ϕ0) accepts this run L, i.e. the least priority of all states
which occurs infinitely often is even. Since L is a ν-line there is no state s ∈ S which
occurs infinitely often in L s.t. F (s) is odd and F (s) < F (Y). We can disregard all such
states s′ which are not variables because by definition F (s′) > F (Y). Furthermore,
only µ-variables greater than Y are mapped to an odd priority less than F (Y). But
these variables do not occur infinitely often in L. Therefore the parity automaton
AP (ϕ0) accepts the run L.

54

6.3 Transformation to Büchi Automaton

Start: Copy of NPA
No acceptance

//

//

//

//

//

Copy of NPA
Acceptance if state with priority 0 occurs ∞-often.

Copy of NPA without states with even priority < 2
Acceptance if state with priority 2 occurs ∞-often.

Copy of NPA without states with even priority < 4
Acceptance if state with priority 4 occurs ∞-often.

...

Copy of NPA without states with even priority < max(E)
Acceptance if state with priority max(E) occurs ∞-often.

Table 6.1: Standard Transformation: NPA → NBA

6.3 Transformation to Büchi Automaton

There is a standard procedure for transforming a parity automaton into a Büchi au-
tomaton. Let AP = (S,A, δ, s0, F) be an NPA. Then an NBA AB := (S ′, A, δ′, s′0, F

′)
can be constructed in the following way:

• S ′ := (S×E)∪S, where E := {s ∈ S | F (s) is even} is the set of all states with
even priorities,

• s′0 := s0,

• the NBA AB can simulate the NPA AP using the same transitions or it can
switch to (s, e) by choosing a finite state e which must occur infinitely often.
After that it can simulate the run of AP in the first component of its state.

δ′ := δ ∪

{(s, a, (ŝ, e)) | (s, a, ŝ) ∈ δ, e ∈ E} ∪

{((s, e), a, (ŝ, e)) | (s, a, ŝ) ∈ δ, e ∈ E,F (ŝ) ≥ F (e)}

• F ′ := {(e, e) | e ∈ E}.

This new NBA consists of |E|+1 copies of the NPA, see Table 6.1. The transforma-
tion is not optimal and can be optimized by uniting states of E which have the same
priority (i.e. E := {F (s) | F (s) even}), for example. But the NBA outlined here is
more similar to the specific ν-line NPA to NBA construction.

55

6 ν-Line Automata

If the NPA accepts a word w then there is an accepting run where the least priority
p of the states which occur infinitely often is even. That is, there must be a position m
in the run after which no state s with F (s) < p occurs. This can be simulated by the
NBA by using the transitions of the NPA during the first m steps and then switching
to (s, p) and imitating the run of the NPA on w on the first component.

On the other hand, if the NBA accepts a word w then there is a run where a state
of the form (e, e), where e ∈ E, occurs infinitely often. By definition the run does not
contain any state (s, e), where F (s) is odd and F (s) < F (e), which occurs infinitely
often. Therefore the NPA accepts w by imitating the run of the NBA, as well.

Definition 6.6 Let ϕ be a closed µTL formula. A NBA AB(ϕ0) := (S,A, δ, ε, F) is
defined by

• S := (Sub(ϕ0) × Vν) ∪ {ε}

• A := R̃

• δ :=

(ε, r, ε) , where r ∈ R̃
(ε, Y, (fb ϕ0(Y), Y))

((ψ1 ∧ ψ2, Y), ψ1 ∧1 ψ2, (ψ1, Y))
((ψ1 ∧ ψ2, Y), ψ1 ∧2 ψ2, (ψ2, Y))

((ψ1 ∧ ψ2, Y), r, (ψ1 ∧ ψ2, Y)) , where r ∈ R̃ \ {ψ1 ∧1 ψ2, ψ1 ∧2 ψ2}

((ψ1 ∨ ψ2, Y), ψ1 ∨ ψ2, (ψ1, Y))
((ψ1 ∨ ψ2, Y), ψ1 ∨ ψ2, (ψ2, Y))

((ψ1 ∨ ψ2, Y), r, (ψ1 ∨ ψ2, Y)) , where r ∈ R̃ \ {ψ1 ∨ ψ2}

((Oψ, Y), O, (ψ, Y))

((Oψ, Y), r, (Oψ, Y)) , where r ∈ R̃

((νY ′.ψ, Y), νY ′.ψ, (Y ′, Y))

((νY.ψ, Y), r, (νY.ψ, Y)) , where r ∈ R̃ \ {νY.ψ}

((Y, Y), Y, (fb ϕ0(Y), Y))

((Y, Y), r, (Y, Y)) , where r ∈ R̃ \ {Y }

((µX.ψ, Y), µX.ψ, (X,Y))

((µX.ψ, Y), r, (µX.ψ, Y)) , where r ∈ R̃ \ {µX.ψ}

((X,Y), X, (fb ϕ0(X), Y)) , if X <ϕ0 Y

((X,Y) r, (X,Y)) , where r ∈ R̃ \ {X}

• F := {(Y, Y) | Y ∈ Sub(ϕ0)} �

56

6.3 Transformation to Büchi Automaton

Theorem 6.7 Let P be a play in MC(t, ϕ0) where t is a tree and ϕ0 is a closed µTL
formula.

AB(ϕ0) accepts P̃ iff AP (ϕ0) accepts P̃ .

Proof “⇒” The “only if” direction is shown in the following way. If the NBA
AB(ϕ0) = (S,A, δ, ε, F) accepts P̃ then there is an infinite run R = s0s1 . . . s.t.
(Y, Y) occurs infinitely often on R for some ν-variable Y . Notice that once the sec-
ond component of its state is set to variable Y , it is never changed along the run.
Furthermore this Y can only be introduced by transition (ε, Y, (fb ϕ0(Y), Y)) where
νY.ψ ∈ Sub(ϕ0). In short, the automaton starts in state s0 := ε and stays there
until it non-deterministically changes into state sm+1 := (fb ϕ0(Y), Y) when it reads
ϕ̃m = Y :

R = ε . . . ε (fb ϕ0(Y), Y)
︸ ︷︷ ︸

sm+1

. . . (Y, Y) . . . (Y, Y) . . .

That is, Y must be the principal formula in configuration Cm and therefore a line
L = ϕ0ϕ1 . . . ϕm in the play P can be drawn which ends with ϕm = Y . Besides,
all states after sm are tuples with exactly two components. Define s(1) as the first
component for such a state s.

