
A Proof System for the Linear Time µ-Calculus

Christian Dax1, Martin Hofmann2, and Martin Lange2

1 Department of Computer Science, ETH Zürich
2 Institut für Informatik, LMU München

Abstract. The linear time µ-calculus extends LTL with arbitrary least
and greatest fixpoint operators. This gives it the power to express all
ω-regular languages, i.e. strictly more than LTL. The validity problem
is PSPACE-complete for both LTL and the linear time µ-calculus. In
practice it is more difficult for the latter because of nestings of fixpoint
operators and variables with several occurrences.
We present a simple sound and complete infinitary proof system for the
linear time µ-calculus and then present two decision procedures for prov-
ability in the system, hence validity of formulas. One uses nondetermin-
istic Büchi automata, the other one a generalisation of size-change ter-
mination analysis (SCT) known from functional programming.
The main novelties of this paper are the connection with SCT and the
fact that both decision procedures have a better asymptotic complexity
than earlier ones and have been implemented.

1 Introduction

The linear time µ-calculus (Llin
µ) [1, 14] extends Pnueli’s Linear Time Temporal

Logic (LTL) with extremal fixpoints quantifiers. This increases its expressive
power: Llin

µ captures exactly the ω-regular languages, while the class of LTL-
definable properties is only that of star-free ω-languages. Llin

µ can also be seen as
the modal µ-calculus which is only interpreted over infinite linear time structures,
i.e. Kripke structures in which every state has exactly one successor.

The main decision problems for LTL and Llin
µ have the same complexity:

model checking, satisfiability and validity are all PSPACE-complete for both
logics [11, 14]. By model checking we denote, as usual, the problem to decide
whether all paths of a given Kripke structure satisfy a given specification. Note
that these three problems are all interreducible for linear time logics. For in-
stance, validity is the same as model checking in a universal Kripke structure
that has the shape of a full clique; model checking can be reduced to validity
checking by modeling the given structure in a formula which is linear in the
size of the structure, etc. Since these reductions do not interfere with the main
difficulty in each decision problem – to find infinite regenerations of least or
greatest fixpoint – we will simply refer to decision problems. Here we focus on
the validity problem but stress the point that this approach is applicable to the
other problems without major alterations, too.

The presence of nested and possibly alternating fixpoint constructs makes
Llin

µ ’s decision problems much harder in practice than those of LTL. The fact

that LTL formulas only contain very simple unnested fixpoints is certainly one
of the reasons for LTL being well supported by successfully working tools like
Spin and NuSMV, etc.

Some decision procedures for Llin
µ have been presented so far. Vardi [14] uses

nondeterministic Büchi automata to decide an extension of Llin
µ with temporal

past operators. The time complexity of his algorithm is 2O(n4) where n is the
size of the input formula. Stirling and Walker subsequently gave a tableau char-
acterisation for Llin

µ ’s decision problems but were not concerned with complexity
issues.

Bradfield, Esparza and Mader defined tableaux with simpler termination
conditions. Their algorithm runs in time 2O(n2 log n) but this appeals to gen-
eral complexity theorems about nondeterministic space vs. deterministic time.
Hence, their result is of theoretical rather than – as they say – practical use.
The same holds for Kaivola’s procedure [4] which runs in time 2O(n2 log n) when
transformed into a deterministic procedure. We remark that it was designed to
be nondeterministic in the first place – the user is supposed to provide Hintikka
structures manually. To the best of our knowledge, none of these existing sug-
gestions to solve Llin

µ ’s decision problems have ever seen any serious attempt to
be put into practice.

Here we present a simple proof system for Llin
µ . A proof is an infinite tree

in which each branch satisfies an additional global condition concerning the ex-
istence of threads – similar to the internal paths of [2]. Our proof system and
in particular the characterisation of valid proof branches is related to the no-
tion of pre-models and models in Streett and Emerson’s work on deciding the
modal µ-calculus [13], adapted to Llin

µ by Vardi [14]. Indeed, a formula is invalid
iff its negation is satisfiable and in this case the offending path in the generic
pre-proof amounts to a model in their sense when we negate all formulas and
understand a sequent as the conjunction of its formulas whereas any infinite
path in a pre-proof can be extended to a pre-model.

There are some subtle differences though. States of a pre-model are always
maximally consistent sets of formulas (Hintikka sets) whereas our proofs con-
tain arbitrary sequents. Second, by considering the whole proof tree rather than
individual paths in isolation the need for the perhaps mysterious concept of
choice functions disappears. Of course they come back in Section 4 where we
show that a simple nondeterministic parity (or Büchi) automaton (NPA/NBA)
is able to accept all valid paths in a proof. They return in the form of a con-
densed description of rule instances fed to the NPA in addition to the sequents.
We claim though that the concept is more naturally explained by arguing that
the automaton must check every path in the pre-proof.

