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Abstract The IEEE standardized Property Specification Language, PSL for short,

extends the well-known linear-time temporal logic LTL with so-called semi-extended

regular expressions. PSL and the closely related SystemVerilog Assertions, SVA for

short, are increasingly used in many phases of the hardware design cycle, from specifi-

cation to verification. In this article, we extend the common core of these specification

languages with past operators. We name this extension PPSL. Although all ω-regular

properties are expressible in PSL, SVA, and PPSL, past operators often allow one to

specify properties more naturally and concisely. In fact, we show that PPSL is exponen-

tially more succinct than the cores of PSL and SVA. On the star-free properties, PPSL

is double exponentially more succinct than LTL. Furthermore, we present a translation

of PPSL into language-equivalent nondeterministic Büchi automata, which is based on

novel constructions for 2-way alternating automata. The upper bound on the size of

the resulting nondeterministic Büchi automata obtained by our translation is almost

the same as the upper bound for the nondeterministic Büchi automata obtained from

existing translations for PSL and SVA. Consequently, the satisfiability problem and

the model-checking problem for PPSL fall into the same complexity classes as the

corresponding problems for PSL and SVA.

Keywords Linear-time Temporal Logics, Finite-state Model Checking, Alternating

Automata, Regular/ω-regular Languages

Christian Dax
ETH Zurich, Computer Science Department, CAB F 58.2
Universitätstr. 6, 8092 Zurich, Switzerland
E-mail: christian.dax at inf.ethz.ch

Felix Klaedtke
ETH Zurich, Computer Science Department, CNB F 107.1
Universitätstr. 6, 8092 Zurich, Switzerland
E-mail: felix.klaedtke at inf.ethz.ch

Martin Lange
University of Kassel, Department of Electrical Engineering and Computer Science
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1 Introduction

The industry-standardized temporal logics PSL [1] and SVA (the assertion language

of SystemVerilog [2]) are increasingly used in the hardware industry to formally ex-

press, validate, and verify the requirements of circuit designs. The linear-time core of

PSL extends the well-known linear-time temporal logic LTL with semi-extended regu-

lar expressions (SEREs), which are essentially regular expressions with an additional

operator for expressing the intersection of languages. The core of SVA can be seen as a

subset of PSL.1 The prominence of PSL and SVA in industry over other specification

languages like LTL [26], µLTL [4], and ETL [34] is that PSL and SVA balance well

the competing needs of a specification language like expressiveness, usability, and im-

plementability [3]: all ω-regular languages are expressible in PSL/SVA, specifications

in PSL/SVA are fairly easy to read and write, and relevant verification problems (for

example, model checking) for PSL/SVA are automatically solvable in practice.

Although temporal operators that refer to the past have been found natural and

useful when expressing temporal properties [9, 10, 19, 23, 24, 29], the PSL and SVA

standards support temporal past operators only in a restrictive way. This design choice

has already been made for the predecessor ForSpec [3] of PSL/SVA and has been

justified by the argument that handling “arbitrary mixing of past and future operators

results in nonnegligible implementation cost” [3]. One reason for this belief is that in the

automata-theoretic approach to model checking [33], one uses 2-way automata to deal

with past and future operators rather than 1-way automata when only future operators

are present. The nowadays used automata constructions for 2-way automata are more

involved than the corresponding ones for 1-way automata. For instance, with the state-

of-the-art construction in [19], we can translate a 2-way alternating Büchi automaton

with n states into a language-equivalent nondeterministic Büchi automaton (NBA)

with 2O(n2) states. For a given 1-way alternating Büchi automaton, we obtain with

the Miyano-Hayashi construction [25] an NBA with only 2O(n) states. Nevertheless, in

this article, we give arguments in favor of extending PSL and SVA with past operators

and we argue against this assumed additional implementation cost. In particular, one of

our results shows that a restricted class of 2-way automata suffices and the additional

cost for this class is small.

In more detail, the content of the article is as follows. We first propose an extension

of PSL with past operators, which we name PPSL. PPSL extends PSL by the standard

past operators from linear-time temporal logic and by the corresponding past operators

of the PSL/SVA-specific operators for SEREs. For example, the PSL/SVA-specific

operator α� φ describes that a system trace fulfills from the current time point the

pattern given by the SERE α and at the end the post-condition φ holds, where φ is a

PSL/SVA formula. PPSL additionally contains the corresponding counterpart α−−−�φ.

This new operator describes that the pre-condition φ holds at some time point in the

past and at that time point the system trace fulfills up to the current time point the

pattern α. Note that the temporal operator α� φ is closely related to the modality

⟨α⟩φ in dynamic logic [16]. See [17], for a linear-time variant of propositional dynamic

logic. However, PSL/SVA uses SEREs over state predicates and in dynamic logic, the

expressions are over program statements.

1 For the ease of exposition, we identify, similar to [5, 7, 9, 27], PSL and SVA with their
respective cores. In particular, the cores are “unclocked,” they do not contain local variables
(which are not part of the PSL standard), and their semantics is only defined over infinite
words.
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PSL, SVA, and PPSL have the same expressive power: they all describe the class

of ω-regular languages. However, PPSL allows one to describe ω-regular languages

more concisely than PSL and SVA. To show this, we establish a lower bound on the

succinctness of PPSL and PSL. We define a family of ω-regular languages and prove

that these languages can be described in PPSL exponentially more succinctly than in

PSL. For the LTL-expressible properties, that is, the ω-regular languages that are star-

free (see, for example, [14]), we obtain as a byproduct that PPSL is double exponentially

more succinct than LTL.

Furthermore, we investigate the additional computational cost for solving the satis-

fiability problem and the model-checking problem for PPSL. As for PSL and SVA, these

problems are EXPSPACE-complete for PPSL. In practice, the satisfiability problem

and the model-checking problem for PSL and SVA are solved by using an automata-

theoretic approach [5,7,9], translating a given formula into an NBA. With the standard

automata constructions for PSL and SVA, one obtains for a PSL/SVA formula of size

n an NBA of size O(32
2n

) [5,7]. We present a construction for PPSL that translates a

PPSL formula of size n and m propositional variables into an NBA of size O(2m ·32
2n

).

Since m ≤ n and hence 2m · 32
2n

≤ 30.631n+22n , the difference between these upper

bounds of the sizes of the resulting automata for PSL/SVA and PPSL is surprisingly

small. Our translation is based on alternation-elimination constructions for restricted

classes of 2-way alternating automata that were recently presented in [12] and which

we further improve in this article for the alternating automata that we obtain from

our translation of PPSL formulas into alternating automata. We use this construc-

tion to translate a given PPSL formula into an initially equivalent SVA formula. The

size of the resulting formula is quadruple exponentially larger, not quite matching the

lower bound mentioned above. One of these four exponentials is due to the fact that

the resulting SVA formula only contains semi-extended regular expressions without

intersection operators.

We point out that our translation for PPSL into NBAs significantly improves over

translations that we obtain when utilizing automata constructions that do not take

the given special class of alternating automata into account. For instance, when using

the state-of-the-art construction [19] for translating 2-way alternating automata into

NBAs, one obtains an NBA of size O(24·2
4n+22n), where n is again the size of the

given PPSL formula. Overall, the presented translation indicates that extensions of

temporal logics with past operators can be handled with only a minor overhead in the

automata-theoretic model-checking approach when adequate constructions for 2-way

alternating automata are used.

The remainder of the article is organized as follows. In Section 2, we give preliminar-

ies. In Section 3, we define PPSL and its fragments LTL, PSL, and SVA. In Section 4,

we present the translation of PPSL formulas into language-equivalent NBAs and in

Section 5, we draw some consequences from this translation. In Section 6, we show the

succinctness gap between PPSL and PSL. Finally, in Section 7, we draw conclusions.

The appendix contains additional proof details.
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2 Preliminaries

We assume that the reader is familiar with automata theory over finite and infinite

words. In the following, we recapitulate the needed background in this area and fix the

notation and terminology that we use in the remainder of the text.

Words and Trees We denote the set of finite words over the alphabet Σ by Σ∗ and

the set of infinite words over Σ by Σω. The length of a word w ∈ Σ∗ is written as

|w| and ε denotes the empty word. For a finite or infinite word w, wi denotes the

symbol of w at position i ∈ N, where we assume that i < |w| if w is finite. We

write v ≼ w if v is a prefix of the word w. For i, j < |w|, we write wi.. for the

suffix wiwi+1 . . . and wi..j for the subword wiwi+1 . . . wj . The concatenation of the

languages L ⊆ Σ∗ and L′ ⊆ Σ∗ is L ; L′ := {uv | u ∈ L and v ∈ L′} and the

fusion is L : L′ := {ubv | ub ∈ L and bv ∈ L′ with b ∈ Σ}. Moreover, we define

L∗ :=
∪
n∈N L

n(β), where L0 := {ε} and Li+1 := L ; Li, for all i ∈ N.

A (Σ-labeled) tree is a function t : T → Σ, where T ⊆ N∗ satisfies the conditions:

(i) T is prefix-closed (this means, if v ∈ T and u ≼ v then u ∈ T ) and (ii) if vi ∈ T

and i > 0 then v(i−1) ∈ T . The elements in T are called the nodes of t and the empty

word ε is called the root of t. A node vi ∈ T with i ∈ N is called a child of the node

v ∈ T . An (infinite) path in t is a word π ∈ Nω such that v ∈ T , for every prefix v of

π. We write t(π) for the word t(ε)t(π0)t(π0π1) . . . ∈ Σω.

Propositional Logic We denote the set of Boolean formulas over the set P of propo-

sitions by B(P ), this means, B(P ) consists of the formulas that are inductively built

from the propositions in P and the connectives ∨, ∧, and ¬. For M ⊆ P and b ∈ B(P ),

we write M |= b iff b evaluates to true when assigning true to the propositions in M

and false to the propositions in P \M . We write B+(P ) for the set of positive Boolean

formulas over P , this means, the set of Boolean formulas in which the connective ¬
does not occur.

Regular Expressions The syntax of semi-extended regular expressions (SEREs) over

the proposition set P is defined by the grammar α ::= ε | b | α⋆α | α∗, where b ∈ B(P )

and ⋆ ∈ {∪,∩, ;, :}. The language of an SERE α over the proposition set P is inductively

defined:

L(α) :=


{ε} if α = ε,

{w ∈ (2P )∗ | |w| = 1 and w0 |= α} if α ∈ B(P ),

L(β) ⋆ L(γ) if α = β ⋆ γ, where ⋆ ∈ {∪,∩, ;, :}, and(
L(β)

)∗
if α = β∗.

The size of an SERE is defined as ||ε|| := 1, ||b|| := 1, for b ∈ B(P ), ||β⋆γ|| := 1+||β||+||γ||,
for ⋆ ∈ {∪,∩, ;, :}, and ||β∗|| := 1 + ||β||. Moreover, Is(α) is the number of intersection

operators that occur in the SERE α. A regular expression (RE) α is an SERE with

Is(α) = 0.
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Automata In the following, we define 2-way alternating Büchi automata, which scan

input words letter by letter with their read-only head. The meaning of “2-way” and

“alternating” is best illustrated by the example transition δ(p, a) = (q,−1) ∨ ((r, 0) ∧
(s, 1)) of such an automaton, where p, q, r, s are states, a is a letter of the input alphabet,

and δ is the automaton’s transition function. The second coordinate of the tuples

(q,−1), (r, 0), (s, 1) specifies in which direction the read-only head moves: −1 for left,

0 for not moving, and 1 for right. The transition above can be read as follows. When

reading the letter a in state p, the automaton has two choices: (i) It goes to state q and

moves the read-only head to the left. In this case, the automaton proceeds scanning the

input word from the updated state and position. (ii) Alternatively, it can branch its

computation by going to state r and to state s, where the read-only head is duplicated:

the first copy proceeds scanning the input word from the state r, where the position

of the read-only head is not altered; the second copy proceeds scanning the input

word from the state s, where the read-only head is moved to the right. Note that the

choices (i) and (ii) are given by models of the example transition δ(p, a), which is a

positive Boolean formula with propositions that are pairs of states and movements of

the read-only head.

