
Specification Languages for Stutter-Invariant
Regular Properties?

Christian Dax1, Felix Klaedtke1, and Stefan Leue2

1 ETH Zurich, Switzerland
2 University of Konstanz, Germany

Abstract. We present specification languages that naturally capture
exactly the regular and ω-regular properties that are stutter invariant.
Our specification languages are variants of the classical regular expres-
sions and of the core of PSL, a temporal logic, which is widely used in
industry and which extends the classical linear-time temporal logic LTL
by semi-extended regular expressions.

1 Introduction

Stutter-invariant specifications do not distinguish between system behaviors that
differ from each other only by the number of consecutive repetitions of the ob-
served system states. Stutter invariance is crucial for refining specifications and
for modular reasoning [13]. Apart from these conceptual reasons for restricting
oneself to stutter-invariant specifications, there is also a more practical moti-
vation: stuttering invariance is an essential requirement for using partial-order
reduction techniques (see, e.g., [2, 11,15,16,20]) in finite-state model checking.

Unfortunately, checking whether an LTL formula or an automaton describes
a stutter-invariant property is PSPACE-complete [18]. To leverage partial-order
reduction techniques in finite-state model checking even when it is unknown
whether the given property is stutter-invariant, Holzmann and Kupferman [12]
suggested to use a stutter-invariant overapproximation of the given property.
However, if the given property is not stutter-invariant, we might obtain coun-
terexamples that are false positives. Moreover, the overapproximation of the
property blows up the specification and decelerates the model-checking process.

Another approach for avoiding the expensive check whether a given property
is stutter-invariant, is to use specification languages that only allow one to specify
stutter-invariant properties. For instance, LTL without the next operator X,
LTL−X for short, captures exactly the stutter-invariant star-free properties [10,
17]. An advantage of such a syntactic characterization is that it yields a sufficient
and easily checkable condition whether partial-order reduction techniques are
applicable. However, LTL−X is limited in its expressive power.

Independently, Etessami [9] and Rabinovich [19] gave similar syntactic char-
acterizations of the stutter-invariant ω-regular properties. However, these char-
acterizations are not satisfactory from a practical point of view. Both extend
? Partly supported by the Swiss National Science Foundation.

2 Christian Dax, Felix Klaedtke, and Stefan Leue

fragments of LTL−X by allowing one to existentially quantify over propositions.
To preserve stutter invariance the quantification is semantically restricted. Due
to this restriction, the meaning of quantifying over propositions becomes unin-
tuitive and expressing properties in the proposed temporal logics becomes diffi-
cult. Note that even the extension of LTL with the standard quantification over
propositions is considered as difficult to use in practice [21]. Another practical
drawback of the temporal logic in [19] is that the finite-state model-checking
problem has a non-elementary worst-case complexity. The finite-state model-
checking problem with the temporal logic in [9] remains in PSPACE, as for LTL.
This upper bound on the complexity of the model-checking problem is achieved
by additionally restricting syntactically the use of the non-standard quantifica-
tion over propositions. The downside of this restriction is that the logic is not
syntactically closed under negation anymore, which can make it more difficult or
even impossible to express properties naturally and concisely in it. Expressing
the complement of a property might lead to an exponential blow-up.

In this paper, we give another syntactic characterization in terms of a tempo-
ral logic of the ω-regular properties that are stutter invariant. Our characteriza-
tion overcomes the limitations of the temporal logics from [9] and [19]. Namely, it
is syntactically closed under negation, it is easy to use, and the finite-state model-
checking problem with it is solvable in practice. Furthermore, we also present a
syntactic characterization of the stutter-invariant regular properties. Our char-
acterizations are given as variants of the classical regular expressions and the
linear-time core of the industrial-strength temporal logic PSL [1], which extends
LTL with semi-extended regular expressions (SEREs). We name our variants
siSEREs and siPSL, respectively. Similar to PSL, siPSL extends LTL−X with
siSEREs. For siSEREs, the use of the concatenation operator and the Kleene
star is syntactically restricted. Moreover, siSEREs make use of a novel iteration
operator, which is a variant of the Kleene star.