We present two different approaches to decide validity. The first one reduces
this to the inclusion problem for nondeterministic Büchi automata. Depending
on which complementation procedure is used we obtain an algorithm that runs
in time 2O(n2 log n) for example. This is easily implementable since it does not
use any theorems from complexity theory. Alternatively, there is a procedure
running in time 2O(n4) that can be implemented symbolically.

The second approach is an iterative algorithm inspired by the size-change
termination (SCT) method introduced by Jones et al. [8] in the context of ter-
mination analysis. There is, effectively, a fundamental connection between ter-
mination of functional programs and decision problems for ω-automata which
we will elaborate elsewhere. Here we adapt and substantially generalise the SCT
method in an ad hoc fashion to our situation at hand. Validity then reduces to
the problem of finding an idempotent morphism satisfying a certain property in
a category generated by a finite number of morphisms. Rule applications in the
proof system are regarded as morphisms with successive applications as mor-
phism composition. Systematically exploring the set of morphisms can be done
in time 2O(n3) but is in practice better than the automata-theoretic method as
some experimental results suggest.

2 Preliminaries

Let P = {p, q, . . .} be a set of atomic propositions, and V = {X,Y, . . .} an infinite
set of monadic second-order variables. Formulas of the linear time µ-calculus Llin

µ

in positive normal form are given by the following grammar.

ϕ ::= q | ¬q | X | ϕ ∨ ϕ | ϕ ∧ ϕ | ©ϕ | µX.ϕ | νX.ϕ

where q ∈ P, and X ∈ V. We will write σ for either µ or ν and use l, l etc. to
denote literals q,¬q and their complements. We assume the reader to be familiar
with the standard notions of syntactic subformulas Sub(ϕ), free variables, well-
named formulas, substitution ϕ[ψ/X] of all occurrences of a variable, etc.

The Fischer-Ladner closure FL(ϕ0) of a Llin
µ -formula ϕ0 is the least set of

formulas that contains ϕ0 and satisfies: if ϕ ∈ FL(ϕ0) and

– ϕ = ψ1 ∨ ψ2 or ψ = ψ1 ∧ ψ2 then {ψ1, ψ2} ⊆ FL(ϕ);
– ϕ = ©ψ then ψ ∈ FL(ϕ);
– ϕ = σX.ψ then ψ[σX.ψ/X] ∈ FL(ϕ).

Define |ϕ0| := |FL(ϕ0)|. Note that |FL(ϕ0)| is bounded by the syntactical length
of ϕ0.

A linear time structure over P is a function K : N → 2P or, equally, an
ω-word over the alphabet 2P . The semantics of a Llin

µ -formula ϕ, relative to K
and an environment ρ : V → 2N is a subset of N, inductively defined using the
Knaster-Tarski-Theorem.

[[q]]Kρ := {n ∈ N | q ∈ K(n)} [[X]]Kρ := ρ(X)
[[¬q]]Kρ := {n ∈ N | q 6∈ K(n)} [[©ϕ]]Kρ := {n ∈ N | n+ 1 ∈ [[ϕ]]Kρ }
[[µX.ϕ]]Kρ :=

⋂
{T ⊆ N | [[ϕ]]Kρ[X 7→T] ⊆ T} [[ϕ ∨ ψ]]Kρ := [[ϕ]]Kρ ∪ [[ψ]]Kρ

[[νX.ϕ]]Kρ :=
⋃
{T ⊆ N | T ⊆ [[ϕ]]Kρ[X 7→T]} [[ϕ ∧ ψ]]Kρ := [[ϕ]]Kρ ∩ [[ψ]]Kρ

We write K, i |=ρ ϕ if i ∈ [[ϕ]]Kρ , and K |=ρ ϕ if 0 ∈ [[ϕ]]Kρ . If ϕ is closed we may
also drop ρ.

By deMorgan’s laws and duality of µ and ν, negation ¬ – and then of course
→ and ↔ – can be defined in Llin

µ .
A formula ϕ is valid, written |= ϕ, if for all linear time structures K, and all

environments ρ: K |=ρ ϕ holds. Two formulas ϕ and ψ are equivalent, ϕ ≡ ψ, if
for all ρ, and all K we have K |=ρ ϕ iff K |=ρ ψ.

A formula is guarded if every occurrence of a variable X is in the scope of a
©-operator under its quantifier µ or ν. Every Llin

µ formula can be transformed
into guarded form.