Let D := {−1, 0, 1} be the set of directions in which the read-only head can move.

Formally, a 2-way alternating Büchi automaton (2ABA) A is a tuple (Q,Σ, δ, qI , F ),

where Q is a finite set of states, Σ is a finite nonempty alphabet, δ : Q×Σ → B+(Q×D)

is the transition function, qI ∈ Q is the initial state, and F ⊆ Q is the set of accepting

states. The size ||A|| of the automaton A is |Q|.
A configuration of A is a pair (q, i) ∈ Q×N. Intuitively, q is the current state and

the read-only head is at position i of the input word. A run of A on w ∈ Σω is a tree

r : T → Q× N such that r(ε) = (qI , 0) and for each node x ∈ T with r(x) = (q, j), it

holds that{
(q′, j′ − j) ∈ Q× D | r(y) = (q′, j′), where y is a child of x in r

}
|= δ(q, wj) .

For an infinite sequence of configurations π := (q0, i0)(q1, i1) . . . ∈ (Q×N)ω, we define

Inf (π) := {q | q occurs infinitely often in q0q1 . . . ∈ Qω}. A path π ∈ T in a run r is

accepting if Inf (r(π)) ∩ F ̸= ∅. The run r is accepting if every path in r is accepting.

The language of A is the set L(A) := {w ∈ Σω | there is an accepting run of A on w}.
The automaton A is 1-way if δ(q, a) ∈ B+(Q×{1}), for all q ∈ Q and a ∈ Σ. That

means, A can only move the read-only head to the right. If A is 1-way, we assume that

δ is of the form δ : Q × Σ → B+(Q). We call a 1-way automaton a nondeterministic

Büchi automaton (NBA) if its transition function returns a disjunction of states for all

inputs. Similarly, we call a 1-way automaton a universal Büchi automaton (UBA) if its

transition function returns a conjunction of states for all inputs. We view the transition

function δ of an NBA or a UBA as a function of the form δ : Q×Σ → 2Q. This means

that clauses and monomials are written as sets. A 1-way automaton is deterministic if

its transition function δ is nondeterministic and universal, that means, δ(q, a) ∈ Q, for

all states q and input letters a.

Note that a run r : T → Q×N of an NBA A on w ∈ Σω can be reduced to a single

path π in r that is consistent with the transition function. Using standard terminology,

we also call r(π) ∈ (Q×N)ω a run of A on w.

A nondeterministic finite automaton (NFA) B is a quintuple that has the same

components as an NBA. The size of an NFA is defined as for NBAs. A run of the NFA

B = (Q,Σ, δ, qI , F ) on a finite word w ∈ Σ∗ is a sequence of |w|+1 states q0q1 . . . q|w|
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such that q0 = qI and δ(qi, wi) ∋ qi+1, for all i < |w|. The run is accepting if q|w| ∈ F .

The language of B is the set L(B) := {w ∈ Σ∗ | there is an accepting run of B on w}.

3 Temporal Logics with Expressions and Past Operators

In this section, we extend LTL with SEREs and past operators. We call the exten-

sion PPSL. The cores of the two industrial-standard property specification languages

PSL [1] and SVA [2] are fragments of PPSL. The syntax of PPSL over the set P of

propositions is given by the grammar

φ ::= p | cl(α) | ¬φ | φ ∧ φ | Xφ | φ U φ | α� φ | Yφ | φ S φ | α−−−� φ ,

where p ∈ P and α is an SERE over P . A PPSL formula over P is interpreted at a

position i ∈ N of an infinite word w ∈ (2P )ω as follows:

w, i |= p iff p ∈ wi
w, i |= cl(α) iff ∃k ≥ i : wi..k ∈ L(α), or ∀k ≥ i : ∃v ∈ L(α) : wi..k ≼ v

w, i |= φ ∧ ψ iff w, i |= φ and w, i |= ψ

w, i |= ¬φ iff w, i ̸|= φ

w, i |= Xφ iff w, i+ 1 |= φ

w, i |= φ U ψ iff ∃k ≥ i : w, k |= ψ and ∀j : if i ≤ j < k then w, j |= φ

w, i |= α� φ iff ∃k ≥ i : wi..k ∈ L(α) and w, k |= φ

w, i |= Yφ iff i > 0 and w, i− 1 |= φ

w, i |= φ S ψ iff ∃k ≤ i : w, k |= ψ and ∀j : if k < j ≤ i then w, j |= φ

w, i |= α−−−� φ iff ∃k ≤ i : wk..i ∈ L(α) and w, k |= φ

A word w ∈ (2P )ω is a model of a PPSL formula φ if w, 0 |= φ. The language of a

PPSL formula φ is L(φ) := {w ∈ (2P )ω | w, 0 |= φ}. The PPSL formulas φ and ψ are

initially equivalent if L(φ) = L(ψ). They are logically equivalent, written as φ ≡ ψ,

if w, i |= φ ⇔ w, i |= ψ, for all i ∈ N and w ∈ (2P )ω. For instance, let tt and ff

be the usual abbreviations for the Boolean constants. Then Ytt and ff are initially

equivalent since the former cannot be satisfied in state 0 of a model. However, they are

not logically equivalent, since the former holds in any state i > 0 of any model whereas

the latter holds in none. Clearly, logical equivalence implies initial equivalence and not

vice versa. However, for formulas which do not use the past operators Y, S, −−−� these

two equivalences coincide.

As for SEREs, we define the size ||φ|| of a PPSL formula φ as its syntactic length.

That is, ||p|| := 1, ||cl(α)|| := 1 + ||α||, ||¬φ|| := ||Xφ|| := ||Yφ|| := 1 + ||φ||, ||φ ∧ ψ|| :=
||φ U ψ|| := ||φ S ψ|| := 1 + ||φ||+ ||ψ||, and ||α� φ|| := ||α−−−� φ|| := 1 + ||α||+ ||φ||.

We define the following fragments of PPSL. We call a PPSL formula a PSL formula

if it does not contain the operators Y, S, and −−−�. An LTL formula is a PSL formula

that does not contain the operators cl and�. An SVA formula is a PSL formula that

does not contain the operators cl, X, and U. The fragments PLTL and PSVA, which

extend LTL and SVA, respectively, with past operators, are defined as expected.

We use standard syntactic sugar, like the Boolean constants and connectives ff, tt,

∨, →, and we define φ R ψ := ¬(¬φ U ¬ψ), φ T ψ := ¬(¬φ S ¬ψ), Zφ := Ytt → Yφ.

Moreover, for a PPSL formula φ and an SERE α, we write α� φ for ¬(α� ¬φ)
and α−−−� φ for ¬(α−−−� ¬φ). Note that the standard unary temporal operators can

easily be defined in the respective fragment. For instance, in PLTL, we define the future
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operators finally Fφ := tt U φ and generally G := ¬F¬φ. Their past counterparts are

once Oφ := tt S φ and historically Hφ := ¬O¬φ, respectively. In PSVA, we define

Gφ := tt∗� φ, Fφ := tt∗� φ, Hφ := tt∗ −−−� φ, and Oφ := tt∗ −−−� φ. Furthermore,

in PSVA, we use Xφ as syntactic sugar for tt ; tt� φ and Yφ for tt ; tt−−−� φ.

Remark 1 In the PSL standard [1], we also have atomic formulas of the form ended(α)

and prev(α), where α is an SERE. For instance, the word w satisfies ended(α) at position

i iff there is a subword u of w that ends at i and u ∈ L(α). The operators ended and

prev can be seen as restricted variants of the past operator −−−�. For instance, in PPSL,

if ε ̸∈ L(α), ended(α) is syntactic sugar for α−−−� tt, and tt otherwise. Observe that

ended and prev can only be applied to SEREs, and, in contrast to −−−�, it is not possible

to define the classical past operators Y, H, and O with them. We also remark that

the literature, for example, [5, 7, 9, 20, 27] usually considers the essential core of the

PSL standard to which the operators ended and prev do not belong. We follow this

convention, this means, the formulas in our fragment PSL of PPSL do not contain

ended(α) and prev(α). Finally, we remark that the automata constructions [5, 7] for

PSL and SVA cannot cope with the operators ended and prev, which are handled by

our construction in Section 4 for PPSL.

Example 2 A standard example for showing that the past operators of PLTL can lead

to more intuitive specifications is G(grant → Orequest), this means, every grant is

preceded by a request [23]. An initially equivalent LTL formula is request R (¬grant ∨
request). Let us now illustrate the beneficial use of SEREs and past operators. Suppose

that a request is not a single event but a sequence of events, for example, a request

consists of a start event that is later followed by an end event and no cancel event

happens between the start and the end event. Such sequences are naturally described

by the SERE (start ;tt∗ ;end)∩(¬cancel)∗. Using this SERE and the new past operator

−−−�, we can easily express in PPSL the property that every grant is preceded by a

request:

G
(
grant →

(
((start ; tt∗ ; end) ∩ (¬cancel)∗) ; tt∗ −−−� tt

))
. (1)

Note that according to the semantics of the operator −−−�, the end event has to happen

before or at the same time as the grant event. Alternatively, we can express the property

in PLTL as

G
(
grant → O

(
end ∧ ¬cancel ∧ Y(¬cancel S (start ∧ ¬cancel))

))
. (2)

Although debatable, we consider that the PPSL formula (1) is easier to understand than

the PLTL formula (2). In SVA, we can express the property as norequest� ¬grant ,
where the SERE norequest describes the complement of the language L

(
tt∗ ; ((start ;

tt∗ ; end) ∩ (¬cancel)∗) ; tt∗
)
, that is, norequest is the SERE(

(¬start)∪ (start ∧ cancel)∪ (start ; (¬end)∗ ; cancel)
)∗

;
(
ε∪ (start ∧ end)

)
; (¬end)∗ .

Note that in general, complementation of SEREs is difficult and can result in an ex-

ponential blowup with respect to the size of the given SERE.

Example 3 Let us give another example to illustrate the usefulness of past operators,

in particular, the operator −−−�. For N ≥ 1 and i ∈ {0, . . . , N − 1}, consider the PPSL
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formula ΦN,i := G
(
send i →

(
switchi ∩ (init ; (¬init)∗)−−−� tt

))
, where switchi counts

the number of switch events modulo N , this means,

switchi :=
(
(¬switch)∗ ; switch ; . . . ; (¬switch)∗ ; switch︸ ︷︷ ︸

N times

)∗
;

(¬switch)∗ ; switch ; . . . ; (¬switch)∗ ; switch︸ ︷︷ ︸
i times

; (¬switch)∗ .
(3)

Intuitively, ΦN,i expresses the property that the process i is only allowed to send a data

item if it possesses the token. The process i possesses the token iff k switch events with

k ≡ i mod N occurred previously since the last init event. Note that this property is

not expressible in LTL since it is not star-free (see, for example, [14]).