Now we can construct an accepting run R′ for an NPA AP (ϕ0) = (S ′, A, δ′, ϕ0, F
′)

which is defined in definition 6.4. Intuitively, the NPA AP (ϕ0) begins with s′0 := ϕ0

and follows the line L until s′m := ϕm. Then it imitates the run of the NBA AB(ϕ0)
on P̃ (m+1) = ϕ̃m+1ϕ̃m+2 If the NBA AB(ϕ0) uses transition ((ϕ, Y), ϕ̃, (ψ, Y)) the
parity automaton chooses transition (ϕ, ϕ̃, ψ) by disregarding the second component
Y .

R′ := ϕ0 . . . ϕm fb ϕ0(Y)
︸ ︷︷ ︸

s′m+1

. . . Y . . . Y . . .

One can check that R′ = s′0s
′
1 . . . is indeed a run for the NPA AP (ϕ0), i.e. there

exists a transition (s′i−1, ϕ̃i−1, s
′
i) for each i ∈ N:

The prefix of R′ is a line in the play P , for all i ≤ m : (ϕi−1, ϕi) ∈ Con. That is,
ϕi−1 is a PF and ϕi is its rewriting, or ϕi−1 = ϕi is no PF. This is preserved by the
transitions of the NPA AP (ϕ0). For example, ϕ0 ∈ C0 and if ϕi−1 is a conjunct and
the PF in Ci−1 then ϕ̃i−1 is the formula ϕi−1 with the annotation j ∈ {1, 2} which
specifies the choice of player Albert. But the transition (ϕi−1, ϕ̃i−1, ϕi) where ϕi is the
rewriting of ϕi−1 is in δ′. If the conjunct ϕi−1 is not a PF then the automaton reaches
ϕi by transition (ϕi−1, r, ϕi) where r is not the annotated ϕi−1. In both cases ϕi is in
Ci again. All other cases are similar.

Since s′m = Y is the PF in Cm, i.e. ϕ̃m = Y , the NPA AP (ϕ0) can go to state
s′m+1 = fb ϕ0(Y) by transition (Y, Y, fb ϕ0(Y)) ∈ δ′.

Comparing the set of transitions δ and δ′ of both automatons we see that

{(ϕ, ϕ̃, ψ) | ((ϕ, Y), ϕ̃, (ψ, Y)) ∈ δ} ⊆ δ′.

57

6 ν-Line Automata

As mentioned above, the run of the NBA AB(ϕ0) after position m consists of tuples
and so it only uses transitions of the form ((ϕ, Y), ϕ̃, (ψ, Y)). Hence, the NPA AP (ϕ0)
can reach every state s′i, i > m, as well.

It remains to show that R′ is accepting. In the run R the state (Y, Y) occurs
infinitely often, i.e. in R′ there are infinitely many states Y . Furthermore, no state
which is a µ-variable X greater than Y occurs after s′m. Otherwise the NBA AB(ϕ0)
must have used a transition of the form ((X,Y), ϕ̃, (fp (X), Y)) where X > Y . But
this transition does not exist in δ. Therefore the least priority of all states which occur
infinitely often is F ′(Y) which is even.

“⇐” The “if” direction is a little bit more complicated. If the NPA AP (ϕ0) =
(S ′, A, δ′, ϕ0, F

′) accepts the play P̃ then there must be an infinite run R′ = s′0s
′
1 . . .

s.t. the least priority of all variables which occur infinitely often on R′ is even. Let Y
be the variable having the least priority of all variables which occurs infinitely often.

There must be a state Y in R′ s.t. no greater variable occurs afterwards. Assume the
opposite, i.e. after each state Y some greater variable occurs. Since the set of variables
is finite there must be at least one variable greater than Y which occurs infinitely often
on the run. But then Y would not be the variable with the least priority. Let s′m = Y
be the first state with that property s.t. s′m+1 = fb ϕ0(Y).

R′ = s′0s
′
1 . . .

no variable Z > Y
︷ ︸︸ ︷

Y
︸︷︷︸

s′m

fb ϕ0(Y)
︸ ︷︷ ︸

s′m+1

. . . Y . . . Y . . .

With these information we can find an accepting run R = s0s1 . . . for the Büchi
automaton AB(ϕ0) = (S,A, δ, ε, F) defined as in Definition 6.6. Define si := ε for all
i = 0, 1, . . . ,m and for every state si after sm define si := (s′i, Y) by adding the second
component Y .

R := ε . . .

no state (Z, Y) where Z > Y
︷ ︸︸ ︷

ε
︸︷︷︸

sm

(fb ϕ0(Y), Y)
︸ ︷︷ ︸

sn

. . . (Y, Y) . . . (Y, Y) . . .

This is a valid run for the NBA AB because
• with transition (ε, r, ε) where r is some arbitrary rule, the NBA AB(ϕ0) can reach

state sm.
• In state s′m the parity automaton changed into state fb ϕ0(Y) by reading the

formula ϕ̃m = Y . In the same manner the Büchi automaton can proceed from state
sm = ε to state sm+1 = (fb ϕ0(Y), Y) by transition (ε, Y, (fb ϕ0(Y), Y)) ∈ δ.
• Since after state s′m no variable greater than Y occurs in run R′ there cannot be

any state (Z, Y) where Z > Y after sm in run R. Therefore the set of transitions
needed to simulate the run of the NPA AP on P̃ is contained in δ:

{((ϕ, Y), ϕ̃, (ψ, Y)) | Y ∈ V, (ϕ, ϕ̃, ψ) ∈ δ′, ϕ 6= Z > Y } ⊆ δ

58

6.4 Deterministic Automata

Thus, the play P̃ is accepted by the NBA AB because (Y, Y) occurs infinitely often
in its run R.

6.4 Deterministic Automata

Safra introduced a way to transform an NBA into a deterministic automaton which
accepts by a Muller condition. The idea is a refinement of the classical subset con-
struction using Safra trees as states. Theses trees help to recognize whether a run of
the automaton passes a set of final states of the NBA infinitely often or not.

Let AB = (S,A, δ, s0, F) be an NBA. The states in the deterministic Muller au-
tomaton (DMA) are Safra trees. Such a tree consists of nodes n ∈ N× 2S ×{., !} with
a node name ∈ N, a set of NBA states, and a light which can flash. We write n! if
the node n is highlighted. The initial state of the DMA is (0, s0, .) – a Safra tree with
only one node. The successor state of this DMA is constructed in several steps:

a) For every node in the tree which contains final states of the NBA create a child
with a new name, the set of all these final states and no flash.

b) Apply the usual subset construction for each node of the new tree, i.e. replace
any node s′ by {r ∈ S | ∃s ∈ s′ : (s, a, r) ∈ δ} and remove a possible flash !.

c) For each node in the tree remove a final state s from the node if there is an older
sibling which contains s. Then remove empty nodes.

d) If the union of sibling nodes equals the parent node then delete all siblings and
their descendants and let the parent node flash.