Approximants of a fixpoint formula νX.ϕ are defined in the usual way:
ν0X.ϕ := tt, νk+1X.ϕ := ϕ[σkX.ϕ/X], and νωX.ϕ :=

∧
k∈N ν

kX.ϕ. The next
result about approximants uses the fact that the semantics of a Llin

µ formula is
a monotone and continuous function (for infinite unions of directed sets) of type
2N → 2N in each variable, c.f. [3].

Lemma 1. For all linear time structures K, all i ∈ N, all environments ρ, and
all ϕ(X) we have: K, i 6|=ρ νX.ϕ iff there is a k ∈ N s.t. K, i 6|=ρ ν

kX.ϕ.

3 A Proof System for the Linear Time µ-Calculus

Let ϕ0 be fixed. A sequent is a subset Γ of FL(ϕ0). Semantically, a sequent
stands for the disjunction of its members; the empty sequent is always false. We
extend satisfaction by structures and validity to sequents accordingly.

A pre-proof for ϕ0 is a possibly infinite tree whose nodes are labeled with
sequents, whose root is labeled with ` ϕ0 and which is built according to the
following proof rules, later referred to as (∨), (∧), (σ), and (©). We write ©Γ
to abbreviate ©γ1, . . . ,©γn if Γ = γ1, . . . , γn.

` ϕ,ψ, Γ
` ϕ ∨ ψ, Γ

` ϕ, Γ ` ψ, Γ
` ϕ ∧ ψ, Γ

` ϕ[σX.ϕ/X], Γ
` σX.ϕ, Γ

` Γ
` ©Γ,∆

A principal formula in a rule application is a formula that gets transformed by
this rule, e.g. ϕ ∨ ψ in rule (∨). Note that rule (©) can have several principal
formulas.

For all sequents Γ,∆ and all rules r occurring in a pre-proof for ϕ0, s.t. Γ
is the conclusion of r and ∆ is a premiss of r we define the connection relation
Conr(Γ,∆) ⊆ FL(ϕ0)× FL(ϕ0) as follows.

(ϕ,ψ) ∈ Conr(Γ,∆) iff either r does not transform ϕ and ϕ = ψ

or ψ results from ϕ in the application of r

We drop the index r if the actual rule is irrelevant. Let π = Γ0, Γ1, . . . be an
infinite branch in a pre-proof for ϕ0 resulting from the rule applications r0, r1,
A thread in π is a sequence of formulas ϕ0, ϕ1, . . . s.t. for all i ∈ N: (ϕi, ϕi+1) ∈
Conri

(Γi, Γi+1) holds. Such a thread is called a ν-thread if there is a νX.ψ ∈
FL(ϕ0) s.t. ϕi = νX.ψ for infinitely many i ∈ N, and for all µY.ψ′ s.t. νX.ψ ∈
Sub(µY.ψ′): there are only finitely many i ∈ N s.t. ϕi = µY.ψ′. A µ-thread is
defined accordingly.

The following facts about threads are not hard to see.

.

.

.

` νZ . . . , µX . . .

` ©Z , ©X , q

.

.

.

` νZ . . . , µX . . . , νY . . .

` ©Z , ©X , © Y

` ©Z , ©X , (q ∧©Y)

?

.

.

.

µV . . . , µX . . . , νY . . .

` ¬q , © V , ©X , © Y ` ¬q , q , . . .

` ¬q , © V , ©X , (q ∧©Y) ?

` ©Z ∧ (¬q ∨©V) , ©X , (q ∧©Y)

` (µV.© Z ∧ (¬q ∨©V)) , µX.©X ∨ (q ∧©Y)

` (νZ.µV.© Z ∧ (¬q ∨©V)) ∨ νY.µX.©X ∨ (q ∧©Y)

Fig. 1. Example of a proof.

1. If a σX.ψ and a σ′X ′.ψ′ occur infinitely often in a thread then σX.ψ ∈
Sub(σ′X ′.ψ′) or vice-versa.

2. Every thread is either a ν-thread or a µ-thread.

A proof for ϕ0 is a pre-proof s.t. every finite branch ends in a sequent l, l, Γ , and
every infinite branch contains a ν-thread. We also write ` ϕ0 to indicate that
there is a proof for ϕ0.

Example 1. Consider the quantifier swapping theorem

|=
(
µZ.νV.© Z ∨ (q ∧©V)

)
→

(
νY.µX.©X ∨ (q ∧©Y)

)
This can be shown to be valid using principles from fixpoint theory. It is also
intuitively valid: the premiss of the implication expresses “after some point, q
always holds” and the conclusion says “q holds infinitely often”.