2 Preliminaries

Words. For an alphabet Σ, we denote the set of finite and infinite words by
Σ∗ and Σω, respectively. Furthermore, we write Σ∞ := Σ∗ ∪ Σω and Σ+ :=
Σ∗\{ε}, where ε denotes the empty word. The concatenation of words is written
as juxtaposition. The concatenation of the languages K ⊆ Σ∗ and L ⊆ Σ∞ is
K ; L := {uv : u ∈ K and v ∈ L}, and the fusion of K and L is K : L :=
{ubv ∈ Σ∗ : b ∈ Σ, ub ∈ K, and bv ∈ L}. Furthermore, for L ⊆ Σ∗, we define
L∗ :=

⋃
n≥0 L

n and L+ :=
⋃

n≥1 L
n with L0 := {ε} and Li+1 := L ;Li, for i ∈ N.

We write |w| for the length of w ∈ Σ∞ and we denote the (i + 1)st letter of w
by w(i), where we assume that i < |w|. For a word w ∈ Σω and i ≥ 0, we define
w≥i := w(i)w(i+ 1) . . . and w≤i := w(0) . . . w(i).

Stutter-Invariant Languages. Let us recall the definition of stutter invariance
from [18]. The stutter-removal operator] : Σ∞ → Σ∞ maps a word v ∈ Σ∞ to
the word that is obtained from v by replacing every maximal finite substring of

Specification Languages for Stutter-Invariant Regular Properties 3

identical letters by a single copy of the letter. For instance,](aabbbccc) = abc,
](aab(bbc)ω) = a(bc)ω, and](aabbbcccω) = abcω. A language L ⊆ Σ∞ is stutter-
invariant if u ∈ L⇔ v ∈ L, for all u, v ∈ Σ∞ with](u) =](v). A word w ∈ Σ∞
is stutter free if w =](w). For L ⊆ Σ∞, we define L] := {](w) : w ∈ L}.

Propositional Logic. For a set of propositions P , we denote the set of Boolean
formulas over P by B(P), i.e., B(P) consists of the formulas that are inductively
built from the propositions in P and the connectives ∧ and ¬. For M ⊆ P and
b ∈ B(P), we write M |= b iff b evaluates to true when assigning true to the
propositions in M and false to the propositions in P \M .

Semi-extended Regular Expressions. The syntax of semi-extended regular expres-
sions (SEREs) over the proposition set P is defined by the grammar

r ::= ε
∣∣ b ∣∣ r∗ ∣∣ r ; r

∣∣ r : r
∣∣ r ∪ r ∣∣ r ∩ r ,

where b ∈ B(P). We point out that in addition to the concatentation opera-
tor ;, SEREs have the operator : for expressing the fusion of two languages. The
language of an SERE over P is inductively defined:

L(r) :=


{ε} if r = ε,
{b ∈ 2P : b |= r} if r ∈ B(P),
L(s) ? L(t) if r = s ? t,(
L(s)

)∗ if r = s∗,

where ? ∈ {;, :,∪,∩}. The size of an SERE is its syntactic length, i.e., ||ε|| := 1,
||b|| := 1, for b ∈ B(P), ||r?s|| := 1+||r||+||s||, for ? ∈ {∪,∩, ;, :}, and ||r∗|| := 1+||r||.

Propositional Temporal Logic. The core of the linear-time fragment of PSL [1]
is as follows. Its syntax over the set P of propositions is given by the grammar

ϕ ::= p
∣∣ cl(r)

∣∣ ¬ϕ ∣∣ ϕ ∧ ϕ ∣∣ Xϕ
∣∣ ϕ U ϕ

∣∣ r� ϕ ,

where p ∈ P and r is an SERE over P . A PSL formula3 over P is interpreted
over an infinite word w ∈ (2P)ω as follows:

w |= p iff p ∈ w(0)
w |= cl(r) iff ∃k ≥ 0: w≤k ∈ L(r) or ∀k ≥ 0: ∃v ∈ L(r) : w≤k is a prefix of v
w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ
w |= ¬ϕ iff w 6|= ϕ
w |= Xϕ iff w≥1 |= ϕ
w |= ϕ U ψ iff ∃k ≥ 0: w≤k |= ψ and ∀j < k : w≥j |= ϕ
w |= r� ϕ iff ∃k ≥ 0: w≤k ∈ L(r) and w≥k |= ϕ

The language of a PSL formula ϕ is L(ϕ) := {w ∈ (2P)ω : w |= ϕ}. As for
SEREs, we define the size of a PSL formula as its syntactic length. That means,
||p|| := 1, ||cl(r)|| := 1 + ||r||, ||¬ϕ|| := ||Xϕ|| := 1 + ||ϕ||, ||ϕ ∧ ψ|| := ||ϕ U ψ|| :=
1 + ||ϕ||+ ||ψ||, and ||r� ϕ|| := 1 + ||r||+ ||ϕ||.
3 For the ease of exposition, we identify PSL with its linear-time core.