Because of the last two steps the union of sibling nodes in a Safra tree is a proper
subset of the parent node and therefore the maximal number of nodes is bounded by
the number of Büchi states |S|.

The Muller automaton accepts a word if its run satisfies the following Muller con-
dition: at least one node is missing only finitely often but is highlighted (!) infinitely
often.

Lemma 6.8 Safra’s construction converts an NBA with |S| states into a deterministic
Muller automaton with 2O(|S|·log(|S|)) states.

Proof See [Tho97] for example.

In the next theorem we develop an algorithm based on the DMA which solves the
validity problem of a µTL formula in PSPACE.

Theorem 6.9 (Complexity) Let t ∈ T
Σ

be a tree over Σ and let ϕ be a closed µTL-
formula.

59

6 ν-Line Automata

a) The validity game VAL(ϕ) is in PSPACE.

b) The satisfiability game SAT (ϕ) is in PSPACE.

c) The model-checking game MC(t, ϕ) is in PSPACE.

Proof a) Let C be the set of configurations of the validity game VAL(ϕ) and let T
be the set of states in the DMA constructed by Safra’s method. First we show that
V AL(ϕ) is in NPSPACE.

A Deterministic Muller automaton allows us to decide whether or not an infinite
play contains a ν-line. Due to its determinism each configuration C in a play can
be annotated by a unique state t of the automaton. We will write (C, t) for such an
annotated configuration. Since |C| and |T | are bounded, there exist at most Pmax :=
|C| × |T | = 2|ϕ| × 2O(|ϕ|2·log(|ϕ|2)) different annotated configurations. Therefore, a loop
of a play can be detected by a counter using space log(Pmax) which is polynomial in
the input |ϕ|.

If ϕ is not valid than player Albert can enforce a play which he wins. In case this
play is infinite, it contains no ν-line and so, player Albert can find a loop which has
no ν-line, non-deterministically.

Formula ϕ is valid if and only if player Albert is unable to win. Thus, this decision
procedure rejects if player Albert would accept. A sketch of this algorithm is depicted
in Table 6.2.

First all variables are initialised. Notice that the space needed for a configuration
and a Safra tree is polynomial in the input because there are at most |Sub(ϕ)| different
formulas in a configuration and the number of nodes of a Safra tree is bounded by
the number of NBA states which is in O(|ϕ|2). Moreover, the number of node names
stored in the set “Nodes” is bounded by 2 ∗ |NBA states| due to Safra’s construction
[Saf89].

Then a play which is directed by player Albert is played. If he is not able to win
within Pmax steps then ϕ is valid and the algorithm accepts. Otherwise player Albert
can find a configuration (C ′, t′) which will be repeated. To check that there is no ν-
line in this loop, the Muller condition must hold, i.e. there is not a single node which
permanently exists and which is highlighted at least once.

By Savitch’s result [Sav69] – NPSPACE ⊆ PSPACE – our algorithm can be simu-
lated in PSPACE.

Algorithms for tree-games and satisfiability games of this work are designed in a
similar fashion and it can be shown that all of them are in PSPACE, as well. The
following sketches will show a way to proof these results.

b) The length of an annotated play is polynomial in the input |ϕ| and hence the
a play will be decided after at most Pmax steps.

60

6.4 Deterministic Automata

1 Configuration C’, C := initial configuration;

2 Safratree t’, t := initial Safra tree;

3 Rule r;

4 Counter c := 0;

5 Boolean b := false;

6 Nodes N := ∅;
7

8

9 While c <= Pmax Do

10 If WC a) applies on C Then accept;

11 If WC c) applies on C Then reject;

12

13 Albert chooses whether the lines shall be executed:

14 b := true;

15 (C’, t’) := (C, t);

16 N := { n | n is a node in t};

17 End;

18

19 C’ := Albert determines the next successor of C;

20 r := rule which has rewritten C to C’;

21 t’ := δDMA(t, r);

22 (C, t) := (C’, t’);

23

24 If b Then

25 N := N ∩ { n | n is a node in t};

26 If (C, t) := (C’, t’) Then

27 If {n | n! ∈ T} = ∅ Then reject;

28 End;

29 End;

30

31 c := c + 1;

32 End;

33

34 accept;

Table 6.2: Algorithm for Deciding Validity

61

6 ν-Line Automata

If ϕ is satisfiable, player Eliza can enforce a play where she wins. In case the play
is infinite, she is able to find a loop which does not contain a µ-line. In these cases the
algorithm accepts ϕ, otherwise it rejects.

c) We assume that the tree t is represented by a finite graph with N distinct
nodes. Thus, an annotated play has at most N × Pmax different configurations.

If t |= ϕ then player Albert can enforce a play where he wins. If the resulting play is
infinite then he is able to find a loop which does not contain a ν-line within N ×Pmax
steps. In these cases the algorithm accepts (t, ϕ), otherwise it rejects.

62

A Implementation

The decision procedure for validity checking of a µTL formula is implemented in OCaml
(Objective Categorically Abstract Machine Language), a functional programming lan-
guage which belongs to the ML language family. This implementation will outline a
translation of validity games and its ν-line automata into concrete Ocaml code.

A µTL formula ϕ0 is parsed from the command line. Then, as described in Table 6.2,
the algorithm tries to find a play in VAL(ϕ0) where player Albert wins. If such a play
exists, the input formula ϕ0 is not valid and the algorithm prints out the annotated
play. Otherwise, ϕ0 must be valid.

Example A.1 Let w be an infinite word of the form (a+b)ω with Σ = {a, b}, i.e.
property b occurs infinitely often but never successively. This run can be described by
the following µTL formula

ϕ0 := G(F b) ∧G(¬(b ∧Ob))

where G(ϕ) := νZ.ϕ∧OZ (generally) and F (ϕ) := µZ.ϕ∨OX (finally). Since w |= ϕ0

the negated formula ¬ϕ0 cannot be valid.
First we have to transform ¬ϕ0 into a formula which can be parsed by the Ocaml

program.

