From Temporal Logics to Automata via
Alternation Elimination

Christian Dax

2010

DISS. ETH NO. 19200

From Temporal Logics to Automata via
Alternation Elimination

A dissertation submitted to
ETH ZURICH
for the degree of
Doctor of Sciences

presented by
CHRISTIAN NIKOLAUS DAX
Dipl.-Inf., Ludwig-Maximilians-Universitat Miinchen
born on December, 9th 1979
citizen of Germany

accepted on the recommendation of
Prof. David Basin, examiner
Prof. Kousha Etessami, co-examiner
Dr. Felix Klaedtke, co-examiner

2010

Acknowledgements

First, I would like to thank my supervisor David Basin for providing me such a
great research environment and for all his scientific advices and moral support.

I also would like to thank my supervisor Felix Klaedtke who guided me
through my PhD. He encouraged me to pursue my own ideas, helped me to
develop them, and taught me how to present them on a high scientific level.
Thank you for all your precious time and invaluable support!

Further, I would like to thank my co-examiner Kousha Etessami for help-
ful comments on my thesis. 1 also would like to thank Martin Lange who
introduced me to the world of automata and temporal logics. He provided
the key idea of the succinctness result between the logics PSL and PPSL pre-
sented in this thesis. I also like to thank Nir Piterman for the fruitful email
correspondence that helped me to find the topic of my thesis.

I also like to thank all the information and system security group members
for the pleasant and productive working atmosphere. I especially thank my
office mates Matus Harvan and Mario Frank for their good company, Cas
Cremers for all the scientific challenges at and outside of ETH, Alexander
Pretschner for asking for the practical relevance of my work, Stefan Leue,
Christoph Sprenger, Matthias Schmalz, Patrick Schaller, Simon Meier, Lukas
Briigger, Benedikt Schmidt, Andreas First, Eugen Zalinescu, Michele Feltz,
Mohammad Dashti, and Simone Frau for their helpful comments on my work
and on my defense talk.

Most importantly, I would like to thank my parents, my two brothers, and
Kathrin for all their patience and unconditional support.

Abstract

The automata-based approach for automated verification of finite-state sys-
tems and recursive state machines, i.e., finite-state systems with subprograms
that can be called recursively, requires efficient translations from specification
languages like LTL, PSL, and NWTL to nondeterministic automata. Since
formulas of those specification languages can directly be translated into alter-
nating automata, it suffices to solve the problem of removing alternation.

In this thesis, we present a construction scheme that reduces alternation
elimination to the problem of complementing so-called existential automata.
Existential automata are nondeterministic automata that inspect only a single
path in their inputs. The presented alternation-elimination constructions are
instances of our scheme. We obtain these instances by revisiting state-of-the-
art complementation constructions and by providing novel ones for restricted
classes of 1-way and 2-way existential automata. With these instances at hand,
we correct, simplify, improve, and generalize previously proposed translations
from temporal logics to nondeterministic automata. From some instances we
obtain novel translations.

Moreover, we extend various temporal logics with past operators and utilize
our new alternation-elimination constructions to obtain translations to non-
deterministic automata. For instance, we extend the IEEE standard PSL by
past operators. We call this logic PPSL and show that the additional cost
for translating PPSL formulas to nondeterministic automata is rather small
whereas PPSL is exponentially more succinct than PSL.

VII

Zusammenfassung

Beim automatenbasierten Ansatz fiir das automatische Verifizieren von end-
lichen Zustandssystemen und von so genannten endlichen rekursiven Zustands-
systemen, was endliche Zustandssysteme mit zusétzlichen rekursiv aufrufbaren
Unterprogramme sind, werden effiziente Ubersetzungen von Spezifikationsspra-
chen wie LTL, PSL und NWTL in nichtdeterministische Automaten benotigt.
Da Formeln dieser Spezifikationssprachen direkt in alternierende Automaten
iibersetzt werden konnen, reicht es das Problem der Alternierungselimination
fiir alternierende Automaten zu l16sen.

In dieser Arbeit stellen wir ein Konstruktionsschema vor, dass das Problem
der Alternierungselimination auf das Problem der Komplementierung eines ex-
istentiellen Automaten reduziert. Ein existentieller Automat is ein nichtdeter-
ministischer Automat, der nur einen einzigen Pfad in der Eingabe betrachtet.
Die vorgestellten Konstruktionen zur Alternierungselimination sind Instanzen
des Schemas. Wir erhalten diese Instanzen, indem wir neuste Komplemen-
tierungskonstruktionen untersuchen und zudem neue Komplementierungskon-
struktionen fiir Unterklassen von 1-wege und 2-wege Automaten einfithren.
Mit Hilfe dieser Instanzen korrigieren, vereinfachen, verbessern und general-
isieren wir bereits bekannte Ubersetzungen von temporalen Logiken in nicht-
deterministische Automaten. Zudem erhalten wir aus einigen dieser Instanzen
neue Ubersetzungen.

