A Proof System for the Linear Time μ -Calculus

Christian Dax¹ Ma

Martin Hofmann²

Martin Lange²

¹ETH Zurich

²LMU Munich

FSTTCS 2006

Speaker: Christian Dax

Linear Time μ -Calculus

Proof System

utomatic Proof-Search

Experimental Result

Conclusio 0

Motivation: Why Linear-Time μ -Calculus?

Context

- μTL is a temporal logic like LTL
- used for specification of properties of systems (safety, fairness)
- need for efficient algorithms for model-checking and validity-checking
 - μTL formula not valid: counter-example
 - *µTL* formula is valid: proof object as "certificate"

Weakness of LTL

- LTL strictly less expressive than μ TL
- μTL can express ω -regular properties
- no counting in LTL: "every nth step p should hold"

Speaker: Christian Dax

Linear Time μ -Calculus

Proof System

Automatic Proof-Search

Outline

Linear Time μ -Calculus

Proof System

Automatic Proof-Search

Experimental Results

Conclusion

Speaker: Christian Dax

Linear Time μ -Calculus

Proof System

Automatic Proof-Search

Experimental Result

Linear Time μ -Calculus

Proof System

Automatic Proof-Search

Experimental Results

Conclusion

Speaker: Christian Dax

Linear Time μ -Calculus

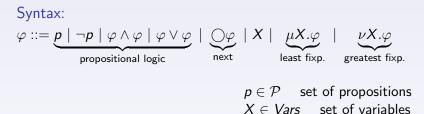
Proof System

Automatic Proof-Search

Experimental Result

Δ

Syntax and Semantics



Semantics:

- interpreted over infinite 2^P-words, e.g. $\{p, \neg q\}\{p, \neg q\}\{q\}^{\omega}$
- propositional part and ○-operator as in LTL

Example $\{p\}\{p\}\{q\}^{\omega} \models p \land \bigcirc ((p \lor q) \land \bigcirc q)$

Speaker: Christian Dax

Linear Time μ -Calculus

Proof System

Automatic Proof-Search

Experimental Result

Semantics of Fixpoints

Least Fixpoint: "finite repetition"

•
$$\mu X.\varphi \approx \bigvee_{k\in\mathbb{N}} \mu^k X.\varphi$$

$$\mu^{0}X.arphi := \mathit{false}$$

 $\mu^{i+1}X.arphi := arphi[\mu^{i}X.arphi/X]$

Example

$$\{\neg p\}^{k} \{p\} \{\neg p\}^{\omega} \models \mu X.p \lor \bigcirc X$$

$$\approx p \lor \bigcirc p \lor \bigcirc p \lor \bigcirc v \lor (\bigcirc \bigcirc \ldots \bigcirc p)$$

$$\stackrel{k \text{ times}}{\leftarrow} p$$

Linear Time μ-Calculus Proof System . ○●○ ○○○○○

Speaker: Christian Dax

Automatic Proof-Search

Experimental Result

Semantics of Fixpoints

Greatest Fixpoint: "infinite repetition"

•
$$\nu X.\varphi \approx \bigwedge_{k\in\mathbb{N}} \nu^k X.\varphi$$

$$u^0 X. \varphi := true$$
 $\nu^{i+1} X. \varphi := \varphi[\nu^i X. \varphi/X]$

Example

•
$$\{p\}^{\omega} \models \nu X.p \land \bigcirc X$$

 $\approx p \land \bigcirc p \land \bigcirc \bigcirc p \land \ldots$

•
$$\nu X.p \land \bigcirc \bigcirc X$$
: "p at odd positions"

Speaker: Christian Dax

Linear Time μ -Calculus

Proof System

Automatic Proof-Search

Experimental Result

Linear Time μ -Calculus

Proof System

Automatic Proof-Search

Experimental Results

Conclusion

Speaker: Christian Dax

Linear Time *µ*-Calculus

Proof System

Automatic Proof-Search

Experimental Result

Previous Work

Our proof system is similar to ...

- tableau systems used by Stirling, Kaivola, Bradfield, Esparza, Mader: rather theoretical than practical because Savitch's theorem "NSPACE(f(n)) ⊆ DSPACE(f²(n))" used.
- Street/Emerson's work, adapted to μTL by Vardi: similar idea, but more complicated representation. No explicit construction, no implementation.

Our aim: practical decision procedure.

Speaker: Christian Dax

Linear Time µ-Calculus

Proof System

Automatic Proof-Search

Experimental Result

Question: Is φ Valid?

