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Motivation: Why Linear-Time µ-Calculus?

Context

• µTL is a temporal logic like LTL

• used for specification of properties of systems (safety, fairness)

• need for efficient algorithms for model-checking and
validity-checking
• µTL formula not valid: counter-example
• µTL formula is valid: proof object as“certificate”

Weakness of LTL

• LTL strictly less expressive than µTL

• µTL can express ω-regular properties

• no counting in LTL: “every nth step p should hold“
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Syntax and Semantics

Syntax:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ︸ ︷︷ ︸
propositional logic

| ©ϕ︸︷︷︸
next

| X | µX .ϕ︸ ︷︷ ︸
least fixp.

| νX .ϕ︸ ︷︷ ︸
greatest fixp.

p ∈ P set of propositions
X ∈ Vars set of variables

Semantics:

• interpreted over infinite 2P -words, e.g. {p,¬q}{p,¬q}{q}ω

• propositional part and ©-operator as in LTL

Example

{p}{p}{q}ω |= p ∧©((p ∨ q) ∧©q)
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Semantics of Fixpoints

Least Fixpoint: “finite repetition”

• µX .ϕ ≈
∨

k∈N µ
kX .ϕ

µ0X .ϕ := false

µi+1X .ϕ := ϕ[µiX .ϕ/X ]

Example

{¬p}k{p}{¬p}ω |= µX .p ∨©X

≈ p ∨©p ∨©© p ∨ · · · ∨ (©© . . .©︸ ︷︷ ︸
k times

p)
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Semantics of Fixpoints

Greatest Fixpoint: “infinite repetition”

• νX .ϕ ≈
∧

k∈N ν
kX .ϕ

ν0X .ϕ := true

ν i+1X .ϕ := ϕ[ν iX .ϕ/X ]

Example

• {p}ω |= νX .p ∧©X

≈ p ∧©p ∧©© p ∧ . . .

• νX .p ∧©© X : “p at odd positions”
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Previous Work

Our proof system is similar to . . .

• tableau systems used by Stirling, Kaivola, Bradfield, Esparza,
Mader: rather theoretical than practical because Savitch’s
theorem “NSPACE(f (n)) ⊆ DSPACE(f 2(n))” used.

• Street/Emerson’s work, adapted to µTL by Vardi: similar idea,
but more complicated representation. No explicit construction,
no implementation.

Our aim: practical decision procedure.
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Question: Is ϕ Valid?

Construction of Gentzen-style Proof:

• start at bottom with ` ϕ
• Step 1: build infinite tree by rules (bottom-up)

` ϕ,ψ, Γ
` ϕ∨ψ, Γ

` ϕ, Γ ` ψ, Γ
` ϕ∧ψ, Γ

` ϕ[σX .ϕ/X ], Γ

` σX .ϕ, Γ

` ϕ1, . . . , ϕj

` ©ϕ1, . . . ,©ϕj , p1, . . . , pk

• Step 2: connect each ψ to the formula where it comes from
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Proof Tree Construction

Example

` . . .

` νX .∼

` ©νX .∼

` p , ©© νX .∼

` (p∨©©νX .∼)

` . . .

` µY .∼

` ¬p , ©µY .∼

` (¬p∨© µY .∼)

` (p ∨©© νX .∼)∧(¬p ∨©µY .∼)

` νX .(p ∨©© X ) ∧ (¬p ∨©µY .∼)

` µY .νX .(p ∨©© X ) ∧ (¬p ∨©Y )
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Finding Threads

Example

` . . .

` νX .∼

` ©νX .∼

` p , ©© νX .∼

` (p∨©©νX .∼)

` . . .
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Threads and Validity

Threads:

• thread = sequence of connected formulas, e.g. red lines on
previous slide

• ν-thread = thread + outermost fixpoint that occurs ∞-often
is of type ν, e.g. the left line with variable X on previous slide

Theorem
root formula ϕ valid ⇔
• each finite branch ends with ` p,¬p, Γ, and

• each ∞-branch has ν-thread
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ν-Thread Example

Example

` . . .

` νX .∼

` ©νX .∼

` p , ©© νX .∼

` (p∨©©νX .∼)

` . . .

` µY .∼
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Two Different Approaches

We developed two algorithms:

1 first algorithm is automata-based

2 second algorithm is relation-based
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Automata Based Approach

Conceptually, we follow Vardi’s approach, but

• our underlying proof-tree representation is more simple

• we give explicit constructions for automata

Construction:

1 Büchi automaton A that accepts branches of proof tree of ϕ

2 Büchi automaton Aν that accepts ν-thread branches

Lemma
ϕ valid ⇔ L(A) ⊆ L(Aν) ⇔ L(A) ∩ L(Aν) 6= ∅.

Complementation costly: Emptiness check in 2O(|ϕ|2log |ϕ|).
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Relation Based/Direct Approach

Step 1:

• Construct proof tree, represented as finite graph (infinite
branches become loops).

Step 2:

• Let“
Γ

∆
r” rule application in proof.

(nodes Γ,∆ = set of formulas)

• Save dependencies in relations: RΓ,r ,∆ ⊆ Γ×∆× Vars

(ϕ,ψ,X ) ∈ RΓ,r ,∆ ⇔ red arrow
`..., ϕ ,...

`..., ψ ,...

r in proof.
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Relation Based/Direct Approach

. . .

• If we have RΓ,r1,∆ and R∆,r2,E then we can calculate RΓ,r1r2,E .
(Connecting dependencies + preserving greater variables)

• Calculate transitive closure.

Step 3:

• For each node Γ: if RΓ,π,Γ ◦ RΓ,π,Γ = RΓ,π,Γ we have loop
(=infinite branch) along πω where π = (r1r2 . . . rn).

• if RΓ,π,Γ contains arrow (ϕ,ϕ,Xν) then ν-thread branch!

• Check that all loops are ν-thread branches.
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Application of SCT Algorithm

Size Change Termination (SCT)

• Algorithm checks whether a functional program terminates

• Proposed by Lee, Jones, Ben-Amran

• Our algorithm is an instance of SCT

Analogies:

• function symbols f , g , h, . . . ≈ nodes

• function calls ≈ rule application on premises

• combination of function calls fgghf . . . ≈ branch in tree

• decreasing measure for function parameters ≈ unfolding of
greatest fixpoint

Complexity for computing transitive closure: 2O(|ϕ|3)
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Benchmark Formulas

Two families of formulas:

• Includen: ((pp)nq)ω ⊆ ((pp)∗q)ω (valid)

νX .(p ∧ O(p ∧ O(. . .O(p︸ ︷︷ ︸
2n times

∧O(¬p ∧ OX )) . . . )))

→ νZ .µY .(p ∧ O(p ∧ OY ) ∨ (¬p ∧ OZ ))

• Countern: n-bit counter (not valid)
smallest countermodel needs 2|ϕ| states
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Comparison of the Two Algorithms

Includen Countern

n Auto. Rel. Auto. Rel.

0 0 0 0 0
1 0 2 0 0
2 1 5 3 2
3 1 10 36 50
4 3 18 489 1131
5 4 31 5694 †

• numbers denote run-times in seconds

• on our formulas both algorithms performs the same
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Conclusion

Summary

• Simple Gentzen-style proof system for validity

• Automata-based decision procedure in 2O(|ϕ|2log |ϕ|)

• Application of SCT to effective proof search in 2O(|ϕ|3)

• First implementation of µTL validity-checker

Ongoing/future work

• Application to modal µTL

• Improvements to algorithms

• Evaluation of implementation (e.g. comparing with LTL
model-checkers)
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