The negation of the PSL formula(
(¬init)∗� send i

)
∨ F

(
init ∧

(
(tt ; (¬init)∗) ∩ (

∪
j ̸=i switchj)� send i

))
(4)

is initially equivalent to ΦN,i. Note that the size of the formula (4) is quadratic in N ,

whereas the size of the formula (3) is only linear in N . In Section 6, we prove that

PPSL is exponentially more succinct than PSL.

In general, for writing specifications, PPSL possesses the advantage of PLTL over

LTL and the advantage of PSL/SVA over LTL, namely, additional operators for refer-

ring to the past and SEREs for describing sequences of events.

4 From PPSL to Nondeterministic Automata

In this section, we present a translation from PPSL formulas into language-equivalent

NBAs. Similar to the well-known translation for LTL formulas into NBAs, our trans-

lation comprises two steps: for a given PPSL formula, we first construct an alternating

automaton, which we then translate into an NBA. Throughout this section, we fix a

finite set P of propositions.

4.1 From PPSL to Eventually and Locally 1-Way 2ABAs

In this subsection, we assume that φ is a PPSL formula over P and φ is in negation

normal form, this means, the negation symbol ¬ only occurs directly in front of the

atomic subformulas of φ. Note that every PPSL formula ψ can be rewritten into a

logically equivalent PPSL formula in negation normal form over an extended language,

where we use the additional Boolean connective ∨ and the additional operators R,

T, Z, �, and −−−� as primitives. The size of the resulting formula is at most 2||ψ||.
For rewriting a formula into negation normal form, we use the logical equivalences

¬¬γ ≡ γ, ¬Xγ ≡ X¬γ, ¬Yγ ≡ Z¬γ, and ¬Zγ ≡ Y¬γ.
Before we present the construction of the 2ABA Aφ for the PPSL formula φ, we

briefly highlight the similarities and the differences to the standard constructions for

LTL, PLTL, SVA, and PSL [5, 7, 15, 32]. The construction in [7] additionally handles

SEREs with local variables. Our construction can easily be extended by this feature.

However, for the ease of exposition, we focus here on how to handle the temporal past

and future operators of PPSL efficiently. As the standard construction for PSL [5], the
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state space of the 2ABA Aφ consists of the subformulas of the given PPSL formula

and the states of the automata for the SEREs. We introduce an auxiliary symbol # to

mark the beginning of the input word. With this symbol, Aφ checks in a run whether

the read-only head is at the first position of the input word. Some additional states

are needed for such a check. The new operators −−−� and −−−� are then easily handled

since Aφ is alternating and 2-way. In Section 4.2, we eliminate this additional symbol

# when constructing from Aφ the NBA for the PPSL formula φ.

4.1.1 Construction Details

For the construction, we need the following lemma about translating SEREs into au-

tomata. For proof details, see [5] and standard textbooks on automata theory like [18].

Lemma 4 Let α be a SERE over the set P of propositions.

1. There is an NFA Aα with L(Aα) = L(α) and ||A|| ≤ 2||α||.
2. There is an NFA A′

α with L(A′
α) = {wn−1 . . . w0 | w0 . . . wn−1 ∈ L(α)} and

||A|| ≤ 2||α||.
3. There is an NBA Bα with L(Bα) = L(cl(α)) and ||Bα|| ≤ 2||α||.
4. There is a UBA B′

α with L(B′
α) = L(¬cl(α)) and ||B′

α|| ≤ 2||α||.

For the construction of the 2ABAAφ, let Aα, A′
α, Bα, and B′

α be the corresponding

automata according to Lemma 4, where α is an SERE that occurs in φ. We assume

that the state sets of these automata are pairwise disjoint.

Now, the 2ABA Aφ := (Q,Γ, δ, qI , F ) for the PPSL formula φ is defined as follows,

where Γ is the alphabet {#}∪2P . As Lemma 5 below shows, Aφ accepts the language

{#w | w ∈ L(φ)}.
The state set Q is the disjoint union of the sets Q1, Q2, and Q3. The states in

Q1 := {qI , qacc , qrej , q#} are the initial state qI , the accepting and rejecting sink

states qacc and qrej , and the state q# for handling the auxiliary letter # at the first

position of an input word. The purpose of the states in Q2 := Sub(φ) is similar to that

in the standard constructions which translate LTL formulas into alternating automata.

Roughly speaking, they take care of the models of the subformulas of φ. The remaining

state set Q3 is used to include the automata for the SEREs that occur in φ. It is defined

as

Q3 := {cl(s) | cl(α) ∈ Sub(φ) and s is a state of Bα}∪
{¬cl(s) | ¬cl(α) ∈ Sub(φ) and s is a state of B′

α}∪
{s ⋆→ ψ | ⋆→ ∈ {�,�}, α ⋆→ ψ ∈ Sub(φ), and s is a state of Aα}∪
{s ⋆→ ψ | ⋆→ ∈ {−−−�,−−−�}, α ⋆→ ψ ∈ Sub(φ), and s is a state of A′

α} .

The set of accepting states F is the set of states that are neither in the sets G1,

G2, nor G3, which are as follows. The set G1 is the singleton {qrej }. Similar to the

standard constructions for translating LTL formulas to alternating 1-way automata,

the set G2 := {ψ U ψ′ | ψ U ψ′ ∈ Sub(φ)} takes care of the least-fixpoint subformulas

ψ U ψ′ ∈ Sub(φ), that is, Aφ avoids infinite regeneration of these subformulas. The

states in

G3 := {cl(s) | cl(α) ∈ Sub(φ) and s is a rejecting state of Bα}∪
{¬cl(s) | ¬cl(α) ∈ Sub(φ) and s is a rejecting state of B′

α}∪
{s� ψ | α� ψ ∈ Sub(φ) and s is a state of Aα}
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are obtained from the NBAs and UBAs that accept the languages of the formulas

cl(α),¬cl(α) ∈ Sub(φ), respectively, and from the states of the NFAs that correspond

to the subformulas of the form α� ψ ∈ Sub(φ).

It remains to define the transition function δ. We start with the transitions of the

states in Q1. Let b ∈ Γ . For the states qrej and qacc , we define

δ(qrej , b) := (qrej , 1) and δ(qacc , b) :=

{
(qrej , 1) if b = #,

(qacc , 1) otherwise.

For the state q#, we define

δ(q#, b) :=

{
(qacc , 1) if b = #,

(qrej , 1) otherwise.

The transitions of the initial state qI are δ(qI , b) := (q#, 0) ∧ (φ, 1).

For a state q ∈ Q2 ∪ Q3, Aφ rejects when reading the letter #, this means, we

define δ(q,#) := (qrej , 1). For the remainder of the construction, let a ∈ 2P .

The following definitions are similar to the standard constructions for translating

LTL into alternating automata.

– For a proposition p ∈ P , we define

δ(p, a) :=

{
(qacc , 1) if p ∈ a,

(qrej , 1) otherwise
and δ(¬p, a) :=

{
(qacc , 1) if p /∈ a,

(qrej , 1) otherwise.

– For the Boolean connectives ∧ and ∨, we define

δ(ψ ∧ ψ′, a) := (ψ, 0) ∧ (ψ′, 0) and δ(ψ ∨ ψ′, a) := (ψ, 0) ∨ (ψ′, 0) .

– For the unary temporal operators X, Y, and Z, we define

δ(Xψ, a) := (ψ, 1) , δ(Yψ, a) := (ψ,−1) , and δ(Zψ, a) := (ψ,−1) ∨ (q#,−1) .

Note that for the state Zψ, the automaton Aφ guesses whether its read-only head

is at the first position by moving to state q#. In that case, it does not need to go

to the state ψ but it has to accept the word from q# and hence, the position of its

read-only head must be at the beginning of the word.

– For the binary temporal operators U, R, S, and T, we define

δ(ψ U ψ′, a) := (ψ′, 0) ∨
(
(ψ, 0) ∧ (ψ U ψ′, 1)

)
,

δ(ψ R ψ′, a) := (ψ′, 0) ∧
(
(ψ, 0) ∨ (ψ R ψ′, 1)

)
,

δ(ψ S ψ′, a) := (ψ′, 0) ∨
(
(ψ, 0) ∧ (ψ S ψ′,−1)

)
,

and

δ(ψ T ψ′, a) := (ψ′, 0) ∧
(
(ψ, 0) ∨ (ψ T ψ′,−1) ∨ (q#,−1)

)
.

Let us now turn to the transitions for the subformulas with an SERE. We follow

the construction given in [5] for PSL.
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– For a state cl(α) ∈ Sub(φ), the automaton Aφ moves to the initial state of the

NBA Bα = (S, 2P , η, sI , E) without moving its read-only head. Then, it simulates

a run of Bα on the input word. Formally, for s ∈ S, we define

δ(cl(α), a) := (cl(sI), 0) and δ(cl(s), a) :=
∨

t∈η(s,a)

(cl(t), 1) .

Similarly, for a state ¬cl(α) ∈ Sub(φ), Aφ simulates the UBA B′
α:

δ(¬cl(α), a) := (¬cl(sI), 0) and δ(¬cl(s), a) :=
∧

t∈η(q,a)

(¬cl(t), 1) ,

where B′
α = (S, 2P , η, sI , E) and s ∈ S.

– The state α� ψ ∈ Sub(φ) is used to start a simulation of the NFA Aα =

(S, 2P , η, sI , E) on the input word. If the simulation reaches a final state of the

NFA, Aφ may terminate the simulation and proceed with the state ψ. Formally,

we define δ(α� ψ, a) := (sI� ψ, 0) and for s ∈ S,

δ(s� ψ, a) :=

{∨
t∈η(s,a)(t� ψ, 1) ∨ (ψ, 0) if η(s, a) ∩ E ̸= ∅,∨
t∈η(s,a)(t� ψ, 1) otherwise.

The transitions for a subformula α−−−�ψ ∈ Sub(φ) are defined similarly. Instead of

simulating the NFA Aα, Aφ simulates the NFA A′
α, where it moves the read-only

head to the left instead of to the right.

– If the state is α� ψ ∈ Sub(φ), the automaton Aφ simulates a run of the NFA

Aα = (S, 2P , η, sI , E) seen as a universal automaton. If the simulation reaches a

final state, Aφ has to proceed with the state ψ. Formally, we define δ(α�ψ, a) :=

(sI� ψ, 0) and for s ∈ S,

δ(s� ψ, a) :=

{∧
t∈η(s,a)(t� ψ, 1) ∧ (ψ, 0) if η(s, a) ∩ E ̸= ∅,∧
t∈η(s,a)(t� ψ, 1) otherwise.

The transitions for a subformula α−−−� ψ ∈ Sub(φ) are defined similarly. However,

if the read-only head is at the beginning of the input word, Aφ can stop the

simulation. Formally, for the NFA A′
α = (S, 2P , η, sI , E) and s ∈ S, we define

δ(α−−−� ψ, a) := (sI −−−� ψ, 0) and

δ(s−−−� ψ, a) :=

{
(q#,−1) ∨

∧
t∈η(s,a)(t−−−� ψ,−1) ∧ (ψ, 0) if η(s, a) ∩ E ̸= ∅,

(q#,−1) ∨
∧
t∈η(s,a)(t−−−� ψ,−1) otherwise.

We remark that the ε-transitions in our construction (this means, the transitions of

Aφ in which the read-only head does not move) can easily be eliminated by replacing

a proposition (s, 0) that occurs in δ(q, b) with δ(s, b), where q, s ∈ Q and b ∈ Γ . Such a

replacement does not alter Aφ’s language, since the states in the configuarions that Aφ
visits by ε-transitions in a path of a run are not essential whether the run is accepting

or not.

The following lemma about the accepted language of the constructed automaton

Aφ is not difficult to prove. The proof details are given in Appendix A.