In positive normal form this is written as ϕ = (νZ.µV.© Z ∧ (¬q ∨©V)) ∨
(νY.µX.©X ∨ (q ∧©Y)). A proof for ϕ is sketched in Fig. 1. In order to save
space, not all rule applications are listed explicitly and a variable is used to
denote its unique fixpoint formula. On each infinite branch of this proof, either
νZ. . . . or νX. . . . can be followed along a thread.

Theorem 1. For all closed and guarded ϕ ∈ Llin
µ : if |= ϕ then ` ϕ.

Proof. Suppose |= ϕ. Let us replace (©) by the following restriction.

` Γ
` ©Γ, l1, . . . , lk

@i, j : li = lj

Now all rules preserve and reflect validity. Therefore, systematic backwards ap-
plication of the rules leads to a pre-proof P of ϕ comprising valid sequents only.

We claim that P is a proof. Note that guardedness means that all fixpoints must
have been unfolded prior to an application of restricted (©) so no “round-robin”
policy or similar is needed in the construction of P .

Take any infinite branch π = ∆0,∆1, . . . of P . We will now exhibit a ν-thread
in π. For every i ∈ N let f(i) be the number of applications of rule (©) in π
before ∆i. We construct a linear time structure K as follows:

∀i ∈ N with f(i) 6= f(i+ 1) : K(f(i)) = {l̄1, . . . , l̄k} iff ∆i = ©Γ, l1, . . . , lk

Consider for each ∆i the formulas of ∆i satisfied by K, f(i). Call them “true
formulas”. For each ∆i there is at least one such true formula, because each ∆i

is a valid disjunction.
Every true formula is linked by the connection relation to a true formula

in the preceding sequent; König’s lemma thus delivers a thread comprising true
formulas only. More formally, we obtain a sequence ϕi ∈ ∆i such that ϕ0 = ϕ and
(ϕi, ϕi+1) ∈ Con (∆i,∆i+1) and K, f(i) |= ϕi. Assume that (ϕi)i is a µ-thread.
There is an i ∈ N and a µX.ψ ∈ Sub(ϕ) s.t. K, f(i) |= µX.ψ. Furthermore, no
greater νY.ψ′ occurs on this thread after position i. According to Lemma 1 there
is a k ∈ N s.t. K, f(i) |= µkX.ψ. Now note that the connection relation follows
the definition of the approximants. Hence, by preservation of satisfaction along
this thread, there must be a i′ > i, s.t. K, f(i′) |= µ0X.ψ which is impossible.
So, the thread (ϕi)i is a ν-thread as required. ut

We remark without proof that the proof system is also complete for non-guarded
formulas.

Let ϕ0 ∈ Llin
µ and νX1.ψ1, . . . , νXn.ψn all ν-quantified formulas in FL(ϕ0),

ordered s.t. νXi.ψi ∈ Sub(ψj) implies i > j. A ν-signature is a tuple ζ =
(k1, . . . , kn) ∈ (N∪{ω})n. Note that the lexicographic ordering < on ν-signatures
is well-founded. We write ζ(i) for the i-th component of ζ, and K, i |=ζ ϕ if K, i
is a model of the formula that results from ϕ when every νXi.ψi is interpreted
by νζ(i)Xi.ψi.

Theorem 2. For all closed ϕ ∈ Llin
µ : if 6|= ϕ then 6` ϕ.

Proof. Suppose 6|= ϕ but P is a proof for ϕ. Then there is a K s.t. K, 0 6|= ϕ. This
can be used to construct a path π = Γ0, Γ1, . . . with inferences r0, r1, . . . in P ,
and a sequence t0 ≤ t1 ≤ . . . of positions in K, s.t. K, ti 6|= Γi (i), and whenever
(α, β) ∈ Conri(Γi, Γi+1) and K, ti 6|=ζ α then K, ti+1 6|=ζ β (ii).

Let Γ0 := ϕ and t0 := 0. If Γi and ti have been constructed we regard the
inference ri leading to Γi (note that Γi cannot be an axiom). If ri = (©) then
ti+1 := ti+1. We put ti+1 := ti in all other cases. If ri 6= (∧) then Γi has a unique
premiss ∆ =: Γi+1. In the case of (∧) let ψ1 ∧ ψ2 ∈ Γi be the principal formula
of ri. Let ζ be the least ν-signature s.t. K, ti 6|=ζ ψ1 ∧ ψ2 (it exists by Lemma 1
and (i)). Let Γi+1 be the j-th premiss of ri where j ∈ {1, 2} s.t. K, ti 6|=ζ ψj .
Clearly, this construction guarantees condition (ii).