¬ϕ0 = ¬G(F b) ∨ ¬G(¬(b ∧Ob))

= F (G¬b) ∨ F (¬¬(b ∧Ob))

= F (Ga) ∨ F (b ∧Ob)

= (µX.Ga ∨OX) ∨ µY.(b ∧Ob) ∨OY

= (µX.(νZ.a ∧OZ) ∨OX) ∨ µY.(b ∧Ob) ∨OY

The formula is not valid and therefore our algorithm returns a play where opponent
Albert wins. The play is annotated by Safra trees, the states of the DMA:

1 ˜/tex/ocaml> ocaml main.ml ”(mu X.(nu Z.a & OZ) | OX) | mu Y.(b & Ob) | OY”
2 VAL Game
3

4 Sigma := ab
5 phi0 := ((mu X.((nu Z.(a /\ O Z)) \/ O X)) \/ (mu Y.((b /\ O b) \/ O Y)))
6

7 −−−−−
8 1: ((mu X.((nu Z.(a /\ O Z)) \/ O X)) \/ (mu Y.((b /\ O b) \/ O Y))), | (00: e, { })

63

A Implementation

9 2: (mu X.((nu Z.(a /\ O Z)) \/ O X)), (mu Y.((b /\ O b) \/ O Y)), | (00: e, { })
10 3: X, (mu Y.((b /\ O b) \/ O Y)), | (00: e, { })
11 4: ((nu Z.(a /\ O Z)) \/ O X), (mu Y.((b /\ O b) \/ O Y)), | (00: e, { })
12 5: O X, (mu Y.((b /\ O b) \/ O Y)), (nu Z.(a /\ O Z)), | (00: e, { })
13 6: Z, O X, (mu Y.((b /\ O b) \/ O Y)), | (00: e, { })
14 7: (a /\ O Z), O X, (mu Y.((b /\ O b) \/ O Y)), | (00: e, ((a /\ O Z), Z), { })
15 8: a, O X, (mu Y.((b /\ O b) \/ O Y)), | (00: e, (a, Z), { })
16 9: a, Y, O X, | (00: e, { })
17 10: a, ((b /\ O b) \/ O Y), O X, | (00: e, { })
18 11: a, (b /\ O b), O X, O Y, | (00: e, { })
19 12: a, O b, O X, O Y, | (00: e, { })
20 13: b, X, Y, | (00: e, { })
21 14: b, Y, ((nu Z.(a /\ O Z)) \/ O X), | (00: e, { })
22 15: b, Y, O X, (nu Z.(a /\ O Z)), | (00: e, { })
23 16: b, Y, Z, O X, | (00: e, { })
24 17: b, Y, (a /\ O Z), O X, | (00: e, ((a /\ O Z), Z), { })
25 18: b, Y, O X, O Z, | (00: e, (O Z, Z), { })
26 19: b, ((b /\ O b) \/ O Y), O X, O Z, | (00: e, (O Z, Z), { })
27 20: b, (b /\ O b), O X, O Y, O Z, | (00: e, (O Z, Z), { })
28 21: b, O X, O Y, O Z, | (00: e, (O Z, Z), { })
29 22: X, Y, Z, | (00: e, (Z, Z), { })
30 23: X, Y, (a /\ O Z), | (00: e, ((a /\ O Z), Z), { (01: ((a /\ O Z), Z), { }) })
31 24: a, X, Y, | (00: e, (a, Z), { (01: (a, Z), { }) })
32 25: a, Y, ((nu Z.(a /\ O Z)) \/ O X), | (00: e, { })
33 26: a, Y, O X, (nu Z.(a /\ O Z)), | (00: e, { })
34 27: a, Y, Z, O X, | (00: e, { })
35 28: a, Y, (a /\ O Z), O X, | (00: e, ((a /\ O Z), Z), { })
36 29: a, Y, O X, | (00: e, (a, Z), { })
37 30: a, ((b /\ O b) \/ O Y), O X, | (00: e, { })
38 −−−−−
39

40

41 Result: phi0 is not valid
42

43 ˜/tex/ocaml>

The last configuration of the play is a repeat of configuration number 10 and be-
tween theses configurations no node of the Safra tree has been highlighted (there is no
exclamation mark next to a node name). Therefore player Albert wins that play.

If we gather all letters of the configurations on which the next rule has been applied
to, namely configurations 12 and 21, we obtain the following sequence:

//
10

//
12

//
21

//
30

��

v := a b . . .

Notice that the “negated” word v, i.e. we replace a by ¬a and b by ¬b in v, is a
model of ϕ0.

64

On the following pages we present the source code of the implementation. The
syntax of a µTL formula is defined separately in Formula.ml :

1 (∗ data type of a muTL formula ∗)
2 type muTL =
3 Prop of string
4 | Var of string
5 | Or of muTL ∗ muTL
6 | And of muTL ∗ muTL
7 | Next of muTL
8 | Mu of string ∗ muTL
9 | Nu of string ∗ muTL;;

The Ocaml code which implements the NBA and DMA automaton and the VAL(ϕ0)
game is given in the following listing:

1 #load ”lexer.cmo”;;
2 #load ”parser.cmo”;;
3 #use ”Formula.ml”;;
4

5 (∗ contains type muTL for mu−calculus formulas ∗)
6 open Formula;;
7

8 (∗∗)
9 (∗ A set is represented by a list with distinct elements ∗)

10 (∗∗)
11 module Set = struct

12 (∗ inserts an element into a set ∗)
13 let insert a l = if List .mem a l then l else a :: l ;;
14

15 (∗ true if set1 is a subset of set2 ∗)
16 let rec isSubset = function

17 [] −> (fun −> true)
18 | h :: t −> (fun l −> List.mem h l && isSubset t l);;
19

20 (∗ true if set1 = set2 ∗)
21 let isEqual s1 s2 = (isSubset s1 s2) && (isSubset s2 s1) ;;
22

23 (∗ results the union of two lists ∗)
24 let rec union set1 set2 =
25 let set1 ’ = List.rev set1 in

26 let rec union = function

27 [] −> set2
28 | h :: t −> insert h (union t)
29 in

30 union set1 ’;;
31

32 (∗ one−level flattening of sets (with duplicate check) ∗)

65

A Implementation

33 let rec flatten = function

34 [] −> []
35 | h :: t −> union h (flatten t) ;;
36

37 (∗ returns all elements which are in s1 and not in s2, i .e. set := s1 \ s2 ∗)
38 let rec minus = function

39 [] −> fun −> []
40 | h :: t −> fun s2 −> if List.mem h s2 then minus t s2 else h :: minus t s2;;
41

42 end;;
43

44

45 (∗∗)
46 (∗ Definition and several operations on muTL formulas ∗)
47 (∗∗)
48 module MuTL = struct

49 (∗ returns the fixed point of z w.r. t . phi0 ∗)
50 let fp phi0 z =
51 let rec fp’ = function

52 (Or (phi1, phi2), z) −> if fp’ (phi1, z) != None then fp’ (phi1, z) else fp’ (phi2, z)
53 | (And (phi1, phi2), z) −> if fp’ (phi1, z) != None then fp’ (phi1, z) else fp’ (phi2,

z)
54 | (Next phi, z) −> fp’ (phi, z)
55 | (Mu (x, phi), z) −> if x = z then Some (Mu (x, phi)) else fp’ (phi, z)
56 | (Nu (y, phi), z) −> if y = z then Some (Nu (y, phi)) else fp’ (phi, z)
57 | −> None in

