
GDV 2004 Preliminary Version

Game Over: The Foci Approach to LTL
Satisfiability and Model Checking

Christian Dax Martin Lange

Institut für Informatik, University of Munich

Abstract

Focus games have been shown to yield game-theoretical characterisations for the
satisfiability and the model checking problem for various temporal logics. One of
the players is given a tool – the focus – that enables him to show the regeneration of
temporal operators characterised as least or greatest fixpoints. His strategy usually
is build upon a priority list of formulas and, thus, is not positional. This paper
defines foci games for satisfiability of LTL formulas. Strategies in these games
are trivially positional since they parallelise all of the focus player’s choices, thus
resulting in a 1-player game in effect. The games are shown to be correct and to
yield smaller (counter-)models than the focus games. Finally, foci games for model
checking LTL are defined as well.

Key words: Verification, Temporal Logic, Tool Support

1 Introduction

Verification is strongly linked with logics and in fact is nowadays a broadly
accepted and active area of research in logics for computer science. This is
because logical formulas express properties and, therefore, can be used to
express correctness in particular. The question of whether or not a piece of
hardware or software obeys a certain correctness property is often reduced to
the satisfiability or model checking problem for a temporal logic.

In both cases, games provide an advantageous mechanism for carrying out
the verification task. A game-based algorithm deciding one of these problems
computes a winning strategy for a player in a certain 2-player game. This
strategy can then be used not only to report to the user of a verification tool
that the examined formula is or is not satisfied/satisfiable, but also to show
to her why this is the case. This is done by letting the user play against the
winning strategy. By its very definition, the user is bound to lose any resulting
play. Since the rules of such games usually follow the semantics of formulas
closely, this provides the user with insight into where exactly a transition
system fails to satisfy the formula at hand for example.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

C. Dax and M. Lange

Here we deal with Linear Time Temporal Logic (LTL) [10]. It has been well
studied since and enjoys various decision procedures for both its model check-
ing and its satisfiability problem. They include tableau methods [10,8,1,12],
resolution [5], reductions [4], automata-theoretic procedures [13,14] as well as
symbolic methods [2].

Satisfiability games for LTL have been defined in [6] in terms of focus
games. They work on sets of formulas but equip the universal player (refuter)
with a simple tool that allows him to neatly show the regeneration of least
fixpoint constructs – one possible source of unsatisfiability. This makes them
suitable for making the user of a verification tool understand unsatisfiability
of a given formula as described above.

Focus games were first used to give a game-theoretical characterisation of
the model checking problem for the full branching time logic CTL∗ [7]. It is
well known that this is very closely related to LTL’s model checking problem.
Thus, [7] also provides a game-based approach to LTL model checking.

These focus games have nice theoretical properties. For example, refuter’s
strategies can explicitly be given in terms of priority lists, and refuter’s moves
of the focus can be determinised at no further complexity-theoretic costs.
However, when it comes to implementing these games a few obstacles have to
be dealt with. The main problem is to decide which formula refuter should
focus on in case there is no least fixpoint construct in the actual configuration.
Other difficulties arise when trying to recognise the right moment a focused
formula is fulfilled and the refuter has to react. Furthermore, the priority
list needs to be constantly maintained because formulas in the corresponding
configurations change shape during a play.

Their main disadvantage however, is the fact that refuter’s winning strate-
gies are not positional but Least Appearance Record strategies [9]. This means
that the tree of plays cannot simply be stored as a directed acyclic graph which
would be much better for efficiency.

Here we propose foci games to overcome these issues. They extend the
focus approach by letting the refuter focus on all possible least fixpoint con-
structs in parallel.

This has several implications: On the positive side, foci games provide
a game-theoretical characterisation of LTL’s satisfiability problem which is
better suited for tool support. They also improve the small model property
gained from focus games by a linear factor, thus yielding shorter models of
satisfiable formulas. On the negative side, foci games are degenerated games
– strictly speaking. In (satisfiability) focus games, all that refuter does is set
the focus which he is completely deprived of in the foci games. However, we
do not propose the use of foci games directly for interacting with the user of
a verification tool. Instead we show how (rather simply) winning strategies
for focus games can be obtained from those of foci games. Then, focus games
can be used as an interface between a user and the foci games. This combines
advantages of both approaches in a verification tool.

2

C. Dax and M. Lange

It it well known that LTL’s satisfiability problem is closely related to its
model checking problem. We also define foci games for LTL model checking.
The same discussion about pros and cons holds for them as well.

The paper is organised as follows. Section 2 recalls the definition of LTL.
Section 3 gives a short summary and discussion of focus games for satisfiability
of LTL formulas. Section 4 defines foci games for this problem, proves them
correct, sketches an algorithm that decides their winners and shows how to
use their winning strategies back in focus games. Finally, Section 5 defines
model checking foci games for LTL.

2 Preliminaries

Let P be a set of monadic second-order propositions which is closed under
complementation, i.e. for every q ∈ P there is a q ∈ P with q = q. Furthermore
let P contain two distinguished propositions tt and ff that are complementary
to each other.