4 Christian Dax, Felix Klaedtke, and Stefan Leue

Syntactic Sugar. We use the standard conventions to omit parenthesis, e.g., tem-
poral operators bind stronger than Boolean connectives and the binary operators
of the SEREs are left associative. We also use standard syntactic sugar for the
Boolean values, the Boolean connectives, and the linear-time temporal opera-
tors: ff := p ∧ ¬p, for some proposition p ∈ P , tt := ¬ff, ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ),
ϕ→ ψ := ¬ϕ∨ψ, Fϕ := tt Uϕ, Gϕ := ¬F¬ϕ, and ϕWψ := (ϕUψ)∨Gϕ, where
ϕ and ψ are formulas. Moreover, r� ϕ abbreviates ¬(r� ¬ϕ).

3 Stutter-Invariant Regular Properties

In this section, we present syntactic characterizations for stutter-invariant reg-
ular and ω-regular languages. In Section 3.1, we define a variant of SEREs that
can describe only stutter-invariant languages. Furthermore, we show that this
variant of SEREs is complete in the sense that any stutter-invariant regular
language can be described by such an expression. Similarly, in Section 3.2, we
present a variant of PSL for expressing stutter-invariant ω-regular languages.
In Section 3.3, we give examples that illustrate the use of our stutter-invariant
variant of PSL.

3.1 Stutter-Invariant SEREs

It is straightforward to see that stutter-invariant languages are not closed un-
der the concatenation and the Kleene star. A perhaps surprising example is the
SERE p+ ; q+ over the proposition set {p, q}, which does not describe a stutter-
invariant language, although L(p+) and L(q+) are stutter-invariant languages.4

In our variant of SEREs, we restrict the use of concatenation and replace the
Kleene star by an iteration operator, which uses the fusion instead of the con-
catenation for gluing words together. Namely, for a language L of finite words,
we define L⊕ :=

⋃
n∈N Ln, where L0 := L and Li+1 := Li : L, for i ∈ N.

The following lemma summarizes some closure properties of the class of
stutter-invariant languages.

Lemma 1. Let K ⊆ Σ∗ and L,L′ ⊆ Σ∞ be stutter-invariant languages. The
languages L ∩ L′, L ∪ L′, K : L, and K⊕ are stutter-invariant. Furthermore,
Σ∗ \K, Σω \ L, and Σ∞ \ L are stutter-invariant.

Proof. We only show that the language K : L is stutter-invariant. The other
closure properties are similarly proved. Assume that u ∈ K : L and](u) =](v)
for u, v ∈ Σ∞. Let u = u′bu′′, for some u′ ∈ Σ∗, u′′ ∈ Σ∞, and b ∈ Σ with
u′b ∈ K and bu′′ ∈ L. Since K is stutter-invariant, we can assume without loss of
generality that if u′ is nonempty then u′(|u′|−1) 6= b. Since](u) =](v), there are
v′ ∈ Σ∗ and v′′ ∈ Σ∞ such that v = v′bv′′,](v′) =](u′), and](bv′′) =](bu′′).
From the stutter invariance of K and L, it follows that v ∈ K : L. ut

Our variant of SEREs is defined as follows.
4 Note that the word {p, q} {p, q} belongs to L(p+ ; q+) but the word {p, q} does not.

Specification Languages for Stutter-Invariant Regular Properties 5

Definition 2. The syntax of siSEREs over the proposition set P is given by the
grammar

r ::= ε
∣∣ b+ ∣∣ b∗ ; r

∣∣ r ; b∗
∣∣ r : r

∣∣ r ∪ r ∣∣ r ∩ r ∣∣ r⊕ ,
where b ranges over the Boolean formulas in B(P). The language L(r) of an
siSERE r is defined as expected.

By an induction over the structure of siSEREs, which uses the closure prop-
erties from Lemma 1, we easily obtain the following theorem.