Since P is a proof, π must contain a ν-thread (ϕi)i. For each i ∈ N let ζi
be the minimal ν-signature s.t. K, ti 6|=ζi

ϕi. Since (ϕi, ϕi+1) ∈ Conri
(Γi, Γi+1)

we have ζi+1 ≤ ζi. Since there is an outermost fixpoint formula νZ.ψ that gets
unfolded infinitely often in this thread, there are infinitely many i s.t. ζi > ζi+1

which is a contradiction to the wellfoundedness of <. ut

4 Deciding Validity I: Automata-Theoretic Method

We regard rule applications in a pre-proof for a Llin
µ formula ϕ0 as symbols

of a finite alphabet. Formally, let Σϕ0 := { L(ϕ ∧ ψ), R(ϕ ∧ ψ) | ϕ ∧ ψ ∈
FL(ϕ0) } ∪ {N} ∪ { P(ϕ) | ϕ ∈ FL(ϕ0) is of the form ψ1 ∨ ψ2, σX.ψ, or ©ψ }.

An infinite branch π = Γ0, Γ1, . . . in a pre-proof for ϕ0 induces a word π′ =
r0, r1, . . . ∈ Σω

ϕ0
in a straight-forward way:

ri :=


L(ϕ ∧ ψ), if ϕ ∧ ψ is principal in Γi, Γi+1 is left premiss of Γi

R(ϕ ∧ ψ), if ϕ ∧ ψ is principal in Γi, Γi+1 is right premiss of Γi

P(ϕ), if ϕ is principal in Γi and not of the form © ϕ′

N, if (Γi, Γi+1) is an instance of (©)

We will not distinguish formally between a branch π and its induced ω-word π′

over Σϕ0 .
Next we define an NPA that accepts exactly those branches which contain a

ν-thread. Let ϕ0 ∈ Llin
µ , and define Aϕ0 := (Q,Σϕ0 , q0, δ, Ω) where Q := FL(ϕ0)

is the set of states with starting state q0 := ϕ0. The priority function Ω : Q→ N
is defined inductively as Ω(ψ1 ∨ ψ2) = Ω(ψ1 ∧ ψ2) := max{Ω(ψ1), Ω(ψ2)};
Ω(©ϕ) := Ω(ϕ); Ω(σX.ϕ) := Ω(ϕ) if Ω(ϕ) is odd and σ = µ, or Ω(ϕ) is even
and σ = ν, and Ω(σX.ϕ) := Ω(ϕ) + 1 otherwise; and Ω(ψ) := 0 in all other
cases. Here we assume that an NPA accepts a word if it has an accepting run in
which the greatest priority occurring infinitely often is even.

Intuitively, Aϕ0 traces a thread. The priority function ensures that the un-
derlying word is accepted only if the guessed thread is a ν-thread. The transition
relation therefore simply resembles the connection relation:

δ(ψ, r) := {ψ} if r 6∈ {P(ψ), L(ψ), R(ψ)}
δ(ψ1 ∨ ψ2, P(ψ1 ∨ ψ2)) := {ψ1, ψ2} δ(©ψ, N) := {ψ}
δ(ψ1 ∧ ψ2, L(ψ1 ∧ ψ2)) := {ψ1} δ(©ψ, r) := {©ψ} if r 6= N
δ(ψ1 ∧ ψ2, R(ψ1 ∧ ψ2)) := {ψ2} δ(σX.ϕ, P(σX.ϕ)) := {ϕ[σX.ϕ/X]}

Clearly, |Aϕ0 |, the number of states of Aϕ0 is |ϕ0|.

Lemma 2. For all closed ϕ0 ∈ Llin
µ and all infinite branches π of a pre-proof

for ϕ0: π ∈ L(Aϕ0) iff π contains a ν-thread.

Proof. Let π = Γ0, Γ1, . . . be an infinite branch in a pre-proof for ϕ0.
(⇐) Suppose ϕ0, ϕ1, . . . is a ν-thread in π. Since δ is defined in accordance

to the connection relation, this thread is also a run of Aϕ0 . By assumption, the
outermost subformula of the form σX.ψ that occurs infinitely often in this thread
is of type ν. Now note that the priority of an automaton state σX.ψ is even iff

σ = ν, and outer formulas have greater priorities than inner ones. Hence, the
greatest priority occurring infinitely often in this run is even, i.e. π ∈ L(Aϕ0).

(⇒) This is proved in the same way as the other direction. ut

Furthermore, we define a (deterministic) Büchi automaton Bϕ that accepts all
the words which form a branch in a pre-proof for ϕ. In order to avoid notational
clutter we simply assume that every branch in a pre-proof is infinite. Note that
finite branches can be modeled by introducing a new final state in the automaton
with a self-loop under any alphabet symbol.