Lemma 5 The 2ABA Aφ accepts the language {#w | w ∈ L(φ)}.

From the definition of the state set Q and Lemma 4, we directly obtain Lemma 6.

Lemma 6 The 2ABA Aφ has size at most 4 + 2||φ||.
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4.1.2 Additional Properties of the Construction

The 2ABA Aφ has some additional properties, which we exploit in Section 4.2 for

constructing the NBA. Namely, Aφ is eventually 1-way and locally 1-way.

Eventually 1-Way Automata Intuitively speaking, eventually 1-way means that on

every branch of a computation, the alternating automaton will eventually move its

read-only head only forward. For the formal definition, we need the definition of a

minimal run. The set M ⊆ P is a minimal model of the positive Boolean formula

b ∈ B+(P ) over the proposition set P if M |= b and there is no p ∈ M such that

M \ {p} |= b. Let B = (S,Σ, η, sI , E) be a 2ABA. A run r : T → Q × N of B on

the word w ∈ Σω is minimal if for every node x ∈ T with r(x) = (s, j), the set

{(s, j′− j) | r(y) = (s′, j′), where y is a child of x in r} is a minimal model of η(s, wj).

The 2ABA B is eventually 1-way if for every minimal run r : T → Q × N of B and

every path (q0, h0)(q1, h1) . . . ∈ (Q × N)ω in r, there is an integer n ∈ N such that

for every i ≥ n, we have hi < hi+1. That is, after position n, the read-only head only

moves forward.

Lemma 7 The 2ABA Aφ is eventually 1-way.

Proof We start by defining the following function that assigns weights to states:

weight(q) :=



2|Sub(φ)|+ 1 if q = qI ,

2|Sub(q)| if q ∈ Q2,

2|Sub(ψ)|+ 1 if q ∈ Q3 and q is of the form s ⋆→ ψ

with ⋆→ ∈ {�,−−−�,�,−−−�},
0 otherwise.

Note that weight(α⋆→ψ) > weight(s⋆→ψ) > weight(ψ), since by definition weight(α⋆→
ψ) = 2|Sub(α⋆→ψ)| = 2|Sub(ψ)|+2, weight(s⋆→ψ) = 2|Sub(ψ)|+1, and weight(ψ) =

2|Sub(ψ)|. Let r : T → Q × N be a minimal run of Aφ on a word w ∈ Γω and

(q0, h0)(q1, h1) . . . ∈ (Q×N)ω a path in r. By using the weight function, we now show

that there is an integer n ∈ N such that for all i ≥ n, we have hi < hi+1.

Observe that by the definition of the transition function, we have weight(q′) ≤
weight(q), for all q, q′ ∈ Q whenever the proposition (q′, d) occurs in δ(q, a), where

a ∈ Γ and d ∈ D. Hence, for all positions i, j ∈ N with i < j, we have weight(qi) ≥
weight(qj). That is, the weights of the states of the configurations monotonically de-

crease along the path. Let n ∈ N be a position such that the weight becomes constant,

that is, for all i ≥ n, we have weight(qi) = weight(qn). We show that hi < hi+1, for all

i ≥ n by considering the following cases.

Case qi ∈ Q1. Since from the initial state qI we can only reach states whose weights

are strictly smaller, qi cannot be qI . Assume that qi ∈ {q#, qacc , qrej }. By the definition

of Aφ’s transition function, qi+1 ∈ {qacc , qrej } and the position of the read-only head

position increases by 1. Therefore, hi < hi+1.

Case qi ∈ Q2. Assume that qi is a state of the form ψ U ψ′ or ψ R ψ′, for ψ,ψ′ ∈
Sub(φ). Since weight(qi+1) = weight(qi), only the transition that stays in the same

state and moves the read-only head forward is possible. Hence, hi < hi+1.

Assume that qi is a state of the form ψ S ψ′ or ψ T ψ′, for ψ,ψ′ ∈ Sub(φ). Since

weight(qj) = weight(qi), from every configuration (qj , hj) with j ≥ i, only the transi-

tion that stays in the same state and moves the read-only head backward is possible.
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That means, the second component decreases and eventually becomes negative, which

is impossible.

Case qi ∈ Q3. The state qi+1 must be in Q3, since otherwise the weight would

decrease. Note that in the states Q3, Aφ simulates a run of a 1-way automaton. If

Aφ simulates a run of a 1-way automaton that always moves forward then clearly

hi < hi+1. If Aφ simulates a run of a 1-way automaton in the reverse direction,

that is, Aφ always moves backward then the position of the read-only head eventually

becomes negative, which is impossible. ⊓⊔

Locally 1-Way Automata A 2ABA B = (S,Σ, η, sI , E) is locally 1-way if η(s, b) ∈
B+(S × {0, 1}) ∪ B+(S × {−1, 0}), for every s ∈ S and b ∈ Σ. That is, the directions

are limited in which B can move its read-only head while scanning the input word.

Namely, from a configuration, the read-only head cannot move forward and backward

when reading a letter. Let us first make the following general statement that any 2ABA

can be transformed into a language-equivalent 2ABA that is locally 1-way by doubling

the state space.

Lemma 8 For every 2ABA B, there is a language-equivalent 2ABA B′ that is locally

1-way and that has size at most 2||B||.

Proof Assume that B = (Q,Σ, δ, qI , F ). We define B′ = (Q ∪ Q′, δ′, qI , F ), where

Q′ := {q′ | q ∈ Q} and the transition function δ′ : (Q ∪ Q′) × Σ → B((Q ∪ Q′) × D)

is defined as follows. Let q ∈ Q and b ∈ Σ. We define δ′(q′, b) := (q,−1) and δ′(q, b)
as the Boolean formula δ(q, b), where we replace the propositions (p,−1) by (p′, 0), for
each state p ∈ Q. The 2ABA B′ works as follows. Whenever B moves its read-only head

to the left and goes to state p, B′ mimics this by first going to the state p′ without
moving the read-only head and in the next step B′ goes from state p′ to state p, where

it also moves the read-only head to the left. Obviously, B′ is locally 1-way and accepts

the language L(B). ⊓⊔

We remark that the above given transformation in Lemma 8 is not needed in our

setting since PPSL does not have a temporal operator that simultaneously refers to the

past and to the future, and hence, the constructed 2ABA Aφ is already locally 1-way.

Lemma 9 The 2ABA Aφ is locally 1-way.

Proof The claim directly follows from inspecting Aφ’s transition function. ⊓⊔

4.2 From Eventually and Locally 1-Way 2ABAs to NBAs

In the following, we show how the alternating automaton from the previous subsection

for a PPSL formula in negation normal form can be translated into an NBA. Our

construction is based on an alternation-elimination construction for so-called loop-free

2-way alternating Büchi automata from [12]. Intuitively, loop freeness [12, 15] means

that on every branch of a computation of an 2-way alternating automaton, no configu-

ration occurs twice. An automaton that is eventually 1-way is also loop-free. However,

the converse does not hold in general.

The alternation-elimination construction presented in this subsection exploits the

fact that the given alternating automaton is eventually 1-way and locally 1-way. Over-

all, for a PPSL formula ψ with m proposition, the resulting language-equivalent NBA



14

has size O(2m · 32
2||ψ||

), which is included in O(30.631m+22
||ψ||

). With the construction

in [12], we would obtain an NBA of size O(32·2
2||ψ||

). Note that m ≤ ||ψ||. Another

advantage of the new construction is that it avoids the explicit representation of an

extended alphabet, which is used in one of the intermediate construction steps in [12]

and which is of exponential size. The presented construction also allows for a sym-

bolic implementation [11], which can be used in tools like NuSMV [8] for satisfiability

and finite-state model checking. See [6], for such implementations and an evaluation of

constructions for the special case of 1-way alternating Büchi automata.

Theorem 10 For an eventually 1-way and locally 1-way 2ABA A, there is a language-

equivalent NBA B of size O(|Σ| · 3||A||), where Σ is the alphabet of A.

Before we present the details of the automata construction to prove this theorem,

we give some intuition for the construction. For an input word w, the NBA B guesses a

run r of A = (Q,Σ, δ, qI , F ) on w and checks whether this run is accepting. For this, as

in [12,31], B represents r as a sequence of state sets R0R1 . . . ∈ (2Q)ω, where each Ri
contains the state q iff there is a path in r that visits (q, i). In the case where A is 1-way,

each Ri consists of the states that occur in the ith level of the run r. Note that in the

general case where A is 2-way, Ri might contain states that occur in different levels of

r. For instance, Ri contains the states q and q
′ from different levels if r contains a path

of the form (qI , 0) . . . (q, i) . . . (q
′, i) . . . . We can locally check whether such a sequence

R0R1 . . . represents a run of A on w. Since A is locally 1-way, B can do this as follows.

It stores the set Ri+1 and the letter wi+2 after reading the ith letter of w. For a state

q ∈ Ri with δ(q, wi) ∈ B+(Q×{0, 1}), the set (Ri×{0})∪(Ri+1×{1}) must be a model

of δ(q, wi). B checks this when reading the letter wi. For δ(q, wi) ∈ B+(Q × {−1, 0})
and i > 0, (Ri−1 × {−1}) ∪ (Ri × {0}) must be a model of δ(q, wi). B already checks

this when it reads the (i− 1)th input letter by using the guessed letter wi.

Additionally, B must check that every path in r visits infinitely often configurations

with an accepting state. Similar to the alternation-elimination construction by Miyano

and Hayashi [25] for 1-way alternating Büchi automata, B checks this property with

an additional component in the state space and its set of accepting states. Since A is

eventually 1-way, B must only track transitions that move the position of A’s read-only

head forward.

Remark 11 We remark that for the sketched construction, a weaker but less intuitive

condition for the given 2ABA A = (Q,Σ, δ, qI , F ) than the condition of locally 1-way

suffices. Namely, for every q ∈ Q, b ∈ Σ, and M ⊆ Q× {−1, 0, 1}, it suffices to require

that if M ∪ (Q × {1}) |= δ(q, b) and M ∪ (Q × {−1}) |= δ(q, b) then M |= δ(q, b).

It is easy to see that this property holds for locally 1-way 2ABAs. Note that we can

check this weaker property by transforming the Boolean formulas of the automaton’s

transition function into CNF and checking whether each clause is in B+(Q × {0, 1})
or B+(Q × {−1, 0}). Furthermore, we note that this weaker property is of practical

interest. We can exploit it to reduce the size of the 2ABA Aφ that we obtain from our

construction for a PPSL formula φ in negation normal form.

Proof (Theorem 10) We now give the details of the construction with this weaker

condition from Remark 11 and then prove the correctness of the construction. For the

eventually 1-way and locally 1-way 2ABA A = (Q,Σ, δ, qI , F ), we define the NBA

B := (Q′, Σ, η, pI , E) with Q′ := {pI} ∪ {(a,R, S) ∈ Σ × 2Q × 2Q\F | S ⊆ R} and

E := Σ × 2Q × {∅}. Note that |Q′| ∈ O(|Σ| · 3|Q|) since we require that S is a subset
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of R for the states of the form (a,R, S). For b ∈ Σ, the transition function η is defined

as follows. For the initial state pI , η(pI , b) contains the state (c,R′, S′) iff S′ = R′ \ F
and there is some R ⊆ Q such that qI ∈ R,(

R× {0}
)
∪
(
R′ × {1}

)
|=

∧
q∈R

δ(q, b)

and (
R× {−1}

)
∪
(
R′ × {0}

)
∪
(
Q× {1}

)
|=

∧
q∈R′

δ(q, c) .