Theorem 3. The language of every siSERE is stutter-invariant.

In the remainder of this subsection, we show that any regular language that
is stutter-invariant can be described by an siSERE. We prove this result by
defining a function κ that maps SEREs to siSEREs. We show that it preserves the
language if the given SERE describes a stutter-invariant language. The function
κ is defined recursively over the structure of SEREs:

κ(ε) := ε

κ(b) := b+

κ(s ∪ t) := κ(s) ∪ κ(t)
κ(s ∩ t) := κ(s) ∩ κ(t)
κ(s : t) := κ(s) : κ(t)

κ(s ; t) :=
(
κ(s) :

⋃
a∈2P

(
â+ :

(
â∗ ; κ(t))

))
∪

{
κ(t) if ε ∈ L(s)
ff otherwise

κ(s∗) := ε ∪ κ(s) ∪
(
κ(s) :

(⋃
a∈2P

(
â+ : (â∗ ; κ(s))

))⊕)
,

where b ∈ B(P), s, t are SEREs, and â :=
∧

p∈a p ∧
∧

p 6∈a ¬p, for a ∈ 2P .

Lemma 4. For every SERE r, the equality L](r) = L](κ(r)) holds.

Proof. We show the lemma by induction over the structure of the SERE r. The
base cases where r is ε or b with b ∈ B(P) are obvious. The step cases where r is
of one of the forms s∪ t, s∩ t, or s : t follow straightforwardly from the induction
hypothesis.

Next, we prove the step case where r is of the form s ; t. For showing L](r) ⊆
L](κ(r)), assume that u ∈ L](r). There are words x ∈ L(s) and y ∈ L(t) such
that u =](xy). By induction hypothesis, we have that](x) ∈ L](κ(s)) and
](y) ∈ L](κ(t)). The case where x the empty word is obvious. Assume that
x 6= ε and a ∈ 2P is the last letter of x. We have that](xy) ∈ L]

(
(κ(s) : â) ;κ(t)

)
and

L]

(
(κ(s) : â) ; κ(t)

)
⊆ L]

(
(κ(s) : (â ; κ(t))

)
⊆ L]

(
κ(s) : ((â : â) ; κ(t))

)
⊆ L]

(
κ(s) : (â+ : (â∗ ; κ(t)))

)
.

For showing L](r) ⊇ L](κ(r)), assume that u ∈ L](κ(r)). We make a case split.

6 Christian Dax, Felix Klaedtke, and Stefan Leue

1. If ε ∈ L(s) and u ∈ L](κ(t)) then u ∈ L](t) by induction hypothesis. We
conclude that u ∈ L](ε ; t) ⊆ L](s ; t) = L](r).

2. Assume that u ∈ L](κ(s):
⋃

a∈2P

(
â+ :(â∗ ;κ(t))

)
). There is a letter a ∈ 2P such

that u ∈ L](κ(s) : (â+ : (â∗ ;κ(t)))) = L](κ(s) : (â ;κ(t))). It follows that there
are words x and y such that u = xay, xa ∈ L](κ(s)), and ay ∈ L](â ; κ(t)).
We have that either ay ∈ L](κ(t)) or y ∈ L](κ(t)). By induction hypothesis,
we have that xa ∈ L](s) and either ay ∈ L](t) or y ∈ L](t). It follows that
u ∈ L](r).

Finally, we prove the step case where r is of the form s∗. For showing L](r) ⊆
L](κ(r)). Assume that u ∈ L](s∗). If u is the empty word or u ∈ L](s) then there
is nothing to prove. Assume that u is of the form u1u2 . . . un with ui ∈ L](s)
and ui 6= ε, for 1 ≤ i ≤ n. By induction hypothesis, we have that ui ∈ L](κ(s)).
Let ai be the last letter of ui, for 1 ≤ i < n. We have that](ai−1ui) ∈ L](â+

i−1 :
(â∗i−1 ; κ(s))), for 1 < i ≤ n. If follows that](u1a1u2 . . . an−1an) ∈ L(κ(s)) :
L](â+

1 : (â∗2 ; κ(s))) : . . . :L](â+
n−1 : (â∗n ; κ(s))). Since](u) =](u1a1u2 . . . an−1an),

we conclude that](u) ∈ L(κ(r)).
For showing L](r) ⊇ L](κ(r)), we assume that u ∈ L](κ(r)). The cases u = ε

and u ∈ L](κ(s)) are obvious. So, we assume that u ∈ L]