A linear time structure is a tuple π = (S, <, Iπ) where S is a set {s0, s1, . . .}
of order type ω. We usually call them states. < is a total order on the set of
states. Iπ is an interpretation function that maps every proposition q to the
set of states satisfying q.

Interpretations have to obey complementation as well as true and false, i.e.
for every Iπ, every q ∈ P and every i ∈ N we have si ∈ Iπ(tt), and si ∈ Iπ(q)
iff si 6∈ Iπ(q).

We write πk for the k-th suffix of π. Its universe is sksk+1 . . . and its
interpretation is defined by si ∈ Iπk(q) iff si+k ∈ Iπ(q) for every q ∈ P .

Formulas of LTL in positive normal form are given by the following gram-
mar.

ϕ ::= q | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | ϕRϕ

The temporal operators U and R can be characterised as fixpoints of certain
equivalences. The rules in Sections 3, 4 and 5 will make use of this. In order
to do so, we need to define unfoldings of these operators given by

unf(ϕUψ) := {ϕUψ, X(ϕUψ), ϕ ∧ X(ϕUψ), ψ ∨ (ϕ ∧ X(ϕUψ))}
unf(ϕRψ) := {ϕRψ, X(ϕRψ), ϕ ∨ X(ϕRψ), ψ ∧ (ϕ ∨ X(ϕRψ))}

The set Sub(ϕ) of subformulas of an LTL formula ϕ is defined as usual except
for the cases

Sub(ϕUψ) := unf(ϕUψ) ∪ Sub(ϕ) ∪ Sub(ψ)

Sub(ϕRψ) := unf(ϕRψ) ∪ Sub(ϕ) ∪ Sub(ψ)

Note that the number of subformulas of a formula is at most linear in its syn-
tactical length. Thus, we define the size of ϕ as |ϕ| := |Sub(ϕ)|. Furthermore,
we define for arbitrary formulas χ the set of all until/release unfoldings of

3

C. Dax and M. Lange

formulas in χ as

UNT(χ) :=
⋃

{ unf(ϕUψ) | ϕUψ ∈ Sub(χ) }
REL(χ) :=

⋃
{ unf(ϕRψ) | ϕRψ ∈ Sub(χ) }

LTL is interpreted over linear time structures π. For any π with universe
s0s1 . . . we have

π |= q iff s0 ∈ Iπq

π |= ϕ ∨ ψ iff π |= ϕ or π |= ψ

π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ

π |= Xϕ iff π1 |= ϕ

π |= ϕUψ iff there is a k ∈ N, s.t. πk |= ψ and for all j < k : πj |= ϕ

π |= ϕRψ iff for all k ∈ N : πk |= ψ or there is a j < k, s.t. πj |= ϕ

Approximants of U and R formulas are defined for any k ∈ N as

ϕU0ψ := ff ϕUk+1ψ := ψ ∨ (ϕ ∧ X(ϕUkψ))

ϕR0ψ := tt ϕRk+1ψ := ψ ∧ (ϕ ∨ X(ϕRkψ))

The next lemma is a standard result about least and greatest fixpoints.

Lemma 2.1 For any linear time structure π, any LTL formulas ϕ and ψ we
have:
a) π |= ϕUψ iff there is a k ∈ N s.t. π |= ϕUkψ
b) π |= ϕRψ iff for all k ∈ N: π |= ϕRkψ

Since the underlying set of propositions is supposed to be closed under com-
plementation and every LTL operator has a dual one we also get that LTL
is closed under negation. Then we can assume that for any LTL formula ϕ
there is also an LTL formula ¬ϕ. Furthermore, we will use the abbreviations
ϕ → ψ := ¬ϕ ∨ ψ as well as Fϕ := ttUϕ and Gϕ := ffRϕ. Finally, we write
Xkϕ to denote X . . . X︸ ︷︷ ︸

k times

ϕ.

3 Focus Games for Satisfiability of LTL Formulas

Focus game for satisfiability of LTL formulas as presented in [6] work as fol-
lows. Two players called ∃ and ∀ play on sets of subformulas of a given formula
ϕ in order to determine whether or not ϕ is satisfiable. Player ∃ believes that
it is whereas player ∀ wants to show that it is not.

Note that a temporal formula can be unsatisfiable because of two reasons.
Either it contains a propositional contradiction or a least fixpoint formula that
does not get fulfilled in a possible model. The first case of unsatisfiability is
easy to handle since it always breaks down to atomic propositions. The second
case is slightly more difficult when configurations are sets of formulas. It is

4

C. Dax and M. Lange

[
ψ0 ∨ ψ1

]
,Φ

[
ψi

]
,Φ

∃i
[
ϕ
]
, ψ0 ∨ ψ1,Φ

[
ϕ
]
, ψi,Φ

∃i
[
ψ0 ∧ ψ1

]
,Φ

[
ψi

]
, ψ1−i,Φ

∀i

[
ϕ
]
, ψ0 ∧ ψ1,Φ

[
ϕ
]
, ψ0, ψ1,Φ

[
Xψ1

]
, . . . , Xψm, q1, . . . , qk
[
ψ1

]
, . . . , ψm

(FC)