For a state (a,R, S), the transition function η is defined as follows. If a ̸= b then

η
(
(a,R, S), b

)
:= ∅. If a = b then η

(
(a,R, S), b

)
contains the state (c,R′, S′) iff the

following conditions for c, R′, and S′ are satisfied: First,(
Q× {−1}

)
∪
(
R× {0}

)
∪
(
R′ × {1}

)
|=

∧
q∈R

δ(q, b)

and (
R× {−1}

)
∪
(
R′ × {0}

)
∪
(
Q× {1}

)
|=

∧
q∈R′

δ(q, c) .

Second, S′ = R′ \ F if S = ∅, and if S ̸= ∅ then S′ ⊆ R′ \ F and(
S′ ∪ (F ∩R′)

)
× {1} |=

∧
q∈S

δ(q, b) .

In the remainder of the proof, we show that L(A) = L(B).
(⊆) Assume that r is an accepting run of A on w ∈ Σω. We define a run ϱ of B on w

as follows. Note that ϱ has to be a sequence of the form pI(a1, R1, S1)(a2, R2, S2) . . .

with ai ∈ Σ, Ri ⊆ Q, and Si ⊆ Ri \F , for all i > 0. We define the components ai, Ri,

and Si separately.

For i > 0, we define ai := wi and for i ≥ 0, we define

Ri := {q ∈ Q | there is a node v of r such that r(v) = (q, i)} .

The sets Si are inductively defined: S0 := ∅ and for i > 0, we define

Si :=


Ri \ F if Si−1 = ∅,
{s′ ∈ Q \ F | r has a node u with a child v such that

r(u) = (s, i− 1), s ∈ Si−1, and r(v) = (s′, i)} otherwise.

Note that Si ⊆ Ri, for all i ∈ N.

We first prove that for every i ≥ 0, there is some j ≥ i such that Sj = ∅. Let i ≥ 0.

Assume that there is no j ≥ i with Sj = ∅. From the sets Si, Si−1, . . . , we obtain a

directed graph G with the vertexes (p, j) with p ∈ Sj . The edges are according to the

run r of the automaton A on the word w. Observe that G is finitely branching and

every vertex is reachable from some vertex of the form (p, i). Furthermore, G is infinite,

since we assume that Sj ̸= ∅, for all j ≥ i. By König’s Lemma, it follows that there

is an infinite path in G starting from a vertex (p, i). This path never visits a vertex in

which a state in F occurs. This contradicts the assumption that every path in the run

r infinitely often visits a configuration in which a state in F occurs.

It remains to prove that (a1, R1, S1) ∈ δ(pI , w0) and that (ai+1, Ri+1, Si+1) ∈
δ((ai, Ri, Si), wi), for all i > 0.
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– We start with the second case. Let i > 0. First, consider some arbitrary q ∈ Ri.

By definition, there is a node u of r with r(u) = (q, i). Let v1, . . . , vn be the

children of u in r. Without loss of generality, we assume that r(vj) = (qj , hj) with

hj ∈ {i− 1, i, i+1}, for all j with 1 ≤ j ≤ n. Since r is a run and ai = wi, we have

{(q1, h1 − i), . . . , (qn, hn− i)} |= δ(q, ai). For all j with 1 ≤ j ≤ n, we have qj ∈ Ri
if hj = i, and qj ∈ Ri+1 if hj = i+ 1. Since δ(q, ai) is a positive Boolean formula,

we obtain (
Q× {−1}

)
∪
(
Ri × {0}

)
∪
(
Ri+1 × {1}

)
|= δ(q, ai) .

Second, consider some arbitrary q ∈ Ri+1. By definition, there is a node u of r with

r(u) = (q, i+1). Let v1, . . . , vn be the children of u in r. Without loss of generality,

we assume that r(vj) = (qj , hj) with hj ∈ {i, i+ 1, i+ 2}, for all j with 1 ≤ j ≤ n.

Since r is a run and ai+1 = wi+1, we have {(q1, h1 − i− 1), . . . , (qn, hn− i− 1)} |=
δ(q, ai+1). For all j with 1 ≤ j ≤ n, we have qj ∈ Ri−1 if hj = i− 1, and qj ∈ Ri
if hj = i. Since δ(q, ai+1) is a positive Boolean formula, we obtain(

Ri × {−1}
)
∪
(
Ri+1 × {0}

)
∪
(
Q× {1}

)
|= δ(q, ai+1) .

If Si = ∅ then Si+1 = Ri+1 \ F by definition. For the case Si ̸= ∅, the reasoning is

similar as for the second components Ri and Ri+1 of the states.

– The reasoning for the first case is similar to the second case by setting i to 0. We

have qI ∈ R0, since the root of r is labeled by the configuration (qI , 0). Furthermore,

by definition, we have S1 = R1 \ F .

(⊇) Assume that ϱ is an accepting run on w ∈ Σω. Without loss of generality, assume

that ϱ has the form pI(a1, R1, S1)(a2, R2, S2) . . . with ai ∈ Σ, Ri ⊆ Q, and Si ⊆ Ri\F ,

for all i > 0. Furthermore, let R0 ⊆ Q be a set for which we require its existence in

the definition of the transition function from state pI .

We construct a run r of A on w inductively over the length of a node. An invariant

of the construction is that if a node is labeled by (q, i) then q ∈ Ri, for all q ∈ Q and

i ∈ N. We label the root of r by (qI , 0). The construction invariant is obviously satisfied

since in the definition of the transitions from state pI , we require that qI ∈ R0. Let u

be a node of r with r(u) = (q, i), for some q ∈ Q and i ∈ N. We have q ∈ Ri. There

are two cases.

– Assume that i = 0. By definition of the transition function, we have(
R0 × {0}

)
∪
(
R1 × {1}

)
|=

∧
q∈R0

δ(q, w0).

Let M ⊆
(
R0 × {0}

)
∪
(
R1 × {1}

)
be a minimal model of δ(q, w0). We define the

children of u as follows: for each proposition (p, d) ∈ M , u has a child v that is

labeled by (p, d). This definition obviously satisfies the construction invariant.

– Assume that i > 0. By the definition of the transition function, we have(
Q× {−1}

)
∪
(
Ri × {0}

)
∪
(
Ri+1 × {1}

)
|=

∧
q∈Ri

δ(q, wi)

and for j := i− 1,(
Rj × {−1}

)
∪
(
Rj+1 × {0}

)
∪
(
Q× {1}

)
|=

∧
q∈Rj+1

δ(q, wj+1) .
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By the assumption that A is locally 1-way (or has the more general property from

Remark 11), we infer

(
Ri−1 × {−1}

)
∪
(
Ri × {0}

)
∪
(
Ri+1 × {1}

)
|=

∧
q∈Ri

δ(q, wi) .

LetM ⊆
(
Ri−1×{−1}

)
∪
(
Ri×{0}

)
∪
(
Ri+1×{1}

)
be a minimal model of δ(q, ai).

We define the children of u as follows: for each proposition (p, d) ∈M , u has a child

v that is labeled by (p, i + d). This definition obviously satisfies the construction

invariant.

It is straightforward to see that r is a minimal run of A on w. Note that from the

definition of B’s transition function, we have wi = ai, for all i > 0.

It remains to show that r is accepting. For the sake of contradiction, assume that

there is a rejecting path π in r with r(π) = (p0, h0)(p1, h1) . . .. Since r is a minimal run

of an eventually 1-way automaton, there is a position n ∈ N such that for all i ≥ n, we

have hi < hi+1 and pi /∈ F . By the construction invariant, we have pi ∈ Ri, for all i ∈ N.

Consider a position m ≥ n with Sm = ∅. This position exists because ϱ is accepting.

The state pm+1 is a member of Sm+1 since ϱ is a run of B and Sm+1 = Rm+1 \F . By

induction, we infer that for all positions i ≥ m + 1 we have pi ∈ Si since ϱ obeys the

transition function of B. This contradicts the assumption that ϱ is an accepting run of

B. ⊓⊔

We obtain the following result by putting the two constructions from Section 4.1

and Theorem 10 together.

Theorem 12 For any PPSL formula ψ with m propositions, there is a language-

equivalent NBA C of size O(2m · 32
2||ψ||

).

Proof First, we transform ψ into a logically equivalent formula ψ′ that is in negation

normal form of size 2||ψ||. Let Aψ′ be the 2ABA that we obtain from ψ′ by the con-

struction in Section 4.1. By the Lemmas 6, 7, and 9, Aψ′ is eventually 1-way, locally

1-way, and its size is bounded by 4 + 22||ψ||. By Lemma 5, Aψ′ accepts the language

{#w | w ∈ L(ψ)}. By Theorem 10, we translate Aψ′ into a language-equivalent NBA

B = (Q, {#} ∪ 2P , δ, qI , F ) with O(2|P | · 32
2||ψ||

) states. Note that we assume without

loss of generality that P contains only the propositions that occur in ψ. We define the

NBA C = (Q, 2P , δ′, qI , F ), where δ′(q, a) := δ(q, a), for q ∈ Q \ {qI} and a ∈ 2P ,

and δ′(qI , a) := {q′ | q′ ∈ δ(q, a), for some q ∈ δ(qI ,#)}. We have L(C) = L(ψ) and

||C|| ∈ O(2|P | · 32
2||ψ||

). ⊓⊔

We make the following remark on the size of the resulting NBA of the presented

construction for PPSL.

Remark 13 The size of the constructed 2ABAAφ in Section 4.1 depends on the number

of subformulas of the given PPSL formula φ in negation normal form and the sizes

of the automata for the SEREs in φ. First, we remark that the construction shares

subformulas and the SEREs occurring in them, and that |Sub(φ)| ≤ ||φ||. Second, for
a bounded number of intersection operators in the SEREs of the formula, we obtain

a polynomial upper bound on the sizes of automata for the SEREs. In particular, for
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an SERE α with n intersection operators, there is a language-equivalent NFA of size

||α||1+n. It follows that the size of the 2ABA Aφ is bounded by

4 + |Sub(φ)| +
∑

α⋆→ψ∈Sub(φ)

||α||1+Is(α) +
∑

cl(α)∈Sub(φ)

||α||1+Is(α) +
∑

¬cl(α)∈Sub(φ)

||α||1+Is(α)

when φ is in negation normal form. Here, ⋆→ ranges over the elements in the set

{�,�,−−−�,−−−�}. With this new upper bound, we conclude that for a PPSL formula

ψ with m propositions, there is a language-equivalent NBA of size

O
(
2m · 32·|Sub(ψ)|+2·

∑
α⋆→ψ∈Sub(φ) ||α||

1+Is(α)+2·
∑

cl(α)∈Sub(φ) ||α||
1+Is(α))

,

which refines the upper bound in Theorem 12. In particular, the size of the resulting

NBA is only exponential in the size of ψ and not double exponential anymore when the

number of intersection operators in the SEREs are bounded. Note that in the worst

case the transformation of ψ into a PPSL formula in negation normal form doubles

|Sub(ψ)| and the number of SEREs in the subformulas.

5 Consequences of the Translation

In this section, we prove some facts that follow from Theorem 12.

Since SVA can already express all ω-regular languages, we have that PPSL describes

exactly the ω-regular languages. Moreover, SVA, PSL, and PPSL share the same com-

putational complexity. In particular, the satisfiability and the model-checking problem

for PPSL are EXPSPACE-complete in general and PSPACE-complete for PPSL for-

mulas with a bounded number of intersection operators.

Theorem 14 The satisfiability problem and the model-checking problem for PPSL are

EXPSPACE-complete in general and PSPACE-complete for PPSL formulas with a

bounded number of intersection operators.