(
κ(s) :

(⋃
a∈2P (â+ :

(â∗ ;κ(s)))
)⊕) = L]

(
κ(s) :

(⋃
a∈2P (â ;κ(s))

)⊕) = L]

(
s :
(⋃

a∈2P (â ; s)
)⊕), where

the last equality holds by induction hypothesis. There is an integer n ≥ 2 and
words u1, u2, . . . , un ∈ L(s) and letters a1, a2, . . . , an−1 ∈ 2P such that u =
](u1a1u2 . . . an−1un) and](ui) =](uiai), for all 1 ≤ i < n. It follows that
u =](u1u2 . . . un) ∈ L](s∗). ut

A consequence of Lemma 4 is that the translated siSERE describes the min-
imal stutter-invariant language that overapproximates the language of the given
SERE.

Lemma 5. For every SERE r, L(r) ⊆ L(κ(r)) and if K is a stutter-invariant
language with L(r) ⊆ K then L(κ(r)) ⊆ K.

Proof. LetK be a stutter-invariant language with L(r) ⊆ K and let w ∈ L(κ(r)).
We have to show that w ∈ K. Since L(κ(r)) is stutter-invariant, we have that
](w) ∈ L(κ(r)). With Lemma 4, we conclude that](w) ∈ L](r). It follows that
there is a word u ∈ L(r) with](u) =](w). Since K ⊇ L(r), we have that
](w) ∈ K and thus, w ∈ K since K is stutter-invariant.

It remains to be proven that L(r) ⊆ L(κ(r)). For w ∈ L(r), we have that
](w) ∈ L](r). By Lemma 4, we have that](w) ∈ L](κ(r)). Since L(κ(r)) is
stutter-invariant, we conclude that w ∈ L(κ(r)). ut

From Lemma 5 we immediately obtain the following theorem.

Theorem 6. For every stutter-invariant regular language L, there is an siSERE
r such that L(r) = L.

Note that the intersection and the fusion operation is not needed for SEREs
to describe the class of regular languages. However, they are convenient for ex-
pressing regular languages naturally and concisely. It follows immediately from

Specification Languages for Stutter-Invariant Regular Properties 7

the definition of the function κ that siSEREs even without the intersection oper-
ation exactly capture the class of stutter-invariant regular languages. However,
in contrast to the intersection operator, the fusion operator is essential for de-
scribing this class of languages with siSEREs.

Finally, we remark that when translating an SERE of the form r ; s or s∗,
we obtain an siSERE that contains a disjunction of all the letters in 2P that
contains 2|P | copies of κ(s). We conclude that in the worst case, the size of the
siSERE κ(r) for a given SERE r is exponential in ||r||. It remains open whether
for every SERE that describes a stutter-invariant regular language, there is a
language-equivalent siSERE of polynomial size.

3.2 Stutter-Invariant PSL

Similar to the previous subsection, we define a variant of the core of PSL and
show that this temporal logic describes exactly the class of stutter-invariant
ω-regular languages.

Definition 7. The syntax of siPSL formulas is similar to that of PSL formulas
except that the formulas do not contain the temporal operator X and instead of
SEREs they contain siSEREs. The semantics is defined as expected.

By a straightforward induction over the structure of siPSL formulas and by
using the closure properties from Lemma 1, we obtain the following theorem.
Note that L(r� ϕ) = L(r) : L(ϕ). Furthermore, it is easy to see that the
language L(cl(r)) is stutter-invariant if r is an SERE or siSERE that describes
a stutter-invariant language.

Theorem 8. The language of every siPSL formula is stutter-invariant.

In the following, we show that every stutter-invariant ω-regular language can
be described by an siPSL formula. We do this by extending the translations
in [17] for eliminating the temporal operator X in LTL formulas to PSL formu-
las. We define the function τ that translates PSL formulas into siPSL formulas
as follows. It is defined recursively over the formula structure and it uses the
function κ from Section 3.1 for translating SEREs into siSEREs.