58 let remove option = function

59 None −> failwith ”fp: Fixed point not found.”
60 | Some a −> a in

61 remove option (fp’ (phi0,z)) ;;
62

63 (∗ returns the fixed point body of z w.r. t . phi0 ∗)
64 let fb phi0 z =
65 let removeSigma = function

66 Mu (, phi) −> phi
67 | Nu (, phi) −> phi
68 | −> failwith ”fb: Function fp did not return a fixed point.” in

69 removeSigma (fp phi0 z);;
70

71 (∗ returns the list Sub(phi) ∗)
72 let rec sub = function

73 Prop a −> [Prop a]
74 | Var z −> [Var z]
75 | Or (phi1, phi2) −> Or (phi1, phi2) :: sub phi1 @ sub phi2
76 | And (phi1, phi2) −> And (phi1, phi2) :: sub phi1 @ sub phi2
77 | Next phi −> Next phi :: sub phi
78 | Mu (x, phi) −> Mu (x, phi) :: sub phi
79 | Nu (y, phi) −> Nu (y, phi) :: sub phi ;;
80

81 (∗ < phi0 relation ∗)

66

82 let less phi0 x y =
83 List .mem (fp phi0 x) (sub (fb phi0 y)) ;;
84

85 (∗ returns true if the variable is of type nu ∗)
86 let vartype phi z =
87 let get type = function

88 Mu −> false

89 | Nu −> true

90 | −> failwith ”MuTL.vartype: Type cannot be infered.” in

91 get type (fp phi z) ;;
92

93 (∗ returns the negated formula ∗)
94 let rec negate sigma =
95 let rec bigor = function

96 [] −> failwith ”MuTL.negate: Sigma is empty”
97 | a :: [] −> Prop a
98 | a :: t −> Or(Prop a, bigor t) in function

99 Prop a −> bigor (Set.minus sigma [a])
100 | Var x −> Var x
101 | Or (phi1, phi2) −> And (negate sigma phi1, negate sigma phi2)
102 | And (phi1, phi2) −> Or (negate sigma phi1, negate sigma phi2)
103 | Next phi −> Next (negate sigma phi)
104 | Mu (z, phi) −> Nu (z, negate sigma phi)
105 | Nu (z, phi) −> Mu (z, negate sigma phi);;
106

107 (∗ returns all letters of the formula ∗)
108 let rec getLetters = function

109 Prop a −> [a]
110 | Var x −> []
111 | Or (phi1, phi2) −> Set.union (getLetters phi1) (getLetters phi2)
112 | And (phi1, phi2) −> Set.union (getLetters phi1) (getLetters phi2)
113 | Next phi −> (getLetters phi)
114 | Mu (z, phi) −> (getLetters phi)
115 | Nu (z, phi) −> (getLetters phi);;
116

117 (∗ −−−−−−−−−− string − convertions for printing −−−−−−−−−−∗)
118 let fromStr str =
119 let lexbuf = Lexing.from string str in

120 let result = Parser.main Lexer.token lexbuf in

121 result ;;
122

123 let rec phiToStr = function

124 Prop a −> a ˆ ””
125 | Var v −> v ˆ ””
126 | Or (phi1, phi2) −> ”(” ˆ (phiToStr phi1) ˆ ” \\/ ” ˆ (phiToStr phi2) ˆ ”)”
127 | And (phi1, phi2) −> ”(” ˆ (phiToStr phi1) ˆ ” /\\ ” ˆ (phiToStr phi2) ˆ ”)”
128 | Next phi −> ”O ” ˆ (phiToStr phi)
129 | Mu (x, phi) −> ”(mu ” ˆ x ˆ ”.” ˆ phiToStr phi ˆ ”)”
130 | Nu (x, phi) −> ”(nu ” ˆ x ˆ ”.” ˆ phiToStr phi ˆ ”)”;;
131

67

A Implementation

132 let rec phiListToStr = function

133 [] −> ””
134 | h :: t −> (phiToStr h) ˆ ”, ” ˆ phiListToStr t ;;
135

136 end;;
137

138

139 (∗∗)
140 (∗ NBA automaton with states, alphabet (game rules) and transition ∗)
141 (∗∗)
142 module Nba = struct

143 (∗ data type of an NBA state ∗)
144 type state =
145 Epsilon
146 | Tuple of muTL ∗ string;;
147

148 (∗ data type for the short representation of game rules ∗)
149 type rules =
150 NextRule
151 | Formula of muTL
152 | LAnd of muTL
153 | RAnd of muTL;;
154

155 (∗ transition function of the nu−line NBA ∗)
156 let delta phi0 = function

157 Epsilon, Formula (Var y) −> if MuTL.vartype phi0 y then [Epsilon; Tuple (MuTL.fb phi0
y, y)] else [Epsilon]

158 | Epsilon, −> [Epsilon]
159 | Tuple (And (phi1, phi2), y), LAnd psi −> if And (phi1, phi2) = psi then [Tuple (phi1,

y)] else [Tuple (And (phi1, phi2), y)]
160 | Tuple (And (phi1, phi2), y), RAnd psi −> if And (phi1, phi2) = psi then [Tuple (phi2,

y)] else [Tuple (And (phi1, phi2), y)]
161 | Tuple (And (phi1, phi2), y), −> [Tuple (And (phi1, phi2), y)]
162 | Tuple (Or (phi1, phi2), y), Formula psi −> if Or (phi1, phi2) = psi then [Tuple (phi1,

y); Tuple (phi2, y)] else [Tuple (Or (phi1, phi2), y)]
163 | Tuple (Or (phi1, phi2), y), −> [Tuple (Or (phi1, phi2), y)]
164 | Tuple (Next phi, y), NextRule −> [Tuple (phi, y)]
165 | Tuple (Next phi, y), −> [Tuple (Next phi, y)]
166 | Tuple (Nu (y’, phi), y), Formula psi −> if Nu (y’, phi) = psi then [Tuple (Var y’, y)]

else [Tuple (Nu (y’, phi), y)]
167 | Tuple (Nu (y’, phi), y), −> [Tuple (Nu (y’, phi), y)]
168 | Tuple (Var z, y), Formula psi −>
169 if MuTL.vartype phi0 z then

170 (if Var z = psi then [Tuple (MuTL.fb phi0 z, y)] else [Tuple (Var z, y)])
171 else

172 (if Var z = psi then

173 (if MuTL.less phi0 z y then [Tuple (MuTL.fb phi0 z, y)] else [])
174 else [Tuple (Var z, y)])
175 | Tuple (Var z, y), −> [Tuple (Var z, y)]
176 | Tuple (Mu (x, phi), y), Formula psi −> if Mu (x, phi) = psi then [Tuple (Var x, y)] else