Proof We first show the EXPSPACE membership of the satisfiability problem for

PPSL. Satisfiability of an instance φ can be checked by determining whether the lan-

guage of the NBA Bφ according to Theorem 12 is nonempty. The emptiness check

can be done by two simple reachability checks in the state graph of Bφ: an accepting

state needs to be found so that (1) it is reachable from the initial state and (2) it

must be reachable from itself by a nonempty loop. Reachability can be decided in

nondeterministic logarithmic space in the size of Bφ, and therefore in nondeterminis-

tic exponential space in the size of φ. The crucial insight here is that the automaton

can be constructed on-the-fly (see, e.g., [32]) whilst being checked for emptiness. Since

NEXPSPACE equals EXPSPACE according to Savitch’s Theorem [30], we conclude

that the satisfiability problem for PPSL is in EXPSPACE.

If the number of intersection operators in the SEREs that occur in the instances φ

is bounded by some constant, then the size of the NBA Bφ is bounded by O(2p(||φ||)),
for some polynomial p (see Remark 13). In this case, we can check emptiness of Bφ in

NPSPACE (measured in the size of φ), which equals PSPACE using Savitch’s Theorem

again.

Not surprisingly, these upper bounds transfer to the model-checking problem, that

is, the question whether all paths in a given Kripke structure K from a state s of K
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satisfy a given PPSL formula φ. Since PPSL is closed under negation, we can build an

NBA B¬φ and check whether the intersection of the automaton’s language with the

language of the Kripke structure is empty. As above, the construction of B¬φ is done

on-the-fly while carrying out the emptiness check of the intersection of B¬φ and the

Kripke structure K.

The hardness results for the statisfiability and the model-checking problem for

PPSL follow directly from the hardness results for PSL and SVA, which are shown

in [7, 20]. ⊓⊔

Another similarity between the logics is that they all have the small model property

of doubly exponential size. In particular, there is a constant c > 0 such that a satisfiable

PPSL formula φ has a model of the form uvω with |uv| ≤ c · 2||φ|| · 32
2||φ||

.

Corollary 15 Every satisfiable PPSL formula φ has a model of the form uvω with

|uv| ∈ O(2||φ|| · 32
2||φ||

).

Proof It is well known that every NBA with n states that accepts a non-empty language

accepts a word of the form uvω such that |u|+ |v| ≤ n. With this, the statement follows

immediately from Theorem 12. ⊓⊔

Since PSL/SVA and PPSL describe the same class of properties, the question arises

of their relative succinctness. The next theorem states an upper bound on the transla-

tion from PPSL to SVA. Roughly speaking, for the proof, we translate a PPSL formula

into an NBA, which is in turn translated into a deterministic Muller automaton. From

the Muller automaton we obtain an ω-regular expression, which we finally translate

into an SVA formula. We remark that a similar translation using regular expressions

and the connectives� and� appears in [3] to show that the logic ForSpec is capa-

ble of describing all ω-regular languages. However, no upper bounds of the translation

in [3] are given.

Recall that Muller automata are defined similar to Büchi automata except that

their acceptance condition is given as a set of set of states. In particular, a run of a

deterministic Muller automaton with the acceptance condition F is accepting if the set

of states visited infinitely often is in F . For the sake of readability, we define 2x0 := x

and 2xk := 22
x
k−1 , for k > 0.

Theorem 16 For any PPSL formula φ, there is an initially equivalent SVA formula

of size 2
O(||φ||)
4 and in which the intersection operator does not occur.

Proof According to Theorem 12, we construct for the PPSL formula φ, an NBA Bφ
with L(Bφ) = L(φ) and ||Bφ|| ∈ O(2||φ|| · 32

2||φ||
). From the NBA Bφ, we obtain

a language-equivalent deterministic Muller automaton A = (Q,Σ, δ, qI ,F) by using

Safra’s construction [28]. The size of A is 2O(||Bφ||·log ||Bφ||) ⊆ 2
O(||φ||)
3 .

We describe the language of L(A) as follows in terms of finite word languages. For

S ⊆ Q and s, t ∈ S, ASs,t denotes the NFA (S,Σ, δ′, s, {t}) with δ′(p, a) := δ(p, a) ∩ S,
for all p ∈ S and a ∈ Σ. That means, we restrict A’s state space to S and view it as

an automaton over finite words with the initial state s and the singleton acceptance

set {t}. Furthermore, Lω denotes the language of infinite words that we obtain by an

infinite concatenation of nonempty words from the language L of finite words. We have

L(A) =
∪

F∈F with
F={f1,...,fn}

L(AQqI ,f1) ;
(
L(AFf1,f2) ; . . . ; L(A

F
fn−1,fn) ; L(A

F
fn,f1)

)ω
. (5)
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In the remainder of the proof, we will use REs and the operators � and �
to express the right-hand side of (5) as an SVA formula. Recall that for S ⊆ Q and

r, s ∈ S, the finite word language L(ASs,t) can be expressed as an RE αSs,t of size

O(2|S|), see [18]. Furthermore, observe that for an SERE α with L(α) ̸= ∅ and a PPSL

formula ψ, we have

L(α) ; L(ψ) = L(α� Xψ) ∪

{
L(ψ) if ε ∈ L(α),

∅ otherwise.
(6)

For an SERE α with L(α) ̸= ∅ and L(α) ̸= {ε}, we have(
L(α)

)ω
= L

(
α� tt

)
∩ L

(
α∗� X(α� tt)

)
(7)

whenever L(α) satisfies for all nonempty finite words u, v the condition: if uv ∈ L(α)

and u ∈ L(α) then v ∈ L(α). Note that not every regular expression satisfies the

equality (7). However, in our case, the equality holds, since the regular expression (see

definition below) represents the words in a deterministic automaton that describe a

loop from a given state.

For F ∈ F with F = {f1, . . . , fn}, we define the RE

βFf1,...,fn := αFf1,f2 ; . . . ; αFfn−1,fn ; αFfn,f1 .

Obviously, we have L(βFf1,...,fn) = L(AFf1,f2) ; . . . ; L(A
F
fn−1,fn

) ; L(AFfn,f1). Moreover,

L(βFf1,...,fn) satisfies the condition that a nonempty word v is in L(βFf1,...,fn) whenever

a nonempty word u and the word uv are both in L(βFf1,...,fn).

To simplify matters, we assume in the following, without loss of generality, that

every F ∈ F is reachable from the initial state, this means, L(AQqI ,f ) ̸= ∅, for each

f ∈ F . We also assume for each F ∈ F that qI ̸∈ F and that L(AFf,f ′) ̸= ∅ and

L(AFf,f ′) ̸= {ε}, for all f, f ′ ∈ F .

With the equalities (5), (6), and (7) at hand, it is straightforward to see that the

following SVA formula φ′ is initially equivalent to φ:

φ′ :=
∨

F∈F with
F={f1,...,fn}

αQqI ,f1 � XψFf1,...,fn ,

where ψFf1,...,fn := (βFf1,...,fn� tt) ∧ ((βFf1,...,fn)
∗� X(βFf1,...,fn� tt)). Obviously,

no intersection operator occurs in the SEREs of φ′. An upper bound on the length of

φ′ is

||φ′|| ∈ O
( ∑
F∈F

(2|Q| + 3 · |F | · 2|F |)
)
⊆ O(2|Q| · 23·|Q|) ⊆ 2

O(||φ||)
4 .

⊓⊔

It is fair to ask whether the upper bound in Theorem 16 is optimal, this means,

whether there is a family of PPSL formulas such that every initially equivalent family

of PSL formulas must be triply exponentially larger. The result on the small model

property shows that such a lower bound cannot be proved by comparing the model

sizes (see, for example, the Gap Lemma in [21]). We are only able to establish an

exponential lower bound. This result is presented in the next section.
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Table 1 Succinctness gaps

6 Succinctness Gaps

In this section, we prove an exponential succinctness gap between PPSL and PSL/SVA,

this means, there is a family (Φn)n>0 of PPSL formulas such that for every family

(Ψn)n>0 of PSL (and therefore also SVA) formulas, if Ψn is initially equivalent to Φn
for all n > 0, then ||Ψn|| is exponential in ||Φn||. In fact, our result is stronger since the

formulas Φn that we define are just PSVA formulas. The proof of this succinctness result

can easily be adapted to show that PSVA and, hence, PPSL, is double exponentially

more succinct than LTL on the star-free languages. Figure 1 summarizes the results of

this section.

Our proof for the succinctness gap between PSVA and PSL has a similar flavor as

the proof in [24], which shows that PLTL is exponentially more succinct than LTL.

However, our proof is more involved since we must take SEREs into account. In fact,

the formulas in the family of PLTL formulas that is used in [24] are initially equiva-

lent to SVA formulas of linear size. From this observation, we conclude that SVA is

exponentially more succinct than LTL on the star-free languages.

Lemma 17 For every n > 0, there is an SVA formula Υn such that for any LTL

formula Ξn, if L(Ξn) = L(Υn) then ||Ξn|| ∈ Ω(2||Υn||).

Proof Let P be the set {p0, p1, . . . , pn} of propositions. We define Υn as the SVA

formula αn� ff, where αn is the SERE(
(p0 ; tt∗ ; ¬p0) ∪ (¬p0 ; tt∗ ; p0)

)
∩

∩
1≤i≤n

(
(pi ; tt

∗ ; pi) ∪ (¬pi ; tt∗ ; ¬pi)
)
.

It is easy to see that Υn is initially equivalent to the PLTL formula

G
( ∧
1≤i≤n

(pi ↔ OHpi) → (p0 ↔ OHp0)
)
.

Literally, the SVA formula Υn and the above PLTL formula state that for any position,

p0’s truth value is equal the corresponding truth value at the initial position when-

ever the truth values of the propositions p1, . . . , pn at that position are equal to the

corresponding truth values at the initial position.

From [24], it follows that any LTL formula Ξn that is initially equivalent to Υn is

exponentially larger than Ξn. ⊓⊔
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Let us now turn to the succinctness gap between PSVA and PSL. For this, we first

introduce so-called n-counting words, which can be defined in SVA by formulas of size

O(n). In the following, let n > 0, Pn be the set {c0, . . . , cn−1, p, q} of propositions, and

Σn the alphabet 2Pn . The n-value of the letter b ∈ Σn is

valn(b) :=
∑

0≤i<n
2c

′
i with c′i :=

{
1 if ci ∈ b,

0 otherwise.

In other words, the n-value of b is obtained by reading c0, . . . , cn−1 as bits of a positive

integer in binary representation. A word w ∈ Σωn is n-counting if valn(w0) = 0 and

valn(wi+1) ≡ valn(wi) + 1 mod 2n, for all i ∈ N.

Lemma 18 For every n > 0, there is an SVA formula countn of size O(n) such that

L(countn) ⊆ Σωn is the language of n-counting words.

Proof Recall that the temporal operators G and X can easily be defined in SVA by

using the operator�.

We define countn as the SVA formula( ∧
0≤i<n

¬ci
)
∧ G

(
¬Xc0 ↔ c0

)
∧

∧
1≤i<n

G
(
Xci ↔

(
ci ↔ (ci−1 → Xci−1)

))
.