Construction of Gentzen-style Proof:

- start at bottom with $\vdash \varphi$
- Step 1: build infinite tree by rules (bottom-up)

$$\frac{\vdash \varphi, \psi, \Gamma}{\vdash \varphi \lor \psi, \Gamma} \qquad \qquad \frac{\vdash \varphi, \Gamma \vdash \psi, \Gamma}{\vdash \varphi \land \psi, \Gamma}$$

$$\frac{\vdash \varphi[\sigma X.\varphi/X], \Gamma}{\vdash \sigma X.\varphi, \Gamma} \qquad \qquad \frac{\vdash \varphi_1, \dots, \varphi_j}{\vdash \bigcirc \varphi_1, \dots, \bigcirc \varphi_j, p_1, \dots, p_k}$$

• Step 2: connect each ψ to the formula where it comes from

Question: Is φ Valid?

Construction of Gentzen-style Proof:

- start at bottom with $\vdash \varphi$
- Step 1: build infinite tree by rules (bottom-up)

• Step 2: connect each ψ to the formula where it comes from

Proof Tree Construction Example

 $\vdash (p \lor \bigcirc \bigcirc \nu X. \sim) \land (\neg p \lor \bigcirc \mu Y. \sim)$

$\vdash \nu X.(p \lor \bigcirc \bigcirc X) \land (\neg p \lor \bigcirc \mu Y.\sim)$

 $\vdash \mu Y.\nu X.(p \lor \bigcirc \bigcirc X) \land (\neg p \lor \bigcirc Y)$

Speaker: Christian Dax

Linear Time μ -Calculus

Proof System

Automatic Proof-Search

Experimental Result

$\vdash \frac{\nu X.(p \lor \bigcirc \bigcirc X) \land (\neg p \lor \bigcirc \mu Y.\sim)}{\vdash \mu Y.\nu X.(p \lor \bigcirc \bigcirc X) \land (\neg p \lor \bigcirc Y)}$

Speaker: Christian Dax

Linear Time μ -Calculus

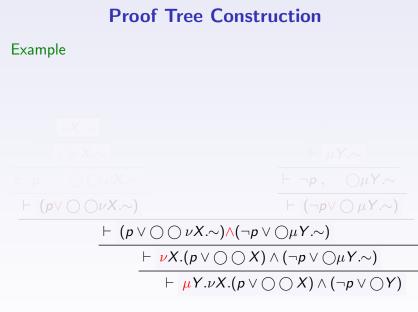
Proof System

Automatic Proof-Search

Experimental Result

11

Conclusion O



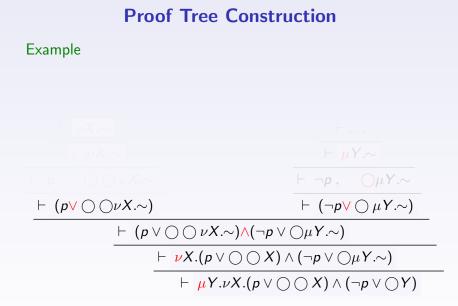
Linear Time µ-Calculus

Proof System

Automatic Proof-Search

Experimental Result

onclusior



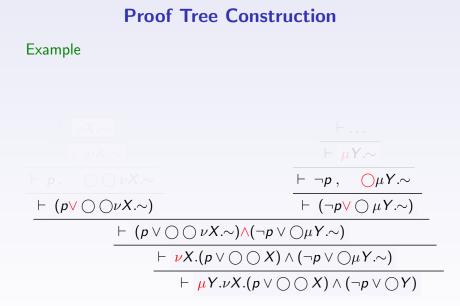
Linear Time μ -Calculus

Proof System

Automatic Proof-Search

Experimental Result

onclusior



Linear Time µ-Calculus

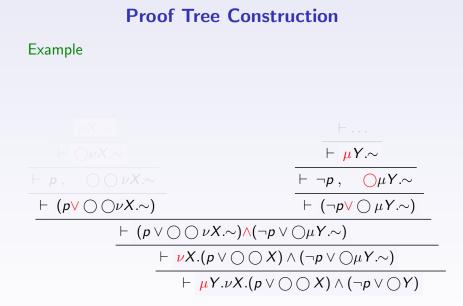
Proof System

Automatic Proof-Search

Experimental Result

11

Conciusio C



Linear Time µ-Calculus

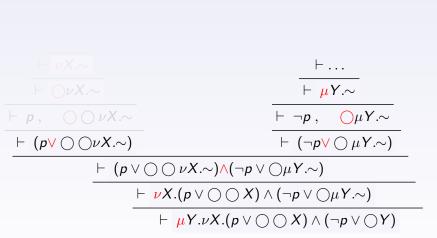
Proof System

Automatic Proof-Search

Experimental Result

11

)