[
ϕ
]
, ψ,Φ

[
ψ

]
, ϕ,Φ

∀

[
ϕUψ

]
,Φ

[
ψ ∨ (ϕ ∧ X(ϕUψ))

]
,Φ

[
ϕ
]
, ϕUψ,Φ

[
ϕ
]
, ψ ∨ (ϕ ∧ X(ϕUψ)),Φ

[
ϕRψ

]
,Φ

[
ψ ∧ (ϕ ∨ X(ϕRψ))

]
,Φ

[
ϕ
]
, ϕRψ,Φ

[
ϕ
]
, ψ ∧ (ϕ ∨ X(ϕRψ)),Φ

Fig. 1. The rules of the LTL satisfiability focus games.

not enough to stop a play or a tableau branch once a repeat of a configura-
tion occurs and to check whether a least fixpoint construct occurs in it. It is
not immediately clear whether this construct really has not been fulfilled or
actually was regenerated by a greatest fixpoint construct. Therefore player ∀
is equipped with a tool called focus which highlights one formula in a config-
uration. He can use it to show that a least fixpoint construct does not get
fulfilled along a play.

The set of configurations of the game Γ(ϕ0) is Sub(ϕ0) × 2Sub(ϕ0). A con-
figuration is written

[
ψ

]
,Φ which means that ψ is the one formula that player

∀ currently focuses on.

The game rules are presented in Figure 1. They are to be read top-to-
bottom. For example, if a configuration contains a disjunction then player
∃ has to choose one of the disjuncts that replaces the disjunction. Fixpoint
formulas are unfolded. At any moment, player ∀ can reset the focus to another
formula. If every formula present in the current configuration begins with an
X or is an atomic proposition then all the X’s are stripped off and the atomic
propositions are discarded unless one of the following winning conditions holds
beforehand.

Player ∀ wins the play C0, . . . , Cn iff

(i) ff ∈ Cn or there is a q ∈ P s.t. q ∈ Cn and q ∈ Cn, or

(ii) there is an i < n s.t. Ci = Cn =
[
ϕUψ

]
,Φ for some ϕ, ψ,Φ and between

Ci and Cn player ∀ has not used rule (FC).

Player ∃ wins the play C0, . . . , Cn iff

(iii) Cn =
[
q1

]
, . . . , qk and for all i = 1, . . . , k: qi 6∈ Cn,

(iv) there is an i < n s.t. Ci = Cn =
[
ϕRψ

]
,Φ for some ϕ, ψ,Φ, and between

5

C. Dax and M. Lange

Ci and Cn player ∀ has not used rule (FC),

(v) there is an i < n s.t. Ci = Cn =
[
ϕ
]
,Φ for some ϕ,Φ, and between Ci

and Cn player ∀ has used rule (FC).

Lemma 3.1 [6] Every play of the game Γ(ϕ) has length at most O(|ϕ| ·2|ϕ|).
This is mainly because there are only |ϕ| · 2|ϕ| many different configurations
in the game Γ(ϕ).

Theorem 3.2 [6] Player ∃ has a winning strategy for the game Γ(ϕ) iff ϕ
is satisfiable.

The winning strategies can be given explicitly: player ∃ has to preserve sat-
isfiability whenever she chooses disjuncts. A winning strategy for player ∀
is conceptually more difficult but easier from a complexity-theoretic point of
view. Note that all he does is to set the focus in these games. Thus, a winning
strategy must tell him how to do this sensibly. Also note that because of the
way the winning conditions are defined, “sensibly” means that he must try to
minimise focus changes with rule (FC). This is accomplished by maintaining
a priority list of U formulas s.t. he

• always focuses on the first one in the list that is present in the current
configuration,

• only changes focus when player ∃ discards an unfolding of an U with the
rule for a disjunction,

• moves formulas that were previously focused on to the end of the list.

Positional strategies. It is not hard to see that player ∃’s winning strate-
gies are positional, i.e. her moves only depend on the actual configuration.
This is not the case for player ∀. At any moment in a play, the maintained
list is a compact representation of the part of the play’s history that matters
to player ∀.
Complexity. In order to measure the asymptotic complexity of deciding
the winner of a game it is often helpful to design an alternating algorithm and
then to employ results about alternating complexity classes from [3]. This
is because an alternating algorithm only follows a single play. Here, a single
play can be played using polynomial space only, see [6] for details. This would
naturally lead to an EXPTIME procedure for deciding the winner because
EXPTIME equals alternating PSPACE. However, player ∀’s moves can be
determinised using the above described strategy at no further (complexity-
theoretic) costs. This leaves a game in which only player ∃ makes choices
which is nothing more than a nondeterministic procedure. Luckily, NPSPACE
equals PSPACE according to [11]. Hence, deciding the winner of these games
is in PSPACE.

Small model property. The soundness part of Theorem 3.2 can be proved
by constructing a model for ϕ from a winning strategy for player ∃ and the

6

C. Dax and M. Lange

game Γ(ϕ). Then, the small model property for LTL is a consequence of
Lemma 3.1 and yields an upper bound of O(|ϕ| · 2|ϕ|) for the size of a model
for ϕ.