Des weiteren erweitern wir verschiedene Logiken mit Vergangenheitsopera-
toren und nutzen die vorgestellten Konstruktionen zur Alternierungselimina-
tion, um Ubersetzungen in nichtdeterministische Automaten zu erhalten. Ein
Beispiel ist der IEEE Standard PSL, den wir mit Vergangenheitsoperatoren
erweitern. Fir die neue Logik, die wir PPSL nennen, zeigen wir, dass die
zusitzlichen Kosten fiir die Ubersetzung in nichtdeterministische Automaten
relativ klein sind. Im Gegensatz dazu steht, dass PPSL Eigenschaften expo-
nentiell kiirzer beschreiben kann als PSL.

IX

Contents

1 Introduction
1.1 Scope, Motivation, and Results
1.2 Contributions
1.3 Overview

2 Preliminaries
2.1 Graphs, Words, and Trees
2.2 Automata
2.3 Complementation Constructions

3 Alternation-Elimination Scheme
3.1 Overview on Construction Scheme
3.2 Memoryless Strategies as Input
3.3 Reduction to Complementation
3.4 Inherited Properties. oo

4 Translating Logics over Words to Automata
4.1 Complementation Constructions
4.1.1 Complementing co-Biichi Automata
4.1.2 Complementing Very-Weak Automata
4.1.3 Transition Systems Instead of Automata
4.2 The Linear-Time Temporal Logic PPSL
4.2.1 The Logic PPSL
4.2.2 From PPSL to Automata
4.2.3 Succinctness Resultso
4.3 Translations for Extensions of PSL
4.3.1 Translations for the Logic DLTL
4.3.2 Translations for the Logic PRLTL

11
11
15
20

23
23
25
27
30

33
33
34
40
44
46
47
50
o7
63
64
72

XI

CONTENTS

5 Translating Logics over Nested Words to Automata 81
5.1 Complementation Constructions 81
5.1.1 Complementing co-Biichi Automata 82

5.1.2 Complementing Very-Weak Automata 90

5.1.3 Complementing Parity Automata 97

5.2 From Temporal Logics to Automata 107
5.2.1 Nested Word Temporal Logic 107

5.2.2 Extensions of Nested Word Temporal Logic 115

5.2.3 Linear-Time p-Calculus 119

6 Conclusion 123

XII

Chapter 1

Introduction

1.1 Scope, Motivation, and Results

Information and communication technology (ICT) systems play an important
part in our daily lives. We use these systems, for instance, as banking applica-
tions, mobile phones, transportation systems, traffic control and alert systems,
or medical applications. Since the significance of ICT systems increase steadily
and we become more and more dependent on them, the reliability of these sys-
tems also becomes increasingly important. System errors may have substantial
financial consequences. A bug in Intel’s Pentium II floating-point division unit
caused a loss of about 475 million US dollars. The opening of Denver’s airport
was delayed for nine months at a loss of about 1.1 million US dollars due to a
software error in the automated baggage handling system. If a failure occurs
in a safety-critical system, the cost can become unacceptably high. In 1996,
the maiden flight of Ariane 5 rocket ended in a firework about forty seconds
after its lift-off because of a malfunction in the control software. Similar bugs
have been found in the Mars Pathfinder and the airplanes of the Airbus family.
Between 1985 and 1987, six cancer patients died after receiving overdoses of
radiation due to miscalculation of the control part of the radiation therapy
machine Therac-25. For more examples, we refer to [BKO08].

To ensure that critical ICT systems behave correctly, developers try to find
failures through simulation or testing. However, systems tend to be large and
too complex to be thoroughly tested. Subtle design errors resulting in un-
expected behavior might be missed. In formal verification, we represent the
system and its specification by mathematical models and prove that every
system execution fulfills the given specification. Clarke and Emerson [CE82]
and independently, Queille and Sifakis [QS82] introduced the model-checking

INTRODUCTION

M Av
AM><§

C S Azg 5/C'heck for emptiness

Figure 1.1: Automata-Theoretic Approach to Model Checking

problem that asks for an algorithm that automatically checks whether a math-
ematical model M of a system fulfills a specification S, see [CGP99]. In the
context of automatic verification, the model M usually represents all possible
system computations that are described by sequences of system configurations,
and the specification S describes the allowed configuration sequences, which we
refer to as good computations. We say M fulfills S' if every system computation
is also a good computation.