68

[Tuple (Mu (x, phi), y)]
177 | Tuple (Mu (x, phi), y), −> [Tuple (Mu (x, phi), y)]
178 | −> [];; (∗ no transition for the rest ∗)
179

180 (∗ true if the argumet is a final NBA state ∗)
181 let isFinal phi = function

182 Epsilon −> false

183 | Tuple (Var z, y) −> if (z = y) && (MuTL.vartype phi y) then true else false

184 | −> false;;
185

186 (∗ −−−−−−−−−− string − convertions for printing −−−−−−−−−−∗)
187 let stateToStr = function

188 Epsilon −> ”e”
189 | Tuple (phi, y) −> ”(” ˆ MuTL.phiToStr phi ˆ ”, ” ˆ y ˆ ”)”;;
190

191 let rec stateListToStr = function

192 [] −> ””
193 | h :: t −> stateToStr h ˆ ”, ” ˆ stateListToStr t ;;
194

195 let ruleToStr = function

196 NextRule −> ”NextRule”
197 | Formula phi −> MuTL.phiToStr phi
198 | LAnd phi −> MuTL.phiToStr phi
199 | RAnd phi −> MuTL.phiToStr phi;;
200

201 end;;
202

203

204 (∗∗)
205 (∗ DMA automaton with states, alphabet (game rules) and transition ∗)
206 (∗∗)
207 module Dma = struct

208 (∗ data type of an DMA state ∗)
209 type safratree =
210 (∗ age, name, flash, NBA states, children ∗)
211 Node of int ∗ int ∗ bool ∗ Nba.state list ∗ safratree list ;;
212

213 (∗ only node names of this list may be used ∗)
214 let age = ref 10;;
215 let nodeIDs = ref [];;
216

217 (∗ −−−−−−−−−− string − convertions for printing −−−−−−−−−−∗)
218 let rec nodeToStr = function

219 Node (a, i , b, states ,) −>
220 if b then (string of int a)ˆ(string of int i) ˆ ”!: ” ˆ Nba.stateListToStr states
221 else (string of int a)ˆ(string of int i) ˆ ”: ” ˆ Nba.stateListToStr states ;;
222

223 let rec treeToStr = function

224 Node (a, i , b, states , children) −>
225 let nStr = nodeToStr (Node (a, i, b, states , children)) in

69

A Implementation

226 let c = List.map treeToStr children in

227 let cStr = List. fold left (ˆ) ” ” c in

228 ”(” ˆ nStr ˆ ”{” ˆ cStr ˆ ”}) ”;;
229

230 let rec intListToStr = function

231 [] −> ””
232 | h:: t −> string of int h ˆ ”, ” ˆ intListToStr t ;;
233

234 let rec nodeListToStr = function

235 [] −> ””
236 | (i , false) :: t −> string of int i ˆ ”, ” ˆ nodeListToStr t
237 | (i , true) :: t −> string of int i ˆ ”!, ” ˆ nodeListToStr t;;
238 (∗ −−−−−−−−−− ∗)
239

240 (∗ returns a ”normalized” tree , i .e. age=0, sorted states & children ∗)
241 let rec treeNormalize = function

242 Node (, i , b, ss , cs) −>
243 let ss ’ = List.sort compare ss in

244 let cs ’ = List.sort compare (List.map treeNormalize cs) in

245 Node (0, i , b, ss ’, cs ’) ;;
246

247 (∗ returns list of nodenames and their flash of a list of trees ∗)
248 let rec nodesOf = function

249 [] −> []
250 | Node (, i , b, , children) :: tail −> (i, b) :: nodesOf children @ nodesOf tail;;
251

252 (∗ returns a finite list of possible node names: 0, 1, .., 2∗|phi0|ˆ2 ∗)
253 let createNames phi0 =
254 let rec nList = function

255 0 −> [] (∗ name ”0” is used by the tree of the test formula ∗)
256 | n −> n :: nList (n−1) in

257 let n = List.length (MuTL.sub phi0) in

258 List .rev (nList (2∗n∗n));;
259

260 (∗ transition of the deterministic Muller automaton ∗)
261 let delta phi0 t isFinal delta rule =
262 (∗ −− I. −− returns a tree whith new children containing the final states ∗)
263 let rec splitFinalStates =
264 (∗ returns set of final states from a list ∗)
265 let rec getFStates = function

266 [] −> []
267 | h :: t −>
268 if isFinal h then Set.insert h (getFStates t) else

269 getFStates t in function

270

271 Node (a, i , b, states , children) −>
272 let childrenDone = List.map splitFinalStates children in

273 let fStates = getFStates states in

274 if fStates = [] then

275 Node (a, i , b, states , childrenDone)

70

276 else

277 let newChild = Node (!age+1, List.hd !nodeIDs, false, fStates, []) in

278 if !age < 1000000000 then age := !age + 1 else failwith ”Dma.delta: age
overflow”;

279 nodeIDs := List.tl !nodeIDs; (∗ pop node name ∗)
280 Node (a, i , b, states , newChild :: childrenDone) in

281

282 (∗ −− II. −− classical subset construction applied on a Dma state (=Safra tree) ∗)
283 let rec subsetDelta =
284 let compose = function q −> Nba.delta phi0 (q, rule) in function

285 Node (a, i , , states , children) −>
286 Node (a, i , false , Set. flatten (List .map compose states), List.map subsetDelta

children) in

287

288 (∗ −− III. −−− horizontal merge ∗)
289 let rec hMerge =
290 (∗ union of the states of all older nodes ∗)
291 let rec mergeOlderSiblings a’ = function

292 [] −> []
293 | Node (a, j , b, states ,) :: t −>
294 if a<a’ then states @ mergeOlderSiblings a’ t else

295 mergeOlderSiblings a’ t in

296

297 (∗ merge siblings ∗)
298 let rec mergeSiblings siblings = function

299 [] −> []
300 | Node (a, i , b, states , children) :: t −>
301 let afterDelete = Set.minus states (mergeOlderSiblings a siblings) in

302 if afterDelete = [] then

303 (let l = List.map fst (nodesOf children) @ !nodeIDs in (∗ push children names
∗)

304 nodeIDs := i :: l ; (∗ push node name ∗)
305 mergeSiblings siblings t)
306 else

307 Node (a, i , b, afterDelete , children) :: mergeSiblings siblings t in function

308

309 Node (a, i , b, states , []) −> Node (a, i, b, states , [])
310 | Node (a, i , b, states , children) −>
311 Node (a, i , b, states , List .map hMerge (mergeSiblings children children)) in

312

313 (∗ −− IV. −−− vertical merge ∗)
314 let rec vMerge =
315 (∗ union of states of all nodes ∗)
316 let rec unionOfStates = function