4 Foci Games

Given a ϕ ∈ LTL, the satisfiability foci game G(ϕ) parallelises and, hence,
eliminates all possible choices to be made by player ∀ in the game Γ(ϕ). There-
fore, it is rather a tableau than a game. These tableaux (for unsatisfiability)
are nothing more than representations of winning strategies for player ∀ in
the games of the previous section. They are also similar to non-deterministic
automata for LTL. It is the winning conditions which makes the difference
between a game and an automaton. Here, the winner is determined by what
happens between two repeating configurations which is not exactly the same
as a Büchi acceptance condition.

Despite the similarities to tableaux and automata we will continue to call
G(ϕ) a game even though one of the players in it is left with nothing to do.
We will also speak of a play rather than a branch or a run in order not to
lose the connection to focus games. Note that a play won by player ∃ is an
unsuccessful branch in a tableau for unsatisfiability.

Configurations of the game G(ϕ) are subsets of formulas, in which several
formulas are highlighted with individual foci; plus an additional counter c ∈ N.
Formally, a configuration is an element of 2Sub∗(ϕ), where Sub∗(ϕ) is defined
as Sub(ϕ) except for the case

Sub∗(ϕUψ) := {ϕUψ, [ϕUψ]i, [X(ϕUψ)]i, [ϕ ∧ X(ϕUψ)]i, [ψ ∨ (ϕ ∧ X(ϕUψ))]i}
∪ Sub∗(ϕ) ∪ Sub∗(ψ), where i ∈ N.

A configuration is written

[
ϕ1

]
i1 , . . . ,

[
ϕm

]
im ,Φ; c

which means that formula ϕj is currently highlighted with focus ij. The
counter value is c.

For two configurations Ci and Cj in the game G(ϕ0) we write Ci ≈ Cj if
(1) they are equal as sets of formulas disregarding the foci and the counters,
and (2) for every χ ∈ UNT(ϕ0): χ has a focus in Ci and in Cj.

Every play of G(ϕ0) starts with the configuration ϕ0; 0. The rules are
presented in Figure 2. Player ∃ chooses disjuncts. Conjunctions are flattened
and fixpoint constructs are unfolded. An occurring χ ∈ UNT(ϕ0) is highlighted
with a new focus. Note that foci on conjunctions and disjunctions are always
passed to the right assuming that boolean junctions are ordered pairs. The
reason for this is: a ϕUψ occurs rightmost in the unfolding of itself. Rule (X)
strips off trailing X operators and satisfiable sets of propositions. Finally, the
same formula must not occur twice with different foci. In this case, the older

7

C. Dax and M. Lange

ψ0 ∨ ψ1,Φ; c

ψ0,Φ; c ψ1,Φ; c
∃

[
ψ0 ∨ ψ1

]
i,Φ; c

ψ0,Φ; c
[
ψ1

]
k,Φ; c

∃

ψ0 ∧ ψ1,Φ; c

ψ0, ψ1,Φ; c

[
ψ0 ∧ ψ1

]
i,Φ; c

ψ0,
[
ψ1

]
i,Φ; c

ϕ,Φ; c
[
ϕ
]
c,Φ; c+ 1

if ϕ ∈ UNT(ϕ0)

[
ϕUψ

]
i,Φ; c

[
ψ ∨ (ϕ ∧ X(ϕUψ))

]
i,Φ; c

ϕRψ,Φ; c

ψ ∧ (ϕ ∨ X(ϕRψ)),Φ; c

(X)

[
Xψ1

]
i1 , . . . ,

[
Xψm

]
im , Xϕ1, . . . , Xϕn, q1, . . . , qk; c

[
ψ1

]
i1 , . . . ,

[
ψm

]
im , ϕ1, . . . , ϕn; c

[
ϕ
]
i,

[
ϕ
]
j,Φ; c

[
ϕ
]
min(i,j),Φ; c

Fig. 2. The rules of the LTL foci games.

one replaces the newer one. We will assume that the rules introducing new
and collapsing two existing foci will always be played immediately if possible.

Let foc(Φ) := { i | there is a ψ with
[
ψ

]
i ∈ Φ } be the set of all focus

indices occurring in Φ.

Player ∃ wins the play C1, . . . , Cn iff

(i) Cn = q1, . . . , qk and for all i = 1, . . . , k: qi 6∈ Cn and qi 6= ff,

(ii) there is an i < n, s.t. Ci ≈ Cn and foc(Ci) ∩ foc(Cn) = ∅.
Player ∀ wins the play C1, . . . , Cn iff

(iii) ff ∈ Cn or there is a q ∈ P s.t. q ∈ Cn and q ∈ Cn, or

(iv) there is an i < n, s.t. Ci ≈ Cn and foc(Ci) ∩ foc(Cn) 6= ∅.
Note that the definition of ≈ ensures that only configurations are compared
in which all U formulas and their unfoldings have a focus.

Lemma 4.1 Every play of G(ϕ) has length at most 2|ϕ|+1.

Proof. Note that there are only 2|ϕ|+1 = 2 · 2|ϕ| many different configurations
modulo foci indices since there are only 2|ϕ| many different sets of subformulas
of ϕ. Moreover, introducing foci can at most double the length of a play. 2

Lemma 4.2 Every play of G(ϕ) has a unique winner.