Let Bϕ := (2FL(ϕ), Σϕ, {ϕ}, δ, F) with F := 2FL(ϕ), and ∆ ∈ δ(Γ, r) iff ∆ is
a premiss of Γ in an application of rule r. The following is a direct consequence
of the definition of a proof and Lemma 2.

Proposition 1. For all ϕ ∈ Llin
µ : ` ϕ iff L(Bϕ) ⊆ L(Aϕ).

This shows that validity in Llin
µ can be decided using this proof system in an

optimal way matching the known PSPACE lower bound [11].

Theorem 3. Deciding whether or not ` ϕ holds for a given ϕ ∈ Llin
µ is in

PSPACE.

Proof. According to Proposition 1 it suffices to check the language L(Bϕ)∩L(Aϕ)
for non-emptiness. Let n := |ϕ|. Note that |Bϕ| ≤ 2n and |Aϕ| ≤ n. Using well-
known automata-theoretic constructions and Savitch’s Theorem this boils down
to the emptiness test of an automaton B×A which can be done in PSPACE. ut

Proposition 1 yields a generic automata-theoretic method for deciding valid-
ity. We will compare various complementation and non-emptiness procedures
for NBAs w.r.t. the incurring complexities. Note that every state of Bϕ is fi-
nal. Hence, the automaton Bϕ × Aϕ can always be built in a simple product
construction and is of the same type as Aϕ.

construction type of Aϕ |Bϕ ×Aϕ| emptiness test

Safra [10] det. Streett 2O(n2 log n) 2O(n2 log n)

Sistla/Vardi/Wolper [12] nondet. Büchi 2O(n4) 2O(n4)

Klarlund [5] nondet. Büchi 2O(n2 log n) 2O(n2 log n)

Kupferman/Vardi [7] weak alt. Büchi O(n4) 2O(n4)

Kupferman/Vardi [6] weak alt. Büchi O(nn) 2O(nn)

Piterman [9] det. parity 2O(n2 log n) 2O(n2 log n)

The index of the Streett or parity automaton is O(n2) in both cases. Note that
the table lists the running times of a deterministic algorithm not using gen-
eral theorems from complexity theory. We remark that using either of Safra’s,
Klarlund’s or Piterman’s construction improves asymptotically over Vardi’s de-
cision procedure for Llin

µ . It also improves over the other 2O(n2 log n) procedures
mentioned in the introduction by being a priori deterministic. Furthermore, the
procedures using Kupferman and Vardi’s complementation can be implemented
symbolically.

5 Deciding Validity II: Category-Theoretic Method

Let P be the (finite) set of priorities assigned to subformulas of ϕ0 by the function
Ω in Section 4. Let Γ and ∆ be sequents. A morphism f from Γ to ∆ written
f : Γ → ∆ is a subset of Γ ×∆×P . In this case, Γ is the domain of f and ∆ is
the codomain of f . If f : Γ → ∆ and ∆→ Θ then the composition f ; g : Γ → Θ
is the morphism defined by

f ; g = {(γ, θ, p) | ∃δ p1 p2.(γ, δ, p1) ∈ f ∧ (δ, θ, p2) ∈ g ∧ p = max(p1, p2)}

The identity morphism idΓ : Γ → Γ is given by idΓ = {(γ, γ, 0) | γ ∈ Γ}.
It is clear that composition is associative with identities as neutral elements

and that therefore the sequents with morphisms form a category. If M is a set
of morphisms we denote by C(M) the set of morphisms obtained by closing
M under composition and adding identities, i.e., the category generated by M .
Notice that if M is a finite set so is C(M) because there is only a finite number
of sequents and morphisms.

A morphism f : Γ → ∆ is idempotent if Γ = ∆ and f ; f = f . An idempotent
morphism f is bad if it does not contain a link of the form (ϕ,ϕ, p) with p even.
A morphism should be viewed as a connection relation whose links are labeled
with priorities.

Suppose that r is an instance of a rule occurring in a pre-proof of ϕ0 with
conclusion Γ and ∆ one of its premisses. We define the morphism f(Γ,r,∆) : Γ →
∆ by

fΓ,r,∆ = {(γ, δ,Ω(γ)) | (γ, δ) ∈ Conr(Γ,∆)}

If π is a finite branch occurring in a pre-proof then we obtain a morphism fπ by
composing the morphisms f ,r, that are associated with the sequents and rules
occurring along π. If π begins at sequent Γ and ends at ∆ then (γ, δ, p) ∈ fπ iff
there is a run of Aϕ0 on π beginning in state γ, ending in state δ and exhibiting
p as the highest priority along this run.