317 [] −> []
318 | Node (a, j , b, states ,) :: t −> states @ unionOfStates t in function

319

320 Node (a, i , b, states , []) −> Node (a, i, b, states , [])
321 | Node (a, i , b, states , children) −>
322 if Set.isEqual states (unionOfStates children) then

71

A Implementation

323 (let l = List.map fst (nodesOf children) @ !nodeIDs in

324 nodeIDs := l; (∗ push node names ∗)
325 Node (a, i , true, states , []))
326 else

327 Node (a, i , b, states , List .map vMerge children) in

328

329 vMerge (hMerge (subsetDelta (splitFinalStates t))) ;;
330

331 end;;
332

333

334 (∗∗)
335 (∗ Implementation of the VAL game ∗)
336 (∗∗)
337 module Game = struct

338 (∗ this variable stores a whole play ∗)
339 let play = ref [];;
340

341 (∗ winning conditions a) and c) for letters ∗)
342 let isWCa sigma conf =
343 Set.isSubset (List .map (function a −> Prop a) sigma) conf;;
344 let isWCc sigma conf =
345 (Set.isSubset conf (List .map (function a −> Prop a) sigma)) &&
346 not (isWCa sigma conf);;
347

348 (∗ detects a nu−Line: union of all nodes from the last conf until the begin of the loop ∗)
349 let nuLineExists lastStep pl =
350 (∗ intersection of node names; notice: {5} /\ {5!} becomes {5!} ∗)
351 let rec intsec l = function

352 [] −> []
353 | (n, false) :: t −>
354 if List .mem (n, true) l then (n, true) :: intsec l t else

355 if List .mem (n, false) l then (n, false) :: intsec l t else

356 intsec l t
357 | (n, true) :: t −>
358 if List .mem (n, true) l || List .mem (n, false) l then (n, true) :: intsec l t else

359 intsec l t in

360

361 let rec intsecNodes = function

362 [] −> failwith ”intsecNodes: Loop not found.”
363 | (c, t) :: tl −>
364 if (c, t) = lastStep then Dma.nodesOf [t] else

365 intsec (Dma.nodesOf [t]) (intsecNodes tl) in

366

367 let rec hasFlashNode = function

368 [] −> false

369 | (i ,true) :: tl −> true

370 | (i , false) :: tl −> hasFlashNode tl in

371

372 let nodes = intsecNodes pl in

72

373 (∗ print string (Dma.nodeListToStr nodes ˆ ”\n”);∗)
374 hasFlashNode nodes;;
375

376 (∗ returns a list of all possible (two at most) configurations which can follow ∗)
377 let nextConfs phi0 conf =
378 let changeFirstComponent op = function (a, b) −> (op a, b) in

379 let rec nextCs = function

380 [] −> [([], Nba.NextRule)] (∗ only dummy rule ∗)
381 | Prop p :: t −> List.map (changeFirstComponent (Set.insert (Prop p))) (nextCs t)
382 | Var z :: t −> [(Set.insert (MuTL.fb phi0 z) t, Nba.Formula (Var z))]
383 | Or (phi1, phi2) :: t −> [(Set.insert phi1 (Set. insert phi2 t) , Nba.Formula (Or

(phi1, phi2)))]
384 | And (phi1, phi2) :: t −> [(Set.insert phi1 t , Nba.LAnd (And (phi1, phi2)));

(Set.insert phi2 t , Nba.RAnd (And (phi1, phi2)))]
385 | Next phi :: t −> List.map (changeFirstComponent (Set.insert (Next phi))) (nextCs t)
386 | Mu (x, phi) :: t −> [(Set.insert (Var x) t , Nba.Formula (Mu (x, phi)))]
387 | Nu (y, phi) :: t −> [(Set.insert (Var y) t , Nba.Formula (Nu (y, phi)))] in

388

389 let rec applyNext = function

390 [] −> []
391 | Prop p :: t −> applyNext t
392 | Next phi :: t −> Set.insert phi (applyNext t)
393 | −> failwith ”applyNext: Next rule can only apply on Prop or Next operators.”

in

394

395 let applyNextIfNecessary = function

396 (c, Nba.NextRule) :: t −> [(applyNext c, Nba.NextRule)]
397 | x −> x in

398

399 applyNextIfNecessary (nextCs conf);;
400

401 (∗ returns a list which contains the next possible confs. and DMA states ∗)
402 let nextStep phi0 c t =
403 List .map (fun (a, rule) −> (a, Dma.delta phi0 t (Nba.isFinal phi0) (Nba.delta phi0) rule))
404 (nextConfs phi0 c) ;;
405

406 (∗ −−−−−−−−−− string − convertions for printing −−−−−−−−−−∗)
407 let rec playToStr pl =
408 let playLen = List.length pl in

409 let revPlay = List.rev pl in

410 let rec convert = function

411 [] −> ””
412 | (c, t) :: tl −>
413 (string of int (playLen − List.length tl)) ˆ
414 ”: ” ˆ (MuTL.phiListToStr c) ˆ ” | ” ˆ
415 Dma.treeToStr t ˆ ”\n” ˆ (convert tl)
416 in

417 (”\n−−−−−\n” ˆ convert revPlay ˆ ”−−−−−\n\n”);;
418 (∗ −−−−−−−−−− ∗)
419

73

A Implementation

420 (∗ returns true if Ex wins ∗)
421 let rec valGame sigma phi0 (c,t) pl =
422 let t ’ = Dma.treeNormalize t in

423 let c’ = List.sort compare c in

424

425 if isWCa sigma c then true else

426 if isWCc sigma c then (print string (playToStr ((c’, t ’) :: pl)) ; false) else

427

428 if List .mem (c’, t’) pl then

429 if nuLineExists (c ’, t ’) pl then true else

430 (print string (playToStr ((c ’, t ’) :: pl)) ; false)
431 else

432 let pl ’ = (c’, t ’) :: pl in

433 let nSteps = nextStep phi0 c t in

434 if not (valGame sigma phi0 (List.hd nSteps) pl’) then false else

435 if List . tl nSteps != [] then valGame sigma phi0 (List.nth nSteps 1) pl’ else

436 true;;
437

438 (∗ initializes the first (C, t) and calls valGame ∗)
439 let startValGame sigma phi0 =
440 Dma.nodeIDs := Dma.createNames phi0;
441 valGame sigma phi0 ([phi0], Dma.Node(0, 0, false, [Nba.Epsilon], [])) [];;
442

443 end;;
444

445

446 (∗∗)
447 (∗ main function ∗)
448 (∗∗)
449 let main =
450 let phi0 = MuTL.fromStr Sys.argv.(1) in

451 let sigma = MuTL.getLetters phi0 in

452

453 (∗ call of the game ∗)
454 print string ”VAL Game\n\n”;
455 print string (”Sigma := ” ˆ (List. fold left (ˆ) ”” sigma ˆ ”\n”)) ;
456 print string (”phi0 := ” ˆ (MuTL.phiToStr phi0) ˆ ”\n”);
457 if Game.startValGame sigma phi0 then

458 print string ”\nResult: phi0 is valid\n\n” else

459 print string ”\nResult: phi0 is not valid\n\n”;;

74

References

[BEM96] J. Bradfield, J. Esparza, and A. Mader. An effective tableau system for the
linear time mu-calculus. In F. Meyer auf der Heide and B. Monien, editors,
Proc. of ICALP’96, number 1099 in Lecture Notes in Computer Science,
pages 98–109. Springer-Verlag, 1996.