Proof. According to Lemma 4.1, every play has a winner. Furthermore,
winning conditions (i) and (iii), as well as (ii) and (iv) are mutually exclusive.
Besides, if a play is won with condition (i) or (iii), then the last configuration
Cn cannot have a companion Ci as in winning condition (ii) or (iv). Otherwise
the play would have been finished at Ci already. 2

8

C. Dax and M. Lange

Definition 4.3 Let P = C0, C1, . . . , Cn be a play of a game G(ϕ0). Take a
ϕUψ ∈ Sub(ϕ0). It is called persisting for P iff there is an i with 0 ≤ i ≤ n,
s.t. for all j < i: Cj ∩ unf(ϕUψ) = ∅ and for all j ≥ i: Cj ∩ unf(ϕUψ) 6= ∅.
Lemma 4.4 A play P of G(ϕ0) is won by player ∀ with his winning condition
(iv) iff there is a ϕUψ ∈ Sub(ϕ0) which is persisting for P .

Proof. Suppose that there is a persisting U in P . Then the moment it becomes
top-level in a configuration it will receive a focus i. Furthermore, since it
persists, it retains its focus. Note that another unfolding of it can obtain a
different focus index j later on. But then j > i. Moreover, before rule (X) can
be applied, both unfoldings will have been unified and index j will be replaced
by i. Therefore, whenever a repeat on a configuration occurs, focus i will have
survived and, hence, player ∀’s winning condition (iv) will apply.

Conversely, if it applies then there is a focus index which has survived. But
this can only be if once it was given to an U formula or one of its unfoldings
and then remained on it. Note that it is always the right path in a syntax tree
of an U’s unfolding which leads back to it. Furthermore, the focus is always
passed on to the right successor in its syntax tree. Thus, this U is persisting
in the play at hand. 2

Theorem 4.5 (Soundness) If player ∃ has a winning strategy for G(ϕ0)
then ϕ0 is satisfiable.

Proof. If player ∃ has a winning strategy then there is at least one play won
by her. A model π for ϕ0 can easily be extracted from this play. Its states are
sets of configurations separated by applications of rule (X). A simple induction
on the structure of formulas shows that every formula in a configuration is
fulfilled by the suffix of π beginning with its corresponding state. In particular,
π |= ϕ0. Lemma 4.4 shows that every occurring U formula becomes fulfilled
eventually. By assumption, no U is persisting for this play. Hence, for every
ϕUψ, player ∃ must have chosen ψ at some point. By hypothesis, it is fulfilled
on the corresponding suffix. 2

Theorem 4.6 (Completeness) If ϕ0 is satisfiable then player ∃ has a win-
ning strategy for G(ϕ0).

Proof. Suppose π is a model for ϕ. Then player ∃ can follow the game G(ϕ0)
in π. I.e. starting with π(0) she annotates configurations with a state. Each
time rule (X) is played, she moves to the next state in π. If a disjunction comes
up she chooses the disjunct which is fulfilled by the suffix of π beginning with
the actual state. If both are fulfilled she chooses the smaller one.

The following invariant holds: in a configuration Φ annotated with π(i)

we have πi |= ϕ for all ϕ ∈ Φ. Suppose now that the resulting play is won
by player ∀. This cannot be with winning condition (iii) since no suffix of π
can satisfy both q and q for some q ∈ P . Suppose he wins it with winning
condition (iv). According to Lemma 4.4, the play must have a persisting

9

C. Dax and M. Lange

formula of the form ϕUψ. While it persisted, player ∃ has never chosen ψ in
its unfolding. By the definition of her strategy, ψ was never satisfied by any
suffix of π so far. Note that this play of G(ϕ0) could be continued ad infinitum
showing that ψ is never fulfilled on any suffix of π. Thus, ϕUψ cannot have
been satisfied contradicting the invariant. 2

Corollary 4.7 (Small model property) If ϕ ∈ LTL is satisfiable then it
has a model of size O(2|ϕ|).

Proof. Directly from Theorem 4.5 and Lemma 4.1. 2

Theorem 4.8 (Complexity) Deciding the winner of G(ϕ) is in PSPACE.

Proof. A nondeterministic algorithm only needs to store two configurations
– the actual one that gets overwritten with each application of a game rule,
and a Ci s.t. player ∃ believes that a Cj will occur later on with Ci ≈ Cj.
Furthermore, the algorithm needs to store a counter in order to abort the play
in case it has not found a repeat. The size of a configuration is polynomial in
the size of the input – note that Lemma 4.1 bounds the value of the foci index
component by 2|ϕ|+1 – and so is the size of the counter. Applying Savitch’s
Theorem [11] yields the claim. 2

Example 4.9 We will define a family ϕn,k of unsatisfiable LTL formulas for
every n, k ≥ 1 exhibiting the foci games’ advantage over focus games. The
length of a longest play in the game tree for ϕn,k will be longer by a factor
O(n) for the focus games compared to the foci games. Thus, n measures the
gap between the two sorts of games; k acts as a an amplifier.