τ(p) := p

τ(cl(r)) := cl(κ(r))
τ(¬ϕ) := ¬τ(ϕ)

τ(ϕ ∧ ψ) := τ(ϕ) ∧ τ(ψ)
τ(ϕ U ψ) := τ(ϕ) U τ(ψ)
τ(r� ϕ) := κ(r)� τ(ϕ)

τ(Xϕ) :=
∨

a∈2P

((
Gâ ∧ τ(ϕ)

)
∨

∨
b∈2P \{a}

(
â U

(
b̂ ∧ τ(ϕ)

)))

8 Christian Dax, Felix Klaedtke, and Stefan Leue

The intuition of the elimination of the outermost operator X in a formula Xϕ is
as follows: “the first time after now that some new event happens, ϕ must hold,
or else, if nothing new ever happens, ϕ must hold right now.”

Note that the size of the resulting siPSL formula is in the worst case exponen-
tial in the size of the given PSL formula. The sources of the blow-up are (1) the
translation of the SEREs in the given PSL formula into siSEREs and (2) the
elimination of the temporal operator X. We can improve the translation τ with
respect to the size of the resulting formula by using the translation defined in [10]
for eliminating the operator X in LTL formulas that describe stutter-invariant
languages. The translation in [10] avoids the conjunctions over the letters in 2P .
Instead the conjunctions only range over the propositions in P . The elimination
of an operator X is not exponential in |P | anymore. However, the resulting trans-
lation for PSL into siPSL is still exponential in the worst case because of (1).
The question whether the exponential blow-up can be avoided remains open.

The following lemma for τ is the analog of Lemma 4 for the function κ.

Lemma 9. For every PSL formula ϕ, the equality L](ϕ) = L](τ(ϕ)) holds.

Similar to Lemma 5 for SEREs, we obtain that the function τ translates
PSL formulas into siPSL formulas that minimally overapproximate the described
languages with respect to stutter invariance.

Lemma 10. For every PSL formula ϕ, L(ϕ) ⊆ L(τ(ϕ)) and if L is a stutter-
invariant language with L(ϕ) ⊆ L then L(τ(ϕ)) ⊆ L.

From Lemma 10 we immediately obtain the following theorem.

Theorem 11. For every stutter-invariant ω-regular language L, there is an
siPSL formula ϕ such that L(ϕ) = L.

We remark that the finite-state model-checking problem for PSL and siPSL
fall into the same complexity classes. Namely, the finite-state model-checking
problem for siPSL is EXPSPACE-complete and the problem becomes PSPACE-
complete when the number of intersection operators in the given siPSL formulas
is bounded. These complexity bounds can be easily established from the existing
bounds on PSL, see [4] and [5,14]. Note that the automata-theoretic realization
of the iteration operator ⊕ is similar to the one that handles the Kleene-star.

Recently, we proposed an extension of PSL with past operators [7]. As for
LTL−X [17], we remark that our result on the stutter invariance of siPSL straight-
forwardly carries over to an extension of siPSL with past operators.

3.3 siPSL Examples

In the following, we illustrate that stutter-invariant ω-regular properties can be
naturally expressed in siPSL. For comparison, we describe these properties in
siPSL and other temporal logics that express stutter-invariant properties.

Specification Languages for Stutter-Invariant Regular Properties 9

pattern siPSL formula LTL−X formula

P1 G(q+ : ¬r+� ¬p) G(q ∧ ¬r → (¬p) W r)
P2 G((q ∧ ¬r)+ : (¬p∗ ; r+)� ff) G(q ∧ ¬r → (¬r) W (p ∧ ¬r))
P3 G(q+ : ¬r+ : ¬p : (¬r∗; r+)� ff) G(q ∧ ¬r ∧ Fr → p U r)
P4 G(q+ : (¬r ∧ ¬s)+� ¬p) G(q ∧ ¬r → (¬p) W (s ∨ r))
P5 G(q+ : ¬r+ : p� (¬r+ : s+� tt)) G(q ∧ ¬r → (p → (¬r) U (s ∧ ¬r)) W r)

Table 1. siPSL formulas and LTL−X formulas of the specification patterns.

Star-Free Properties. Consider the following commonly used specification pat-
terns taken from [8]:

(P1) Absence: p is false after q until r.
(P2) Existence: p becomes true between q and r.
(P3) Universality: p is true between q and r.
(P4) Precedence: s precedes p, after q until r.
(P5) Response: s responds to p, after q until r.