Speaker: Christian Dax

Example

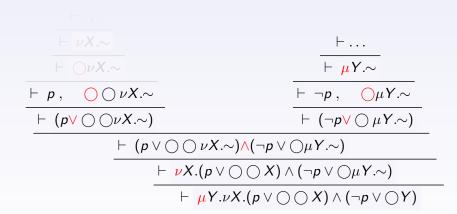
Linear Time *µ*-Calculus 000 Proof System

Automatic Proof-Search

Experimental Result

11

Conclusion O

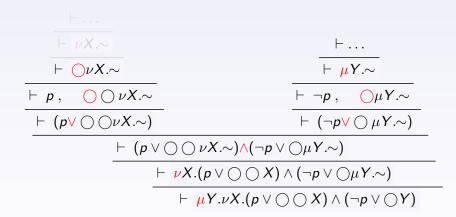


Speaker: Christian Dax

Linear Time *µ*-Calculus 000 Proof System

Automatic Proof-Search

Experimental Result



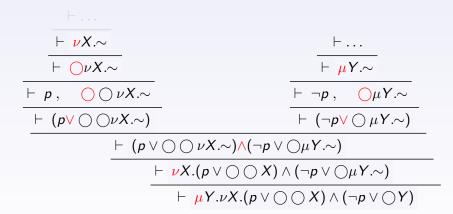
Speaker: Christian Dax

Linear Time μ -Calculus

Proof System

Automatic Proof-Search

Experimental Result



Speaker: Christian Dax

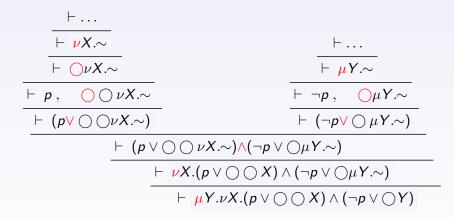
Linear Time μ -Calculus

Proof System

Automatic Proof-Search

Experimental Result

Example



Speaker: Christian Dax

Linear Time μ -Calculus

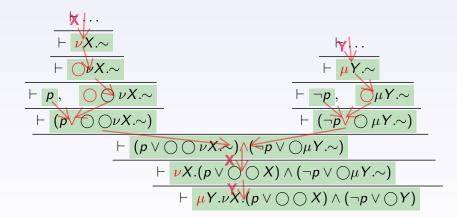
Proof System

Automatic Proof-Search

Experimental Result

Finding Threads

Example



Speaker: Christian Dax

Linear Time μ -Calculus

Proof System

Automatic Proof-Search

Experimental Result

Threads and Validity

Threads:

- thread = sequence of connected formulas, e.g. red lines on previous slide
- ν-thread = thread + outermost fixpoint that occurs ∞-often is of type ν, e.g. the left line with variable X on previous slide

Theorem

root formula φ valid \Leftrightarrow

- each finite branch ends with $\vdash p, \neg p, \Gamma$, and
- each ∞ -branch has ν -thread

Speaker: Christian Dax

Linear Time *µ*-Calculus 000

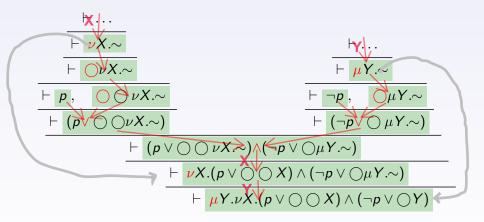
Proof System

Automatic Proof-Search

Experimental Result

ν-Thread Example

Example



Speaker: Christian Dax

Linear Time μ -Calculus

Proof System

Automatic Proof-Search

Experimental Result

Linear Time μ -Calculus

Proof System

Automatic Proof-Search

Experimental Results

Conclusion

Speaker: Christian Dax

Linear Time *µ*-Calculus

Proof System

Automatic Proof-Search

Experimental Resul

Two Different Approaches

We developed two algorithms:

- 1 first algorithm is automata-based
- 2 second algorithm is relation-based

Speaker: Christian Dax

Linear Time μ -Calculus 000

Proof System

Automatic Proof-Search

Experimental Resul

Automata Based Approach

Conceptually, we follow Vardi's approach, but

- our underlying proof-tree representation is more simple
- we give explicit constructions for automata

Construction:

- $\textbf{1} \ \text{Büchi automaton } \mathcal{A} \ \text{that accepts branches of proof tree of } \varphi$
- 2 Büchi automaton A_{ν} that accepts ν -thread branches

Lemma

 φ valid \Leftrightarrow $L(\mathcal{A}) \subseteq L(\mathcal{A}_{\nu}) \Leftrightarrow$ $L(\mathcal{A}) \cap \overline{L(\mathcal{A}_{\nu})} \neq \emptyset$.