It is easily checked that w ∈ Σωn is a model of countn iff w is n-counting. ⊓⊔

An n-segment of a word w ∈ Σωn is a subword v = wi . . . wi+2n−1 such that i ≡ 0

mod 2n, for some i ∈ N. The n-segment v is initial if i = 0. For a proposition r ∈ {p, q},
the words u, v ∈ Σ∗

n are r-equal if |u| = |v| and r ∈ ui ⇔ r ∈ vi, for all i ∈ N with

i < |v|. In other words, the projection of two r-equal words onto r yields the same

word. Let Ln and L′
n be the following languages:

– Ln consists of the n-counting words w ∈ Σωn such that if an n-segment of w is

p-equal to the initial n-segment of w then they are also q-equal.

– L′
n consists of the n-counting words w ∈ Σωn such that if the n-segments u and v

of w are p-equal then they are also q-equal.

The languages Ln and L′
n have the following properties.

Lemma 19 For every n > 0, there is a PSVA formula Φn of size O(n) such that

L(Φn) = Ln.

Proof First, we define the SERE sameposn such that for every subword v ∈ Σ∗
n of an

n-counting word w ∈ Σωn , it holds that v ∈ L(sameposn) iff v = wi..j , for some i, j ∈ N
with i < j and i ≡ j mod 2n. Note that since v is a finite subword of an n-counting

word, one only has to assert that the n-values of the first and the last letter of v are

equal. We define

sameposn :=
∩

0≤i<n

(
(ci ; tt

∗ ; ci) ∪ (¬ci ; tt∗ ; ¬ci)
)
.

With the SERE sameposn at hand, we easily define a PPSL formula that checks

whether a position is in the initial n-segment of an n-counting word:

initialn := ¬(sameposn−−−� tt) .
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For an n-counting word w ∈ Σωn and i ∈ N, we have w, i |= initialn iff i < 2n. Moreover,

for a PPSL formula ψ, we define

backψn := sameposn−−−� (initialn ∧ ψ) .

For an n-counting word w ∈ Σωn and i ∈ N, it holds that w, i |= backψn iff w, i mod 2n |=
ψ. Intuitively, backψn goes back in the word w until it reaches the position in the initial

n-segment with same counter values as the current position, and there it checks whether

ψ holds. Next, we define the SERE withinn := (¬cn−1)
∗;(cn−1)

∗. We use it for checking

if a larger position than the current position is still in the same n-segment of an n-

counting word. Note that the highest bit cn−1 of the counter is only allowed to change

its value from 0 to 1 once. The formula startn :=
∧

0≤i<n ¬ci checks whether a position

is the first one of an n-segment in an n-counting word.

Finally, consider the PPSL formula Φn := countn ∧ φn, where

φn := G
(
startn ∧

(
withinn� (p↔ backpn)

)
→

(
withinn� (q ↔ backqn)

))
.

The formula φn states that for any n-segment of an n-counting word, if the Boolean

value of p at every position of that n-segment coincides with the Boolean value of p

at the corresponding position of the initial n-segment, then the same holds for the

Boolean values of q. Hence, we have L(Φn) = Ln. Furthermore, it is easy to see that

||Φn|| ∈ O(n). ⊓⊔

Lemma 20 For every n > 0, if B is an NBA with L(B) = L′
n then ||B|| ≥ 2n3 .

Proof Throughout the proof, let N := 2n2 . Note that there are N different n-segments

with respect to the proposition p. Recall that an n-segment has length 2n. Let the

words v0, . . . , vN−1 ∈ {∅, {p}}∗ be an enumeration of all these n-segments with vi =

vi,0 . . . vi,2n−1. For S ⊆ {0, . . . , N − 1} × {0, . . . , 2n − 1} and i ∈ {0, . . . , N − 1}, we
define vSi := vSi,0 . . . v

S
i,2n−1, where

vSi,j :=

{
vi,j ∪ wj ∪ {q} if (i, j) ∈ S,

vi,j ∪ wj otherwise,

for j ∈ {0, . . . , 2n − 1} and an n-counting word w ∈ (2{c0,...,cn−1})ω. Note that in the

above definition we add the counter values to the n-segment vi and the set S prescribes

at which positions the proposition q should be added to the n-segments v0, . . . , vN−1.

Finally, we define the word vS := vS0 . . . v
S
N−1. Observe that there are M := 2N ·2n

different such sets S. Note that M ≥ 2n3 . Also, for every such S we have (vS)ω ∈ L(B).
Suppose that ||B|| < M . Then, by the pigeon hole principle, there are sets S, S′ ⊆

{0, . . . , N − 1} × {0, . . . , 2n − 1} with S ̸= S′ such that an accepting run π of B on

(vS)ω and an accepting run π′ of B on (vS
′
)ω visit the same state s after N · 2n many

steps, this means, after reading the prefixes vS and vS
′
respectively. The suffixes of

these runs could be interchanged which would create accepting runs on (vS)(vS
′
)ω for

example, even though (vS)(vS
′
)ω ̸∈ L′

n. ⊓⊔

With the above lemmas we obtain our succinctness result for PSVA and PSL.

Theorem 21 For every n > 0, there is a PSVA formula Φn such that L(Φn) = Ln
and for every PSL formula Ψn, if L(Ψn) = Ln then ||Ψn|| ∈ Ω(2||Φn||).
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Proof For a given n > 0, take the PSVA formula Φn from Lemma 19. Suppose that Ψn
is a PSL formula that is initially equivalent to Φn. Let Ψ

′
n := countn ∧ G(¬c0 ∧ · · · ∧

¬cn−1 → Ψn). Note that Ψ ′
n expresses that a model is n-counting and each two p-equal

n-segments in a model are also q-equal, this means, L(Ψ ′
n) = L′

n. By Theorem 12, there

is an NBA B of size 2
O(||Ψ ′

n||)
2 and L(B) = L(Ψ ′

n). By Lemma 20, we have ||B|| ≥ 2n3 .

It follows that ||Ψ ′
n|| ∈ Ω(2||Φn||). Since Ψ ′

n is linear in the size of Ψn, we conclude that

||Ψn|| ∈ Ω(2||Φn||). ⊓⊔

Note that Ln is a star-free language, this means, there is an LTL formula φn
such that L(φn) = Ln. We now adapt the proof of Theorem 21 to obtain a double

exponential succinctness gap between PSVA and LTL.

Theorem 22 For every n > 0, there is a PSVA formula Φn such that L(Φn) = Ln

and for any LTL formula Ξn, if L(Ξn) = Ln then ||Ξn|| ∈ Ω(2
||Φn||
2 ).

Proof For a given n > 0, take the PSVA formula Φn from Lemma 19. Suppose that

Ξn is a LTL formula that is initially equivalent to Φn. Let Ξ
′
n := countn ∧ G(¬c0 ∧

· · · ∧ ¬cn−1 → Ξn). Observe that we can adapt Lemma 18 so that countn is an LTL

formula. We remark that Ξ′
n expresses that a model is n-counting and each two p-equal

n-segments in a model are also q-equal, this means, L(Ξ′
n) = L′

n. By Theorem 12 and

Remark 13, there is an NBA B of size 2O(||Ξ′
n||) and L(B) = L(Ξ′

n). By Lemma 20, we

have ||B|| ≥ 2n3 . It follows that ||Ξ′
n|| ∈ Ω(2

||Φn||
2 ). Since Ξ′

n is linear in the size of Ξn,

we conclude that ||Ξn|| ∈ Ω(2
||Φn||
2 ). ⊓⊔

Remark 23 We conclude this section by stating some open problems related to the

presented succinctness gaps. First, it remains open whether the exponential succinct-

ness gap still holds between PPSL and extensions of PSL/SVA with restricted variants

of the past operators like the ones discussed in Remark 1. We did not succeeded in

proving such a gap, neither did we succeed in expressing the languages Ln concisely in

such an extension. Second, it remains open whether the succinctness gaps carry over

to a fixed and finite proposition set. Note that the proposition sets Pn over which the

PSVA formulas Φn are defined grow linearly in n. As shown in [13], we can encode

any number of propositions by a single proposition. However, the sizes of the adapted

formulas for Φn are no longer linear in n. In particular, the sizes of the adapted SEREs

sameposn in Lemma 19 are quadratic in n. It is not obvious how to adapt these SEREs

so that their sizes remain linear in n. Therefore, for a fixed and finite proposition set,

we only obtain a superpolynomial succinctness gap between PSVA and SVA. Note

that for similar reasons, the adapted proof of the succinctness gap between PLTL and

LTL in [22, 24] for a fixed and finite proposition set also only shows that PLTL is

superpolynomially more succinct than LTL.

7 Conclusion

In this article, we have proposed the temporal logic PPSL, which extends PSL and SVA

with past operators. We have analyzed its complexity and our results show that PPSL

and PSL/SVA are similarly related as PLTL and LTL with respect to expressiveness,

succinctness, and the computational complexities of the satisfiability and the model-

checking problem. It remains to be seen whether the advantages of PPSL over PSL
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and SVA pay off in practice. The presented translation for PPSL into NBAs shows

that the additional cost for handling past operators is small and should not be a

burden in implementing PPSL in system verification. Our preliminary experience with

a prototype implementation for the model checker NuSMV are promising.2
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A Additional Proof Details

In this appendix, we prove Lemma 5 about the accepted language of the 2ABA Aφ constructed
in Section 4.1.

It suffices to prove that for every word w ∈ (2P )ω , ψ ∈ Sub(φ), and i ∈ N, it holds that

w, i |= ψ iff Aφ accepts #w from the configuration (ψ, i+ 1) .

From this equivalence it immediately follows that L(Aφ) = {#w | w ∈ L(φ)}. Observe that
Aφ ensures from its initial state qI that exactly the letter at position 0 of an input word is
# and that Aφ makes a transition from qI so that it starts scanning the input word from the
configuration (φ, 1). We prove the above equivalence by induction over the formula structure
of ψ. Let w ∈ (2P )ω .

Base Case ψ = p, for some p ∈ P . Let i ∈ N. By definition, w, i |= p is equivalent to
p ∈ wi. By construction, we have p ∈ wi iff Aφ accepts #w from the configuration (p, i + 1)
by reading the letter wi and moving to the state qacc . The base case for ψ = ¬p is analogous.

Base Case ψ = cl(α), for some SERE α. Let i ∈ N. By construction of the NBA Bα, we
have w, i |= cl(α) iff Bα accepts wi... By construction of Aφ, this is equivalent to the fact that
Aφ accepts #w from the configuration (cl(α), i+1). The base case for ψ = ¬cl(α) is analogous.

Step Case ψ = ψ1 ∧ ψ2. Let i ∈ N. Assume that w, i |= ψ, this means, w, i |= ψ1 and
w, i |= ψ2. By induction hypothesis, this is equivalent to the fact that Aφ accepts #w from
the configuration (ψk, i + 1), for every k ∈ {1, 2}. From the construction of Aφ, we conclude
that w, i |= ψ iff Aφ accepts #w from (ψ, i+ 1). The step case for ψ = ψ1 ∨ ψ2 is analogous.

Step Case ψ = Xγ. Let i ∈ N. Assume that w, i |= Xγ, this means, w, i+1 |= γ. By induction
hypothesis, we obtain the equivalent fact that Aφ accepts #w from the configuration (γ, i+2),
which is equivalent to the fact that Aφ accepts #w from the configuration (Xγ, i+ 1) by the
construction of Aφ. The step case for ψ = Yγ is analogous.

Step Case ψ = Zγ. Let i ∈ N. Assume that w, i |= Zγ, this means, i = 0 or i > 0 and
w, i−1 |= γ. By construction of Aφ, the first disjunct is equivalent to the fact that Aφ accepts
#w from the configuration (q#, 0). By induction hypothesis, the second disjunct is equivalent
to the fact that Aφ accepts #w from the configuration (γ, i−1), if i > 0. From the construction
of Aφ, we conclude that w, i |= Zγ iff Aφ accepts #w from the configuration (Zγ, i+ 1).