Table 1 contains the formalization of these specification patterns in siPSL and
LTL−X. Note that any LTL−X is also an siPSL formula. However, since practi-
tioners often find it easier to use (semi-extended) regular expressions than the
temporal operators in LTL, we have used siSEREs in the siPSL formulas to for-
malize the patterns in siPSL. An advantage of siPSL over LTL−X is that one
can choose between the two specifications styles and mix them.

Omega-regular Properties. We consider the stutter-invariant ω-regular language

Ln := {w ∈ (2{p})ω : the number of occurrences of the subword {p}∅ in w
is divisible by n} ,

for n ≥ 2. The following siPSL formula describes the language Ln:

neverswitch ∨
(
((¬p∗ ; switch) : . . . : (¬p∗ ; switch)︸ ︷︷ ︸

n times

)⊕� neverswitch
)
,

where switch := p+ : (p∗ ; ¬p+) and neverswitch := (¬p) W Gp.
Note that the language Ln is not star-free and thus, it cannot be described

in LTL−X. In the following, we compare our siPSL formalization of Ln with
a formalization in the temporal logic SI-EQLTL from [9], which has the same
expressive power as siPSL. We briefly recall the syntax and semantics of SI-
EQLTL. The formulas in SI-EQLTL are of the form ∃hq1 . . . ∃hqnϕ, where ϕ is an
LTL−X formula over a proposition set that contains the propositions q1, . . . , qn.
The semantics of the quantifier ∃h is as follows. Let P be a proposition set with
q 6∈ P . The word w ∈ (2P∪{q})ω is a harmonious extension of v ∈ (2P)ω if for all
i ∈ N, it holds that v(i) = w(i) ∩ P and if v(i) = v(i+ 1) then w(i) = w(i+ 1).
For v ∈ (2P)ω, we define v |= ∃hq ϕ iff w |= ϕ, for some harmonious extension
w ∈ (2P∪{q})ω of v.

10 Christian Dax, Felix Klaedtke, and Stefan Leue

For readability, we only state an SI-EQLTL formula that describes the lan-
guage L2 (the formula can be straightforwardly generalized for describing the
language Ln with n ≥ 2):

∃hq
(
q ∧ G(q → neverswitch ∨ switch2) ∧ F neverswitch

)
,

where

switch2 := (¬p ∧ q) U

(
(p ∧ q) U

(
(¬p ∧ ¬q) U

(
(p ∧ ¬q) U (¬p ∧ q)

)))
.

Intuitively, the subformula switch2 matches subwords that contain two occur-
rences of {p}∅. Furthermore, the harmoniously existentially quantified proposi-
tion q marks every position k of a word in L2, where the number of occurrences
of {p}∅ in w≤k is even.

We remark that we did not manage to come up with a simpler SI-EQLTL for-
mula for describing the language Ln.5 Nevertheless, we consider the SI-EQLTL
formula for Ln still hard to read because of the harmonious quantified variable q
and the nesting of the temporal operators, which is linear in n. Furthermore, note
that the advantage of siPSL over LTL−X, namely, to mix different specification
styles, is also an advantage of siPSL over SI-EQLTL.

4 Concluding Remarks

We have presented the specification languages siSEREs and siPSL, which cap-
ture exactly the classes of stutter-invariant regular and ω-regular languages,
respectively. siSEREs are a variants of SEREs and siPSL is a variant of the tem-
poral logic PSL [1], which is nowadays widely used in industry. siPSL inherits
the following pleasant features from PSL. First, siPSL is easy to use. Second, the
computational complexities for solving the finite-state model-checking problem
with siPSL and fragments thereof are similar to the corresponding problems for
PSL. Third, with only minor modifications we can use the existing tool support
for PSL (like the model checker RuleBase [3], the formula translator into non-
deterministic Büchi automata rtl2ba [7], or the translator used in [6] with all its
optimizations) for siPSL. We only need to provide additional support for the
new Kleene-star-like iteration operator ⊕ of the siSEREs.

References

1. IEEE standard for property specification language (PSL). IEEE Std 1850TM,
October 2005.

2. R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Partial-
order reduction in symbolic state-space exploration. Form. Method. Syst. Des.,
18(2):97–116, 2001.