In [VW86], Vardi and Wolper introduce an automata-theoretic approach for
solving the model checking problem. This approach assumes that the represen-
tation of the system behavior M and the representation of bad computations
S can both be translated into nondeterministic finite-state automata A,; and
Ag, respectively. Then, we can solve the model checking problem in two steps.
First, we construct the product automaton A,,, g that represents the intersec-
tion of all system computations and all bad computations. Second, we check
whether the set of computations represented by A, g is empty. This is the
case if and only if M fulfills S. Figure 1.1 illustrates this approach. Since
Ay and Ag are nondeterministic automata, computing the intersection and
checking for emptiness is efficiently solvable, see [Var07] for more details.

Model checking plays an important role in automatic verification and is
increasingly used in hardware industry. Here, a system behavior is repre-
sented by a labeled transition system M and a specification is described by
a temporal logic formula S. Several different approaches have been intro-
duced to encode a labeled transition system M in a concise and intuitive
way [Hol04, McM92, CGP99, BK08]. Since labeled transition systems can be
viewed as nondeterministic automata, we can directly extract the representa-
tion Ajy; from those encodings. For specifying desired behavior, several tem-
poral logics have been proposed that vary in their expressiveness, succinctness,
and implementability [AFFT02]. A logic is succinct if we can easily read and
write relevant specifications with this logic. For instance, adding past opera-
tors may not make a logic more expressive but may increase its succinctness.

1.1. SCOPE, MOTIVATION, AND RESULTS

C s Az A@)

formula alternating nondeterministic
automaton automaton

Figure 1.2: Translation from Logics to Automata

With implementability of a logic, we measure the cost for obtaining the non-
deterministic automaton Ag from a formula in the logic. The scope of this
thesis is the design of temporal logics and the translations from these logics to
nondeterministic automata. In the following, we expand on this part.

From Logics to Automata When translating temporal logics to nonde-
terministic automata, alternating automata play an essential role. They serve
as a kind of glue between declarative specification languages like the logics
LTL [Pnu77] and PSL [Psl05] and nondeterministic automata. Translations
of declarative specification languages into alternating automata are usually
rather direct and easy to establish due to the rich combinatorial structure
of alternating automata, see for instance [VWO07, EJ91, Boz07]. Translating
an alternating automaton into a nondeterministic automaton remains to be a
purely combinatorial problem. Figure 1.2 illustrates this two-step approach.

This two-step approach [Var98] is introduced by Vardi and has the following
advantages over translations that do use alternating automata as intermediate
step: (7) The two-step approach splits a direct translation from a formula into
a nondeterministic automaton in two independent translations. The construc-
tions of these two parts are easier to understand, to establish their correctness,
and to implement than the direct construction. (ii) Alternating automata rep-
resent temporal logic formulas in an abstract and uniform way. Thus, alterna-
tion elimination is a mathematically elegant way to formalize translations from
logics to nondeterministic automata. (7i7) Another benefit is the fact that we
can reuse alternation-elimination constructions, their correctness proofs, and
their implementations for different logics. (iv) We can optimize an alternating
automaton before we translate it into a nondeterministic automaton. Sev-
eral automata-based techniques are applicable like simulation-based reduction
techniques [GO01, EWS05, FW05, FW06].

Different classes of alternating automata are used for these kinds of trans-
lations depending on the expressive power of the specification language. For

INTRODUCTION

instance, for temporal logics like LTL, CaRet [AEM04], NWLTL [AAB*08],
or CTL* [EHS86], restricted classes of alternating automata suffice, namely au-
tomata that are very weak [Roh97,LT00]. For LTL, these restrictions have been
exploited to obtain efficient translators to nondeterministic Biichi automata,
see [GOOL, Fri03]. For fragments of the standardized property specification
language PSL [Psl05] or RXPath [CGLV09], one uses alternating Biichi au-
tomata [BFH05]. For logics with explicit fixpoint operators like the linear-time
p-calculus pLTL [BB89, Var88], uNWTL [Boz07], or the u-calculus [Koz82],
one uses alternating parity automata. If the temporal specification language
has future and past operators, one uses 2-way alternating automata instead
of 1-way alternating automata, see for instance [Var98, KPV01, GO03,Boz07,
DKL09,CGLV09].

Alternation-Elimination Scheme In this thesis, we present a general con-
struction scheme for translating restricted classes of alternating automata into
language-equivalent nondeterministic automata. In a nutshell, the general
construction scheme shows that the problem of translating an alternating au-
tomaton into a language-equivalent nondeterministic automaton reduces to the
problem of complementing a nondeterministic automaton whose acceptance
condition is negated. We also show that the nondeterministic automaton that
needs to be complemented inherits structural and semantic properties of the
given alternating automaton. Using complementation constructions that ex-
ploit the inherited properties, we directly obtain instances of the scheme for
various automata classes.