Now let P be the generic pre-proof obtained as in the proof of Theorem 3.
Note that in this pre-proof any sequent uniquely determines the proof rule which
is (backwards-)applied to it.

Theorem 4. Let M be the set of morphisms of the form fΓ,r,∆ where r is a rule
instance contained in the generic pre-proof P of ϕ0. The following are equivalent.
(a) ϕ0 is valid.
(b) P is a proof.
(c) The closure C(M) of M by composition contains no bad idempotent.

Proof. The equivalence between (a) and (b) is a direct consequence of Lemma 2
and Theorem 1. The interesting part is the equivalence between (b) and (c)
and it is here that we draw inspiration from the graph-theoretic algorithm for
size-change termination in [8] and in particular closely follow their proof idea.

(b)⇒(c) by contraposition: suppose that C(M) contains a bad idempotent
f : ∆ → ∆. Let π be the finite path in the generic proof P that led to f ’s

being in C(M). We use here the fact that every sequent uniquely determines its
proof rule. Let ρ be a finite path in P leading from {ϕ0} to ∆ and consider the
infinite path ρ;π;π;π; . . . which is contained in P . We claim that this path is
not accepted by Aϕ0 . Assume for a contradiction that there is an accepting run
with n the highest (even) priority. Since ∆ is finite there must exist δ ∈ ∆ such
that the accepting run goes through δ and after consuming πi := π;π; . . . ;π (i
times) for some i > 0 goes through δ again and moreover, the highest priority
encountered along πi is n. But this means that (δ, δ, n) ∈ f contradicting the
assumption that f was bad.

(c)⇒(b) Assume that C(M) does not contain a bad idempotent. Let π be
an infinite path in P . For i < j let πi,j be the finite portion of π from i to j. By
Ramsey’s theorem there exists an infinite subset U ⊆ N and a morphism f such
that fπi,j = f whenever i, j ∈ U . It follows that f is idempotent. If f contains a
link (δ, δ, n) with n even then we get a successful run on π with highest priority
n simply by going through δ at each position in U and following the construction
of fπi,j

in between. ut

Theorem 4 directly leads to an algorithm for deciding validity of formulas: sim-
ply compute the set of morphisms M occurring in the generic pre-proof of ϕ0,
then iteratively calculate C(M) and then look for a bad idempotent in C(M). Of
course, in practice one checks for bad idempotents already during the construc-
tion of M and C(M) terminating the process immediately upon encountering
one. The resulting algorithm is not in PSPACE since the size of C(M) is ex-
ponential: |C(M)| ≤ 2n2·p+2n where n is the size of the input formula and p
is the highest priority of any subformula. Since p ≤ n, and the runtime of our
algorithm is quadratic in |C(M)|, it is also bounded by 2O(n3). We note that
this also improves asymptotically on the runtime of Vardi’s decision procedure
for Llin

µ [14].

6 Experimental Results

We have implemented two exponential time algorithms – the one based on an
explicit computation of C(M) and the one testing emptiness of a deterministic
parity automaton using Piterman’s determinisation procedure – in OCAML. In
the following we present some experimental results obtained on three families of
formulas.

Includen := νX.
(
q ∧©(q ∧©(. . .© (q︸ ︷︷ ︸

2n times

∧© (¬q ∧©X)) . . .)))

→ νZ.µY.(¬q ∧©Z) ∨ (q ∧©(q ∧©Y))

describes the valid statement ((aa)nb)ω ⊆ ((aa)∗b)ω, where the alphabet symbol
a is the label {q} and b is ∅. Includen is not LTL-definable for any n ∈ N.

The next family is Nestern := ψ ∨ ¬ψ where

ψ := µX1.νX2.µX3. . . . σXn.q1 ∨©
(
X1 ∧

(
q2 ∨©(X2 ∧ . . . (qn ∨©Xn) . . .)

))

Includen Nestern Countern

n |C(M)| search |C(M)| search |C(M)| search

0 2,545 1,285 — — 5 638
1 11,965 17,203 9 79 299 18,564
2 28,866 44,903 2,154 23,589 1,333 195,989
3 50,057 83,864 2,030,259 † 34,401 1,666,281
4 77,189 135,220 † 379,356 12,576,760
5 110,242 198,971 † †

Fig. 2. Complexity measures for some example formulas.

It is clearly valid and is chosen as an example with several alternating fixpoint
constructs.

Countern := (
n∨

i=0

¬ci) ∨
(
µX.©X ∨ (c0 = ©¬c0) ∨

n∨
i=1

©ci = (ci ∧ ¬ci−1) ∨ (ci−1 ∧ (©ci−1 ↔ ci))
)

is not valid and is chosen because its smallest countermodel has size 2n+1. Note
that ¬Countern formalises an (n+ 1)-bit counter.