Complementation costly: Emptiness check in $2^{O(|\varphi|^2 \log |\varphi|)}$.

Speaker: Christian Dax

Linear Time μ -Calculus

Proof System

Automatic Proof-Search

Experimental Result

Relation Based/Direct Approach

Step 1:

• Construct proof tree, represented as finite graph (infinite branches become loops).

Step 2:

- Let " $\frac{\Gamma}{-}$ r" rule application in proof. (nodes Γ, Δ = set of formulas)
- Save dependencies in relations: $R_{\Gamma,r,\Delta} \subseteq \Gamma \times \Delta \times Vars$

00000

$$(arphi,\psi,X)\in \textit{R}_{\Gamma,r,\Delta}\quad\Leftrightarrow ext{ red arrow}$$

$$\stackrel{\vdash \dots, \varphi, \dots}{\vdash \dots, \psi, \dots} r \text{ in proof.}$$

Speaker: Christian Dax

Linear Time μ -Calculus

Proof System

Automatic Proof-Search

Experimental Result

Relation Based/Direct Approach

- If we have $R_{\Gamma,r_1,\Delta}$ and $R_{\Delta,r_2,E}$ then we can calculate $R_{\Gamma,r_1r_2,E}$. (Connecting dependencies + preserving greater variables)
- Calculate transitive closure.

Step 3:

. . .

- For each node Γ : if $R_{\Gamma,\pi,\Gamma} \circ R_{\Gamma,\pi,\Gamma} = R_{\Gamma,\pi,\Gamma}$ we have loop (=infinite branch) along π^{ω} where $\pi = (r_1 r_2 \dots r_n)$.
- if $R_{\Gamma,\pi,\Gamma}$ contains arrow $(\varphi,\varphi,X_{\nu})$ then ν -thread branch!
- Check that all loops are ν -thread branches.

Automatic Proof-Search

Application of SCT Algorithm

Size Change Termination (SCT)

- Algorithm checks whether a functional program terminates
- Proposed by Lee, Jones, Ben-Amran
- Our algorithm is an instance of SCT

Analogies:

- function symbols $f, g, h, \ldots \approx$ nodes
- function calls \approx rule application on premises
- combination of function calls <code>fgghf</code> . . . \approx <code>branch</code> in tree
- decreasing measure for function parameters \approx unfolding of greatest fixpoint

Complexity for computing transitive closure: $2^{O(|\varphi|^3)}$

Speaker: Christian Dax

Linear Time μ -Calculus

Proof System

Automatic Proof-Search

Linear Time μ -Calculus

Proof System

Automatic Proof-Search

Experimental Results

Conclusion

Speaker: Christian Dax

Linear Time µ-Calculus

Proof System

Automatic Proof-Search

Experimental Results

Benchmark Formulas

Two families of formulas:

• $Include_n$: $((pp)^nq)^{\omega} \subseteq ((pp)^*q)^{\omega}$ (valid)

$$\nu X.(\underbrace{p \land O(p \land O(\dots O(p \land O(\neg p \land OX))\dots)))}_{\text{2n times}} \rightarrow \nu Z.\mu Y.(p \land O(p \land OY) \lor (\neg p \land OZ))$$

 Counter_n: n-bit counter (not valid) smallest countermodel needs 2^{|φ|} states

Speaker: Christian Dax			22
Linear Time μ -Calculus		Experimental Results ●○	

Comparison of the Two Algorithms

Include _n			Counter _n		
n	Auto.	Rel.	Auto.	Rel.	
0	0	0	0	0	
1	0	2	0	0	
2	1	5	3	2	
3	1	10	36	50	
4	3	18	489	1131	
5	4	31	5694	†	

- numbers denote run-times in seconds
- on our formulas both algorithms performs the same

Linear Time μ -Calculus

Proof System

Automatic Proof-Search

Experimental Results

Conclusion

Speaker: Christian Dax

Linear Time μ -Calculus 000

Proof System

Automatic Proof-Search

Experimental Result

Conclusion

Summary

- Simple Gentzen-style proof system for validity
- Automata-based decision procedure in $2^{O(|\varphi|^2 \log |\varphi|)}$
- Application of SCT to effective proof search in $2^{O(|\varphi|^3)}$
- First implementation of µTL validity-checker

$Ongoing/future \ work$

- Application to modal μTL
- Improvements to algorithms
- Evaluation of implementation (e.g. comparing with LTL model-checkers)

Speaker: Christian Dax

Linear Time μ -Calculus

Proof System

Automatic Proof-Search

Experimental Resul