5 We encourage the reader to find a simpler SI-EQLTL formula that describes Ln.

Specification Languages for Stutter-Invariant Regular Properties 11

3. I. Beer, S. Ben-David, C. Eisner, D. Geist, L. Gluhovsky, T. Heyman, A. Landver,
P. Paanah, Y. Rodeh, G. Ronin, and Y. Wolfsthal. RuleBase: Model checking
at IBM. In Proceedings of the 9th International Conference on Computer Aided
Verification (CAV), volume 1245 of Lect. Notes Comput. Sci., pages 480–483, 1997.

4. S. Ben-David, R. Bloem, D. Fisman, A. Griesmayer, I. Pill, and S. Ruah. Automata
construction algorithms optimized for PSL. Technical report, The Prosyd Project,
http://www.prosyd.org, 2005.

5. D. Bustan and J. Havlicek. Some complexity results for SystemVerilog assertions.
In Proceedings of the 18th International Conference on Computer Aided Verifica-
tion (CAV), volume 4144 of Lect. Notes Comput. Sci., pages 205–218, 2006.

6. A. Cimatti, M. Roveri, and S. Tonetta. Symbolic compilation of PSL. IEEE Trans.
on CAD of Integrated Circuits and Systems, 27(10):1737–1750, 2008.

7. C. Dax, F. Klaedtke, and M. Lange. On regular temporal logics with past. In
Proceedings of the 36th International Colloquium on Automata, Languages, and
Programming (ICALP), volume 5556 of Lect. Notes Comput. Sci., pages 175–187,
2009.

8. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property spec-
ifications for finite-state verification. In Proceedings of the 21st International
Conference on Software Engineering (ICSE), pages 411–420, 1999. See also
http://patterns.projects.cis.ksu.edu/.

9. K. Etessami. Stutter-invariant languages, ω-automata, and temporal logic. In
Proceedings of the 11th International Conference on Computer Aided Verification
(CAV), volume 1633 of Lect. Notes Comput. Sci., pages 236–248, 1999.

10. K. Etessami. A note on a question of Peled and Wilke regarding stutter-invariant
LTL. Inform. Process. Lett., 75(6):261–263, 2000.

11. P. Godefroid and P. Wolper. A partial approach to model checking. Inf. Comput.,
110(2):305–326, 1994.

12. G. Holzmann and O. Kupferman. Not checking for closure under stuttering. In
Proceedings of the 2nd International Workshop on the SPIN Verification System,
volume 32 of Series in Discrete Mathematics and Theoretical Computer Science,
pages 163–169, 1996.

13. L. Lamport. What good is temporal logic? In Proceedings of the 9th IFIP World
Computer Congress, volume 83 of Information Processing, pages 657–668, 1983.

14. M. Lange. Linear time logics around PSL: Complexity, expressiveness, and a little
bit of succinctness. In Proceedings of the 18th International Conference on Concur-
rency Theory (CONCUR), volume 4703 of Lect. Notes Comput. Sci., pages 90–104,
2007.

15. D. Peled. Combining partial order reductions with on-the-fly model-checking.
Form. Method. Syst. Des., 8(1):39–64, 1996.

16. D. Peled. Ten years of partial order reduction. In Proceedings of the 10th Inter-
national Conference on Computer Aided Verification, volume 1427 of Lect. Notes
Comput. Sci., pages 17–28, 1998.

17. D. Peled and T. Wilke. Stutter-invariant temporal properties are expressible with-
out the next operator. Inform. Process. Lett., 63(5):243–246, 1997.

18. D. Peled, T. Wilke, and P. Wolper. An algorithmic approach for checking clo-
sure properties of temporal logic specifications and ω-regular languages. Theoret.
Comput. Sci., 195(2):183–203, 1998.

19. A. M. Rabinovich. Expressive completeness of temporal logic of action. In Proceed-
ings of the 23rd International Symposium on Mathematical Foundations of Com-
puter Science (MFCS), volume 1450 of Lect. Notes Comput. Sci., pages 229–238,
1998.

12 Christian Dax, Felix Klaedtke, and Stefan Leue

20. A. Valmari. A stubborn attack on state explosion. Form. Method. Syst. Des.,
1(4):297–322, 1992.

21. M. Y. Vardi. From philosophical to industrial logics. In Proceedings of the 3rd
Indian Conference on Logic and its Applications (ICLA), volume 5378 of Lect.
Notes Comput. Sci., pages 89–115, 2009.