Figure 2 presents empirical measures for the complexity of both procedures
on the example formulas above. The columns labeled |C(M)| contain the number
of examined morphisms. Note that this is the number of all possible morphisms
unless the input formula is not valid. The columns labeled “search” contain the
number of search steps done in the emptiness test on the DPA B×Aϕ. This is in
general quadratic in the size of the automaton. The runtime was always around
a few minutes but of course space is the limiting resource here. A dagger marks
the tasks where our 1GB PCs ran out of memory.

7 Further Work

We would like to carry out a more systematic study of the practical usefulness
of either algorithm. The examples from Section 6 were deliberately chosen to
stress-test our approach. It may well be that formulas of the form ϕ⇒ ψ where
ϕ describes an implementation of a system, e.g., a Mutex algorithm and where
ψ is a specification of low quantifier nesting depth are feasible up to a much
larger size. Should such experiments turn out promising one could then consider
improving the treatment of the propositional part using BDDs or SAT-solvers,
as well as using a symbolic implementation of the automata-theoretic algorithm.
Notice namely that our decision procedures deal with propositional tautologies
or consequences rather inefficiently basically by proof search in sequent calculus.

Also of interest could be optimisations using heuristics to guide the search
for a countermodel as well as improvements on the theoretical side that reduce
the size of the entire search space.

Furthermore, the proof system of Section 3 can be quite straightforwardly
extended to capture validity of the modal µ-calculus: simply replace rule (©)

with
ϕ, Γ

[a]ϕ, 〈a〉Γ,∆
This, however, introduces non-determinism (if a sequent contains several [a]-
formulas), and countermodels become genuine trees. The automata-theoretic
decision procedure of Section 4 can, in theory, easily be extended. Using Piter-
man’s construction to determinise the automaton that recognises ν-threads, the
product of this and the proof system becomes a parity game. Hence, validity in
the modal µ-calculus can be solved using parity game solvers. On the other hand,
whether or not the category-theoretical method of Section 5 can be extended to
this framework is a nontrivial question.

References

1. H. Barringer, R. Kuiper, and A. Pnueli. A really abstract concurrent model and
its temporal logic. In Conf. Record of the 13th Annual ACM Symp. on Principles
of Programming Languages, POPL’86, pages 173–183. ACM, 1986.

2. J. C. Bradfield, J. Esparza, and A. Mader. An effective tableau system for the
linear time µ-calculus. In Proc. 23rd Int. Coll. on Automata, Languages and Pro-
gramming, ICALP’96, volume 1099 of LNCS, pages 98–109. Springer, 1996.

3. C. Dax. Games for the linear time µ-calculus. Master’s thesis,
Dep. of Computer Science, University of Munich, 2006. available from
http://www.tcs.ifi.lmu.de/lehre/da fopra/Christian Dax.pdf.

4. R. Kaivola. A simple decision method for the linear time µ-calculus. In Proc. Int.
Workshop on Structures in Conc. Theory, STRICT’95, pages 190–204, 1995.

5. N. Klarlund. Progress measures for complementation of ω-automata with applica-
tions to temporal logic. In Proc. 32nd Annual Symp. on Foundations of Computer
Science, FOCS’91, pages 358–367. IEEE, 1991.

6. O. Kupferman and M. Y. Vardi. Weak alternating automata and tree automata
emptiness. In Proc. 30th Annual ACM Symp. on Theory of Computing, STOC’98,
pages 224–233. ACM Press, 1998.

7. O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak.
ACM Transactions on Computational Logic, 2(3):408–429, 2001.

8. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for
program termination. j-SIGPLAN, 36(3):81–92, 2001.

9. N.Piterman. From nondeterministic Büchi and Streett automata to deterministic
parity automata. In Proc. 21st Ann. IEEE Symp. on Logic in Computer Science,
LICS’06. IEEE Computer Society Press, 2006. To appear.

10. S. Safra. On the complexity of ω-automata. In Proc. 29th Symp. on Foundations
of Computer Science, FOCS’88, pages 319–327. IEEE, 1988.

11. A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. Journal of the Association for Computing Machinery, 32(3):733–749, 1985.

12. A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Büchi
automata with applications to temporal logic. TCS, 49(2–3):217–237, 1987.

13. R. S. Streett and E. A. Emerson. An automata theoretic decision procedure for
the propositional µ-calculus. Information and Computation, 81(3):249–264, 1989.

14. M. Y. Vardi. A temporal fixpoint calculus. In Proc. Conf. on Principles of Pro-
gramming Languages, POPL’88, pages 250–259. ACM Press, 1988.