Let P = {p0, . . . , pn} and define abbreviations P !n :=
∨n−1

i=0 (pi ∧
∧

j 6=i ¬pj)

and P̄n :=
∧n

i=0 ¬pi saying that exactly one proposition other than pn, resp.
none holds. Let

ψ1
n,k := ((P !n ∧

k−1∧
i=1

XiP̄n) → XkP !n) ∧
k−1∧
i=1

(XiP !n ∧
∧

j 6=i

XjP̄n → XkP̄n)

say: if among k successive states there is only one in which one of the propo-
sitions P \ {pn} holds, then this pattern gets repeated ad infinitum, i.e. only
every k-th state satisfies one of these propositions. Finally, let

ψ0
n,k :=

k−1∧
i=0

XiP̄n ∧ XkP !n

say that the first k − 1 states of a linear time structure are labelled with no
proposition and the k-th state is labelled with one of P \ {pn}. Note that
ψ0 ∧Gψ1 expresses that one of these propositions holds exactly in every k-th

10

C. Dax and M. Lange

state. Now we are able to define

ϕn,k := ψ0
n,k ∧ G(ψ1

n,k ∧
n∧

i=0

Fpi)

Note that ϕn,k is unsatisfiable for every n, k ∈ N because ψn,k,0 ∧ Gψn,k,1

requires that pn holds nowhere, i.e. Fpn can never become fulfilled.

The game trees for both Γ(ϕn,k) and G(ϕn,k) are too big to be depicted here
– even for small n and k. However, note that the maximal nesting depth of X
operators in ϕn,k is k. This plus the fact that the outermost G regenerates the
pattern defining ψn,k,1 and all the formulas Fpi after each application of rule
(X) ensures that after O(k) applications of rule (X), a repeat on a configuration
is found if the position of the focus is ignored.

Since the foci game G(ϕn,k) focuses on all U formulas – i.e. all F formulas in
this case – in parallel, it is able to show that Fpn does not get fulfilled. Thus
player ∀ wins each play after at most k applications of rule (X).

Now consider the focus game Γ(ϕn,k). W.l.o.g. assume that at the begin-
ning player ∀ has fixed his priority list as [Fp0, Fp1, . . . , Fpn]. Then he will
focus on each of them in this order. The game tree for player ∀ will contain
all of player ∃’s possible choices, in particular those she takes after every k
applications of rule (X) in order to choose a proposition out of P \{pn}. Thus,
there is a play in which she chooses p0 after k applications of rule (X), p1

after 2k applications, etc. until pn−1 after n · k applications. But then player
∀ will have focused on Fp0 for k steps, then on Fp1 for another k steps, etc.
Eventually, after n · k applications of rule (X) he will focus on Fpn which does
not get fulfilled and win the play after k steps.

Retrieving winning strategies for focus games. We will explain how to
obtain winning strategies for Γ(ϕ) from those of G(ϕ). This is easy for player
∃. She simply makes the same choices in both games.

The situation is different for player ∀. He cannot simply leave the focus
on a formula and change it to the U that makes him win a play in the moment
it becomes top-level because it is player ∃ who chooses the play subsequently.
Thus, he cannot know which play is going to be played.

Definition 4.10 A formula of the form ϕUψ is called winning for a play P if
P is won by player ∀ with his winning condition (iv), and ϕUψ is persisting
in P and has the least focus index among the persisting ones.

Take the full tree of all plays in G(ϕ0) for a ϕ0 ∈ LTL. Every configuration
C can be annotated with the set of U formulas that are winning for a play
containing C. In Γ(ϕ0) player ∀ can now set the focus to the ϕUψ in C that
is contained in C’s annotations and has least focus index there.

Note that a configuration can have several U formulas in its annotation
and the one chosen by player ∀ might be winning for a different play than the
one that player ∃ reveals later on. In this case, player ∀ has to change focus

11

C. Dax and M. Lange

in this moment. This can prolong the play P at hand in Γ(ϕ0) compared to
the one in G(ϕ0). Thus even if P repeats on C in G(ϕ0) it might not in Γ(ϕ0).
However, continuing to play according to the rules will ultimately result in a
win for player ∀. Each time the play in G(ϕ) needs to be prolonged in this
way, the set of annotated U formulas gets smaller which eventually means that
player ∀ does not have to change focus in Γ(ϕ) anymore.

5 Foci Games for LTL Model Checking

The model checking problem for LTL is usually defined via transition systems
rather than linear time structures. A (labelled) total transition system T over
a set P of atomic propositions is a tuple (S,−→, λ) where (S,−→) is a graph
s.t. for every s ∈ S there is at least one t ∈ S with s−→ t.

λ : S → 2P labels the vertices (also called states) in a maximally consis-
tent manner. Note that every infinite path through T induces a linear time
structure π. Then the model checking problem for LTL and transition systems
is: given an LTL formula ϕ and a T with state s, does π |= ϕ hold for every
linear time structure π from T starting in s? We will write this succinctly as
T , s |= ϕ or even s |= ϕ if the underlying transition system can be derived
from the context.