[BKP86] H. Barringer, R. Kuiper, and A. Pnueli. A Really Abstract Concurrent
Model and Its Temporal Logic. In Conf. Record of the 13th Annual ACM
Symp. on Principles of Programming Languages, POPL’86, pages 173–183.
ACM, ACM, 1986.

[EH81] E. A. Emerson and J. Y. Halpern. Synthesis of Synchronization Skeletons
for Branching Time Temporal Logic. In Logics of Programs: Workshop,
volume 131 of LNCS, pages 52–71, Yorktown Heights, New York, 1981.
Springer.

[EH85] E. A. Emerson and J. Y. Halpern. Decision Procedures and Expressiveness
in the Temporal Logic of Branching Time. Journal of Computer and System
Sciences, 30:1–24, 1985.

[Gar05] Simson Garfinkel. History’s Worst Software Bugs. Wired News, 11, 2005.

[GPSS53] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. Infinite games of perfect
information. Ann. Math. Studies, 28:245–266, 1953.

[GPSS80] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. The Temporal Analysis
of Fairness. In Proc. 7th Symp. on Principles of Programming Languages,
POPL’80, pages 163–173. ACM, 1980.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata,
Logics, and Infinite Games: A Guide to Current Research [outcome of a
Dagstuhl seminar, February 2001], volume 2500 of Lecture Notes in Com-
puter Science. Springer, 2002.

[HMU02] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Einführung in
die Automatentheorie, Formale Sprachen und Komplexitätstheorie. Pearson
Studium, München, 2002. 2., überarbeitete Auflage.

75

References

[Hoa83] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 26(1):53–56, 1983.

[JW96] D. Janin and I. Walukiewicz. On the expressive completeness of the propo-
sitional µ-calculus with respect to monadic second order logic. In U. Monta-
nari and V. Sassone, editors, Proc. 7th Conf. on Concurrency Theory, CON-
CUR’96, volume 1119 of LNCS, pages 263–277, Pisa, Italy, 1996. Springer.

[Kai95] R. Kaivola. A Simple Decision Method for the Linear Time µ-calculus. In
J. Desel, editor, Proc. Int. Workshop on Structures in Concurrency Theory,
STRICT’95, pages 190–204, Berlin, 1995.

[Kai97] R. Kaivola. Using Automata to Characterise Fixed Point Temporal Logics.
PhD thesis, LFCS, Division of Informatics, The University ofEdinburgh,
1997.

[Kam68] H. W. Kamp. On tense logic and the theory of order. PhD thesis, Univ. of
California, 1968.

[Klo05] Karlhorst Klotz. Software ohne Fehl und Tadel. Technology Review, 7:10–
23, 2005.

[Koz83] Dexter Kozen. Results on the Propositional µ-Calculus. Theoretical Com-
puter Science, 27(3):333–354, 1983.

[Lan05] M. Lange. Weak automata for the linear time µ-calculus. In R. Cousot,
editor, Proc. 6th Int. Conf. on Verification, Model Checking and Abstract
Interpretation, VMCAI’05, volume 3385 of LNCS, pages 267–281, 2005.

[Mar75] D. A. Martin. Borel determinacy. Ann. Math., 102:363–371, 1975.

[Mat02] R. Mateescu. Local Model-Checking of Modal Mu-Calculus on Acyclic La-
beled Transition Systems. In Proc. 8th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems, TACAS’02, volume 2280 of
LNCS, pages 281–295. Springer, 2002.

[McF93] Michael C. McFarland. Formal Verification of Sequential Hardware: A Tu-
torial. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 12(5):633–654, 1993.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 18th Symp. on Foun-
dations of Computer Science, FOCS’77, pages 46–57, Providence, RI, USA,
October 1977. IEEE.

[Saf89] Shmuel Safra. Complexity of Automata on Infinite Objects. PhD thesis,
The Weizman Institute of Science, Rehovot, Israel, March 1989.

76

References

[Sav69] W. J. Savitch. Deterministic simulation of non-deterministic Turing Ma-
chines. In Proc. 1st ACM Symposium on Theory of Computing (STOC),
pages 247–248, 1969.

[Sti95] Colin Stirling. Local Model Checking Games. In Proceedings of the 6th
International Conference on Concurrency Theory, CONCUR ’95, volume
962 of Lecture Notes in Computer Science, pages 1–11. Springer-Verlag,
1995.

[Sti97] C. Stirling. Bisimulation, Model Checking and Other Games, 1997. Notes
for Mathfit instructional meeting on games and computation,Edinburgh,
June 1997.

[SW91] Colin Stirling and David Walker. Local model checking in the modal mu-
calculus. In TAPSOFT ’89: 2nd international joint conference on The-
ory and practice of software development, pages 161–177, Amsterdam, The
Netherlands, The Netherlands, 1991. Elsevier Science Publishers B. V.

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285–309, 1955.

[Tho79] W. Thomas. Star-Free Regular Sets of ω-Sequences. Information and Con-
trol, 42(2):148–156, 1979.

[Tho97] W. Thomas. Languages, Automata and Logic. In A. Salomaa and G. Rozen-
berg, editors, Handbook of Formal Languages, volume 3, Beyond Words.
Springer-Verlag, Berlin, 1997.

[Tho03] W. Thomas. Infinite Games and Verification (Extended Abstract of a Tu-
torial). In Proc. 15th Int. Conference on Computer Aided Verification,
CAV’03, volume 2725 of LNCS, pages 58–64. Springer, 2003.

[Var88] M. Y. Vardi. A temporal fixpoint calculus. In ACM, editor, Proc. Conf.
on Principles of Programming Languages, POPL’88, pages 250–259, NY,
USA, 1988. ACM Press.

[Wal00] Igor Walukiewicz. Completeness of Kozen’s axiomatisation of the proposi-
tional µ-calculus. Inf. Comput., 157(1-2):142–182, 2000.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages: An
Introduction. MIT Press, 1993.

77

