
LIRA: Handling Constraints of Linear

Arithmetics over the Integers and the Reals⋆

Bernd Becker1, Christian Dax2, Jochen Eisinger1, and Felix Klaedtke2

1 Albert-Ludwigs-Universität Freiburg, Germany
2 ETH Zurich, Switzerland

1 Introduction

The mechanization of many verification tasks relies on efficient implemen-
tations of decision procedures for fragments of first-order logic. Interac-
tive theorem provers like pvs also make use of such decision procedures to
increase the level of automation. Our tool lira3 implements decision pro-
cedures based on automata-theoretic techniques for first-order logics with
linear arithmetic, namely, for FO(N,+), FO(Z,+, <), and FO(R, Z,+, <).

The theoretical foundations for using automata to decide logics like
Presburger arithmetic, i.e., FO(N,+) were laid in the 1960s [4]: For Pres-
burger arithmetic, the elements of the domain are represented by finite
words, and for a given formula, one constructs recursively over the formula
structure an automaton that accepts precisely the words that represent
the natural numbers that satisfy the formula. Automata constructions
handle the logical connectives and quantifiers. A similar approach works
for FO(Z,+, <) and FO(R, Z,+, <). To represent reals, one uses infi-
nite words. In [2], it is shown that weak deterministic Büchi automata
(wdbas) suffice to decide FO(R, Z,+, <). wdbas are a restricted class
of Büchi automata, which can be handled algorithmically almost as effi-
ciently as deterministic finite automata (dfas).

lira also provides an automata library that efficiently represents and
manipulates dfas and wdbas. lira’s automata library can be compared
to a bdd library for representing and manipulating finite sets encoded by
booleans. Instead of bdds, lira uses dfas to represent and manipulate
sets that are definable in FO(N,+) and FO(Z,+, <), and uses wdbas
for sets definable in FO(R, Z,+, <). Efficiently representing and manip-
ulating such definable sets has applications beyond deciding these logics
efficiently. For instance, in the safety verification of integer-counter sys-
tems and hybrid systems one has to cope with such sets. Furthermore,
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3 lira is available at http://lira.gforge.avacs.org/ under the GNU public licence.
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approaches like regular model checking rely on manipulating automata
efficiently. lira’s automata library can be used in all these applications.

Closely related to lira are lash [13], prestaf [5], and mona [12].
Like lira’s automata library, lash provides operations for automata over
finite and infinite words. lira outperforms lash by several orders of mag-
nitude. One reason for the speedup are novel automata constructions.
prestaf’s and mona’s automata libraries only support automata over
finite words and can only handle Presburger definable sets. Moreover,
mona’s automata library is not tailored to the representation and ma-
nipulation of Presburger definable sets. The omega library [14] is related
to lira since it allows one to represent and manipulate sets definable in
FO(Z,+, <). In contrast to lira, it does not support the reals and uses a
formula-based set representation, which does not have a canonical form.
Heuristics are used to simplify the set representations. smt solvers like
mathsat [3] and yices [9] are also related to lira since they provide
decision procedures for fragments of linear arithmetic over the integers
and reals. However, these solvers do not handle quantifiers at all or only
in a limited way. Note that most current smt solvers also handle other
fragments of first-order theories and combinations thereof.

In the following, in §2, we give implementation details and list some
features of lira, and in §3, we report on applications and performance.

2 Implementation Details and Features

lira is implemented in C++. Given a formula, lira’s decision procedures
construct the minimal dfa or wdba according to the selected logic. By
analyzing the automaton, lira determines whether the formula is satisfi-
able. Additionally, it can output a satisfying assignment and a counterex-
ample if they exist, or it can output the constructed automaton.

lira defines a flexible high-level api for the decision procedures. A for-
mula is represented as a tree structure and generic functions implement
syntactic transformations on such a tree representation. lira’s decision
procedures use the high-level api to generate from such a tree represen-
tation a sequence of abstract operations. The decision procedures can
easily be modified and extended to generate sequences that exploit do-
main specific information or include certain heuristics. The sequence of
operations is then executed by using lira’s automata library to check
whether the given formula is satisfiable. lira’s automata library provides
efficient implementations of standard automata constructions for dfas
and wdbas and specific automata constructions for the supported log-
ics, like for equations and inequations. The automata library is accessible
through a low-level api.
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lira uses a similar automata representation as mona [12], where
shared multi-terminal binary decision diagrams (mtbdds) are used to
compactly represent the transition function of an automaton. In our
implementation we use cudd [6] to represent and to manipulate these
mtbdds. We benefit here from cudd’s cache-optimized algorithms. Sim-
ilar to mona, our automata representation supports boolean variables.
Our automata representation also utilizes don’t care states, which were
introduced in [11] for dfas and can also be used for wdbas. The advan-
tage of don’t care states is that automata constructions usually become
conceptually cleaner and more efficient.

To reduce the number of states of a wdba, we use don’t care words
as described in [10]. We use an automaton construction that handles
quantifiers in FO(R, Z,+, <) more efficiently than previous proposed con-
structions: it copes with don’t care words efficiently and is based on the
powerset construction for dfas instead of the more involved breakpoint
construction for determinizing co-Büchi automata (see [8] for details).

3 Applications and Performance

We carried out the following case studies to evaluate lira’s applicability
and performance.4

(1) We ran lira and the frontends of prestaf and lash on randomly
generated formulas with a quantifier prefix ∃ and ∀∃. lira outperformed
prestaf and lash. Moreover, lira succeeded to build the automaton
for all given formulas whereas prestaf and lash sometimes exceeded
the time limit or ran out of memory.

(2) We tested lira on formulas that arise in the verification of hy-
brid systems. The test formulas have one quantifier alternation and are
generated by a model checker when accelerating the reachability computa-
tion [7]. Although some of the formulas are large (the formula sizes range
from under 1 Mbyte up to 39 Mbytes), the constructed wdbas remain
rather small and lira handles the quantifiers quickly. Note that in [7]
another data-structure, based on and-inverter graphs (aigs), is used to
represent and manipulate the formulas. In contrast to dfas and wdbas,
this data-structure does not have a canonical form and heuristics are
applied for minimization. Their representations usually grow with the
number of applied operations and contain redundancies.

(3) We wrote a plugin for the model checker fast [1] that uses
lira’s automata library. We used fast’s benchmark suite to compare

4 Experimental results are available at http://lira.gforge.avacs.org/toolpaper/.
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the running times of our plugin with other fast plugins based on mona,
prestaf, lash, and the omega library. The plugins based on mona,
prestaf, and lira have competitive performance, lira is in most cases
the fastest, whereas the lash plugin is on all examples significantly slower.
The omega plugin has, on few examples, competitive running times.
However, on most examples it is either outperformed, exceeds the time
limit, or crashes.
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