Remember that LTL satisfiability and its model checking are closely re-
lated: both are complete for PSPACE, both can be reduced to the emptiness
problem for nondeterministic Büchi automata and both have similar game-
theoretic characterisations in terms of focus games. However, they are dual
to each other: satisfiability focus games naturally lead to a nondeterministic
[6], model checking games to a universal procedure [7]. From a complexity-
theoretic point of view, this is of course the same [11].

From a game-theoretic point of view, the roles of the players are swapped.
It is player ∀ who becomes active while player ∃ is left with nothing to choose.

The intuition behind this is as follows. Note that in the satisfiability foci
games conjunctions are preserved and disjunctions are chosen because the
latter is satisfiable iff one of its disjuncts is satisfiable. The former however
is satisfiable if both conjuncts do not contradict each other. In the model
checking game player ∀ wants to refute s |= ϕ. Hence, he has to name a
path π in the underlying transition system T s.t. π 6|= ϕ. Since the number
of paths in a transition system can easily become exponential in the number
of its states we want player ∀ to select this path pointwise, i.e. reveal a new
state only when the formula requires to do so. But then player ∃ cannot
choose disjuncts anymore. The choice of which disjunct is fulfilled depends on
which path player ∀ chooses. However, he would only do this after player ∃
has committed to a particular disjunct. Thus, the games would not be sound
anymore. For a detailed example cf. [7].

Given a transition system T = (S,−→, λ), a distinguished state s0 and
an LTL formula ϕ0, the LTL model checking foci game GT (s0, ϕ0) is played

12

C. Dax and M. Lange

s ` [
ψ0 ∧ ψ1

]
k,Φ; c

s ` ψ0,Φ; c s ` [
ψ1

]
k,Φ; c

∀ s ` ψ0 ∧ ψ1,Φ; c

ψ0,Φ; c ψ1,Φ; c
∀

s ` [
ψ0 ∨ ψ1

]
k,Φ; c

s ` ψ0,
[
ψ1

]
k,Φ; c

s ` ψ0 ∨ ψ1,Φ; c

s ` ψ0, ψ1,Φ; c

s ` ϕ,Φ; c

s ` [
ϕ
]
c,Φ; c+ 1

if ϕ ∈ REL(ϕ0)
s ` [

ϕ
]
i,

[
ϕ
]
k,Φ; c

s ` [
ϕ
]
min{i,k},Φ; c

s ` [
ϕRψ

]
k,Φ; c

s ` [
ψ ∧ (ϕ ∨ X(ϕRψ))

]
k,Φ; c

s ` ϕUψ,Φ; c

s ` ψ ∨ (ϕ ∧ X(ϕUψ)),Φ; c

(X)
s ` [

Xψ1

]
i1 , . . . ,

[
Xψm

]
im , Xϕ1, . . . , Xϕn, q1, . . . , qk; c

t ` [
ψ1

]
i1 , . . . ,

[
ψm

]
im , ϕ1, . . . , ϕn; c

∀s−→ t

Fig. 3. The rules for the LTL model checking foci games.

by players ∀ and ∃ in order to determine whether or not s0 |= ϕ0 holds.
Configurations are written as t ` Φ; c where t ∈ S, Φ ⊆ Sub∗(ϕ0) possibly
equipped with foci and c ∈ N. Φ is interpreted disjunctively. The starting
configuration is s0 ` ϕ0; 0, and the rules are presented in Figure 3.

We redefine the relation ≈ on configurations as: Ci ≈ Cj if (1) they are
equal as sets of formulas disregarding the states, the foci and the counters,
and (2) for every χ ∈ REL(ϕ0): χ has a focus in Ci and in Cj. The following
is not hard to see.

Lemma 5.1 ≈ is an equivalence relation.

Player ∃ wins the play C0, C1, . . . iff

(i) there is an n ∈ N s.t. Cn = t ` q,Φ; c and q ∈ λ(t), or

(ii) there are infinitely many ij ∈ N s.t. for all j, k ∈ N: Cij ≈ Cik and⋂
j∈N foc(Cij) 6= ∅.

Player ∀ wins the play C0, C1, . . . iff

(iii) there is an n ∈ N s.t. Cn = t ` q1, . . . , qk; c and for all i = 1, . . . , k:
qi 6∈ λ(t), or

(iv) there are infinitely many ij ∈ N s.t. for all j, k ∈ N: Cij ≈ Cik and⋂
j∈N foc(Cij) = ∅.

13

C. Dax and M. Lange

Lemma 5.2 Every play has a unique winner.

Proof. This is proved in the same way as Lemma 4.2 but uses Lemma 5.1 as
well since the foci of infinitely many configurations are taken into account. 2

Theorem 5.3 If T , s0 |= ϕ0 then player ∃ wins GT (s0, ϕ0).

Proof. We call a configuration t ` Φ true if for all paths π starting with t
there is a ϕ ∈ Φ s.t. π |= ϕ. Note that the starting configuration of GT (s0, ϕ0)
is true. Furthermore, the rules preserve truth. The only exception is rule
(X) which only preserves truth if the formula satisfying a given path is not
an atomic proposition. However, if this is the case then rule (X) will not get
played since player ∃’s winning condition (i) would apply beforehand. Thus,
we can assume every configuration of GT (s0, ϕ0) to be true.