Step Case ψ = ψ1 U ψ2. Let i ∈ N. Assume that w, i |= ψ1 U ψ2, this means, there
is a k ≥ i such that w, k |= ψ2 and w, j |= ψ1, for all j with i ≤ j < k. By induction
hypothesis, this is equivalent to the fact that there is a k ≥ i such that Aφ accepts #w from
the configuration (ψ2, k + 1) and Aφ accepts #w from the configuration (ψ1, j + 1), for all j
with i ≤ j < k. We claim that this is equivalent to the fact that Aφ accepts #w from the
configuration (ψ1 U ψ2, i+ 1).

We first show the direction from left to right. Assume that the left-hand side holds. Then,
Aφ accepts #w from the configuration (ψ1 Uψ2, k− 1) since it accepts from the configuration
(ψ2, k). It follows that Aφ accepts #w from the configuration (ψ1 Uψ2, k− 2) since it accepts
from the configuration (ψ1 U ψ2, k− 1) and from the configuration (ψ1, k− 1) by assumption.
Similarly, Aφ accepts #w from the configuration (ψ1 U ψ2, j + 1), for all i ≤ j < k. Thus, the
right-hand side holds.

For the other direction, assume that the right-hand side holds. Let r be an accepting
run of Aφ on #w from the configuration (ψ1 U ψ2, i + 1). For the sake of contradiction, we
additionally assume that the left-hand side does not hold, this means, we have the property

2 Our tool is publicly available at www.infsec.ethz.ch/research/Software/#PSL2BA.
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(∗): there is no k ≥ i such that Aφ accepts #w from the configuration (ψ2, k + 1) and Aφ

accepts from the configuration (ψ1, j + 1), for all j with i ≤ j < k. From (∗), it follows that
Aφ does not accept #w from the configuration (ψ2, i + 1). By assumption, Aφ accepts from
the configuration (ψ1 U ψ2, i+ 1). Hence, by the construction of Aφ, it must accept from the
configurations (ψ1, i+1) and (ψ1 Uψ2, i+2). Again, since (∗) holds and Aφ does not accepts
from the configuration (ψ2, i+1), it cannot accept from the configuration (ψ2, i+2). So, it must
accept from the configurations (ψ1, i+2) and (ψ1Uψ2, i+3). If we repeat this argumentation,
we obtain the following infinite rejecting path (ψ1 Uψ2, i+1)(ψ1 Uψ2, i+2)(ψ1 Uψ2, i+3) . . .
in the run r of Aφ on #w from the configuration (ψ1 Uψ2, i+1). The existence of such a path
is a contradiction to the fact that Aφ accepts #w from the configuration (ψ1 U ψ2, i + 1) by
the run r.

The step case for ψ = ψ1 S ψ2 is analogous.

Step Case ψ = ψ1 R ψ2. Let i ∈ N. Assume that w, i |= ψ1 R ψ2, this means, for all k ≥ i,
it holds that w, k |= ψ2 or there is a j with i ≤ j < k such that w, j |= ψ1. By induction
hypothesis, this is equivalent to the fact that for all k ≥ i, it holds that Aφ accepts #w from
the configuration (ψ2, k + 1) or there is a j with i ≤ j < k such that Aφ accepts #w from
the configuration (ψ1, j +1). We claim that this is equivalent to the fact that Aφ accepts #w
from the configuration (ψ1 R ψ2, i+ 1).

We first show the direction from left to right. It is easy to see that the left-hand side
is equivalent to the following statement: either, (i) Aφ accepts #w from the configuration
(ψ2, k + 1), for all k ≥ i, or (ii) there is a k ≥ i such that Aφ accepts from (ψ1, k + 1) and
for all j with i ≤ j ≤ k, we have Aφ accepts from (ψ2, j). Assume that the first case holds.
We consider the run of Aφ from the configuration (ψ1 R ψ2, k + 1), where Aφ behaves as
follows. Whenever Aφ arrives in a configuration (ψ1 R ψ2, l), for l ≥ k + 1, it moves to the
configuration (ψ2, l) and (ψ1 R ψ2, l + 1) respecting the transition function. By assumption,
Aφ accepts from every configuration (ψ2, l), for l ≥ k + 1. Thus, the run of Aφ from the
configuration (ψ1Rψ2, k+1) is accepting if the infinite path (ψ1Rψ2, k+1)(ψ1Rψ2, k+2) . . .
is accepting, as well. This path is accepting since ψ1 R ψ2 is an accepting state of Aφ. So, Aφ

accepts #w from (ψ1 R ψ2, i+ 1). Assume that the second case holds. Let k ≥ i be a position
such that Aφ accepts #w from the configuration (ψ1, k + 1) and for all j with i ≤ j ≤ k, Aφ

accepts #w from the configuration (ψ2, j + 1). Since Aφ accepts from (ψ2, k + 1) and from
(ψ1, k), it follows that by definition of the transition function, Aφ accepts from (ψ1 R ψ2, k).
Again, by assumption and the previous step, Aφ accepts from (ψ2, k−1) and from (ψ1Rψ2, k).
Thus, by definition of the transition function, Aφ accepts from (ψ1 R ψ2, k − 1). By iterating
this argumentation, we conclude that for all j with i ≤ j ≤ k, it holds that Aφ accepts from
(ψ1 R ψ2, j + 1). Thus, Aφ accepts #w from the configuration (ψ1 R ψ2, i+ 1).

Now, we show the other direction. Assume that the right-hand side holds, this means, Aφ

accepts from the configuration (ψ1 R ψ2, i+ 1). For the sake of contradiction, we additionally
assume that the left-hand side does not hold, this means, there is an integer k ≥ i such that
Aφ does not accept from (ψ2, k+1) and for all j with i ≤ j < k, we have Aφ does not accept
(ψ1, j + 1). We refer to these assumptions by the first and second assumption, respectively.
Let k ≥ i be the least number such that the second assumption holds. In particular, we have
Aφ does not accept from (ψ2, k). For the sake of contradiction, we show that Aφ accepts from
(ψ1 R ψ2, k). By the first assumption we have that Aφ accepts from (ψ1 R ψ2, i + 1). Hence,
by the definition of the transition function and acceptance definition of a run, Aφ also accepts
from (ψ2, i+1) and either from (ψ1, i+1) or (ψ1 Rψ2, i+2). From the second assumption, it
follows that Aφ does not accept from (ψ1, i+ 1). Therefore, Aφ accepts from (ψ2, i + 1) and
from (ψ1 Rψ2, i+2). Repeating this argumentation, we can show that for all j with i ≤ j < k,
we obtain that Aφ accepts from (ψ2, j) and from (ψ1 R ψ2, j + 1). Thus, Aφ accepts from
(ψ1 R ψ2, k) contradicting the choice of k.

The step case for ψ = ψ1 T ψ2 is analogous.

Step Case ψ = α� γ. Let i ∈ N. Assume that w, i |= ψ, this means, there is a position
k ≥ i such that wi..k ∈ L(α) and w, k |= γ. By induction hypothesis, this is equivalent to the
fact that there is k ≥ i such that wi..k ∈ L(α) and Aφ accepts #w from the configuration
(γ, k + 1). That is, Aφ accepts from the configuration (α� γ, i + 1) iff there is a position k
such that Aα has an accepting run on #wi+1..k+1 and Aφ accepts from (γ, k+1). It is easy to
see that by definition of the transition function, this is equivalent to the fact that Aφ accepts
#w from the configuration (α� γ, i+ 1).

The step case for ψ = α−−−� γ is analogous.
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Step Case ψ = α�γ. Let i ∈ N. Assume that w, i |= ψ, this means, for all positions k ≥ i
such that wi..k ∈ L(α), it holds that w, k |= γ. By induction hypothesis, this is equivalent
to the fact that for all positions k ≥ i such that wi..k ∈ L(α), it holds that Aφ accepts #w
from the configuration (γ, k + 1). This is equivalent to the fact that there exists a run of Aφ

on #w from the configuration (α� γ, i + 1) such that for every path in the run labeled by
(q0, i+ 1)(q1, i+ 2) . . . the following holds: for all j ∈ N such that (q0, i+ 1) . . . (qj , i+ 1 + j)
is an accepting run of Aα on wi..j , the automaton Aφ accepts #w from (qj , i+ 1 + j). That
is equivalent to the fact that Aφ accepts #w from the configuration (α� γ, i+ 1).

The step case ψ = α−−−� γ is analogous.

References

1. IEEE standard for Property Specification Language (PSL). IEEE Std 1850TM, Oct. 2005.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1524461.

2. IEEE standard for SystemVerilog—unified hardware design, specification, and verification
language. IEEE Std 1800TM, Nov. 2005. http://ieeexplore.ieee.org/xpls/abs_all.
jsp?tp=&isnumber=33132&arnumber=1560791.

3. R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-
Haim, E. Singerman, A. Tiemeyer, M. Y. Vardi, and Y. Zbar. The ForSpec temporal
logic: A new temporal property-specification language. In Proceedings of the 8th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 2280 of Lect. Notes Comput. Sci., pages 296–211. Springer-Verlag, 2002.

4. B. Banieqbal and H. Barringer. Temporal logic with fixed points. In Proceedings of
Temporal Logic in Specification 1987, volume 398 of Lect. Notes Comput. Sci., pages
62–74. Springer-Verlag, 1989.

5. S. Ben-David, R. Bloem, D. Fisman, A. Griesmayer, I. Pill, and S. Ruah. Automata
construction algorithms optimized for PSL. Technical report, The Prosyd Project, http:
//www.prosyd.org, 2005.

6. R. Bloem, A. Cimatti, I. Pill, and M. Roveri. Symbolic implementation of alternating
automata. Int. J. Found. Comput. Sci., 18(4):727–743, 2007.

7. D. Bustan and J. Havlicek. Some complexity results for SystemVerilog assertions. In
Proceedings of the 18th International Conference on Computer Aided Verification (CAV),
volume 4144 of Lect. Notes Comput. Sci., pages 205–218. Springer-Verlag, 2006.

8. A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebas-
tiani, and A. Tacchella. NuSMV 2: An opensource tool for symbolic model checking. In
Proceedings of the 14th International Conference on Computer Aided Verification (CAV),
volume 2404 of Lect. Notes Comput. Sci., pages 359–364. Springer-Verlag, 2002.

9. A. Cimatti, M. Roveri, S. Semprini, and S. Tonetta. From PSL to NBA: a modular symbolic
encoding. In Proceedings of the 6th International Conference on Formal Methods in
Computer-Aided Design (FMCAD), pages 125–133. IEEE Computer Society Press, 2006.

10. A. Cimatti, M. Roveri, and D. Sheridan. Bounded verification of Past LTL. In Proceed-
ings of the 5th International Conference on Formal Methods in Computer-Aided Design
(FMCAD), volume 3312 of Lect. Notes Comput. Sci., pages 245–259. Springer-Verlag,
2004.

11. E. M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking.
Form. Method. Syst. Des., 10(1):47–71, 1997.

12. C. Dax and F. Klaedtke. Alternation elimination by complementation. In Proceedings of
the 15th International Conference on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR), volume 5530 of Lect. Notes Comput. Sci., pages 214–229. Springer-
Verlag, 2008.

13. S. Demri and P. Schnoebelen. The complexity of propositional linear temporal logics in
simple cases. Inf. Comput., 174(1):84–103, 2002.

14. V. Diekert and P. Gastin. First-order definable languages. In J. Flum, E. Grädel, and
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