We call a formula ϕ a witness for a true configuration t ` Φ if it is syntac-
tically smallest among those that are satisfied by a path starting in t. Note
that only the rules for unfolding a R or an U do not decrease the size of a
witness. However, if the witness in a configuration is an U then its size will
eventually get decreased – recall the semantics of U.

Thus the witness becomes smaller and smaller until it finally is either a
proposition or remains a R, resp. its unfoldings. In the first case, the play is
won by player ∃ with her winning condition (i). In the second case the R will
get a focus index and keep it, according to a variant of Lemma 4.4. Hence,
the play will be won by player ∃ with her winning condition (ii). Altogether,
player ∃ has a winning strategy. 2

Theorem 5.4 If T , s0 6|= ϕ0 then player ∀ wins GT (s0, ϕ0).

Proof. Suppose T , s0 6|= ϕ0, i.e. there is a path π starting with s0 s.t. π 6|= ϕ0.
Player ∀’s strategy consists of two parts. Each time rule (X) is played he selects
the next state of π. If a conjunct needs to be chosen he picks the one that is
not satisfied on the remaining suffix of π. This guarantees that the following
invariant holds in all configurations of the outlined play: In a configuration
π(k) ` Φ we have πk 6|= ϕ for all ϕ ∈ Φ.

Suppose now that player ∃ wins this play. Winning condition (i) is im-
possible since it immediately contradicts this invariant. But in order for her
to win with winning condition (ii) there would have to be a persisting ϕRψ
according to a variant of Lemma 4.4. But then we can replace the first oc-
currence of ϕRψ by ϕRmψ according to Lemma 2.1. Since the game rules
follow the approximants the play would contain a configuration in which ϕRψ
is interpreted as ϕR0ψ which also contradicts the invariant. Hence, player ∀’s
strategy is winning. 2

Theorem 5.5 For finite T deciding the winner of GT (s0, ϕ) is in PSPACE.

Proof. The proof is similar to the proof of Theorem 4.8. Note that configu-
rations of the model checking games extend those of the satisfiability games
by a state. This only needs additional logarithmic space. Furthermore, if T

14

C. Dax and M. Lange

is finite then the winner of a play is already determined after |T | · 2|ϕ|+1 steps
since this is an upper bound on the number of different configurations possibly
occurring in GT (s0, ϕ). Then the winner can be decided by a nondeterministic
algorithm using polynomial space only. With Savitch’s Theorem [11], it is in
PSPACE. 2

References

[1] G. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model checking
for CTL∗. In Proc. 10th Symp. on Logic in Computer Science, LICS’95, pages
388–397, San Diego, CA, USA, June 1995. IEEE.

[2] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In R. Cleaveland, editor, Proc. 5th Int. Conf. on Tools and
Algorithms for the Analysis and Construction of Systems, TACAS’99, volume
1579 of LNCS, Amsterdam, NL, March 1999.

[3] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of
the ACM, 28(1):114–133, January 1981.

[4] E. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model
checking. LNCS, 818:415–427, 1994.

[5] M. Fisher. A resolution method for temporal logic. In J. Mylopoulos and
R. Reiter, editors, Proc. 12th Joint Conf. on Artificial Intelligence, pages 99–
104, Sydney, Australia, August 1991. Morgan Kaufmann.

[6] M. Lange and C. Stirling. Focus games for satisfiability and completeness of
temporal logic. In Proc. 16th Symp. on Logic in Computer Science, LICS’01,
Boston, MA, USA, June 2001. IEEE.

[7] M. Lange and C. Stirling. Model checking games for branching time logics.
Journal of Logic and Computation, 12(4):623–639, 2002.

[8] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs
satisfy their linear specification. In Proc. 12th Symp. on Principles of
Programming Languages, POPL’85, pages 97–107, New York, January 1985.
ACM.

[9] R. McNaughton. Infinite games played on finite graphs. Annals of Pure and
Applied Logic, 65(2):149–184, December 1993.

[10] A. Pnueli. The temporal logic of programs. In Proc. 18th Symp. on Foundations
of Computer Science, FOCS’77, pages 46–57, Providence, RI, USA, October
1977. IEEE.

[11] W. J. Savitch. Deterministic simulation of nondeterministic Turing Machines.
In Symp. on Theory of Computing, STOC’69, pages 247–248, New York, May
1969. ACM.

15

C. Dax and M. Lange

[12] P. H. Schmitt and J. Goubault-Larrecq. A tableau system for linear time
temporal logic. In Proc. 3rd Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’97, volume 1217 of LNCS, pages
130–144. Springer, Enschede, Netherlands, April 1997.

[13] A. P. Sistla, M. Y. Vardi, and P. Wolper. Reasoning about infinite computation
paths. In Proc. 24th Symp. on Foundations of Computer Science, FOCS’83,
pages 185–194, Los Alamitos, Ca., USA, November 1983. IEEE.

[14] M. Y. Vardi. An Automata-Theoretic Approach to Linear Temporal Logic,
volume 1043 of LNCS, pages 238–266. Springer, New York, NY, USA, 1996.

16