Furthermore, we instantiate the construction scheme to different classes of
alternating automata. Some of the constructions that we obtain share similar
technical details with previously proposed constructions such as, e.g., the ones
described in [MH84,KV01,GO01,Boz07]. Some of them even produce the same
nondeterministic Biichi automata modulo minor technical details. However,
recasting these known constructions in such a way that they become instances
of a general construction scheme increases their accessibility. In particular,
correctness proofs become modular and simpler. Another benefit of utilizing
the construction scheme is that differences and similarities between the trans-
lations for the different classes of alternating automata become apparent. We
also present novel alternation-elimination constructions. These constructions
are instances of our construction scheme and utilize new complementation

1.1. SCOPE, MOTIVATION, AND RESULTS

constructions for eventually 1-way nondeterministic co-Biichi automata. The
novel technique used in these constructions enables new translations from im-
portant logics with past operators to nondeterministic automata whose worst-
case sizes are surprisingly small. That is, compared to the worst-case sizes of
the nondeterministic automata that we obtain from logics without past op-
erators, their worst-sizes differ only by a small constant in the exponent. In
the following paragraphs, we expand on two applications of these alternation-
elimination constructions in more detail.

Past Operators for PSL One important application of the alternation-
elimination constructions is the translation from PSL [Psl05] with past oper-
ators to nondeterministic Biichi automata (NBA). PSL is an IEEE standard
and it is increasingly used in the hardware industry to formally express, vali-
date, and verify requirements of circuit designs. The linear-time core of PSL!
extends LTL with semi-extended regular expressions (SEREs), which are es-
sentially regular expressions with an additional operator for expressing the
intersection of languages. The prominence of PSL in industry over other spec-
ification languages like LTL [Pnu77], uLTL [BB89], and ETL [Wol83] is based
on the fact that PSL balances well the competing needs of a specification lan-
guage such as expressiveness, succinctness, and implementability [AFF102]:
PSL can describe all w-regular properties, specifications are fairly easy to read
and write in PSL in a concise way, and relevant verification problems such as
model checking for PSL are automatically solvable in practice.

Although temporal operators that refer to the past have been found nat-
ural and useful when expressing temporal properties [LPZ85, KPV01, Mar(3,
CRS04, CRST06, SL10], the PSL standard supports temporal past operators
only in a restrictive way. We define the logic PPSL as an extension of PSL
with past operators. We also present examples that support the claim that
the new past operators are natural and useful for describing properties that
refers to the past. Moreover, we show that PPSL allows one to describe w-
regular languages more concisely than PSL. In particular, we define a family
of w-regular languages and prove that these languages can be described in
PPSL exponentially more succinctly than in PSL. As a byproduct, we obtain
a doubly exponential succinctness gap between PPSL and LTL, for the LTL-

! For the ease of exposition and similar to [BDBF*05, CRST06, PZ06], we identify PSL
with its core. The core is unclocked and its semantics is only defined over infinite words.

INTRODUCTION

expressible properties, that is, the w-regular languages that are star-free (see,
for example, [DGOT]).

Taking all these benefits into account, one might ask for the reason why the
PSL standard only supports past operators in a restrictive way. The design
choice has already been made for the predecessor ForSpec [AFFT02] of PSL
and has been justified by the argument that handling “arbitrary mixing of past
and future operators results in nonnegligible implementation cost” [AFFT02].
One reason for this belief is that the best construction for translating PPSL to
NBAs translates a formula of size n into an NBA with at most O(242"+2"")
states and is based on an alternation-elimination construction for 2-way Biichi
automata, see [KPVO1]. In contrast, the standard automata constructions for
PSL translates a formula of size n into an NBA of size O(3*") [BDBF*05,
BFHO05).

In this thesis, we argue against this assumed additional implementation
cost. In particular, one of our results shows that a restricted class of 2-way
automata suffices and the additional cost for this class is small. We present a
construction for PPSL that translates a formula of size n with m propositional
variables into an NBA of size O(2™ - 322n). The difference between the upper
bounds of the sizes of the resulting automata for PSL and PPSL is surpris-
ingly small. Moreover, in symbolic model checkers like SMV [McM92] and its
successors VIS [BHSV196], RuleBase [BBDE97], CadenceSMV [McM99], and
NuSMV [CCGT02], the NBA is represented as labeled transition system. Here,
we can adjust our construction to obtain the bound (9(322n), which matches
exactly the bound that we obtain when translating PSL formulas into transi-
tion systems. That means that from a theoretical point of view, there is no
reason for not supporting and using past operators.

We also show similar results for the logics DLTL [HT99] and RLTL [LS07]
that are extensions of PSL. RLTL is of particular interest since every w-regular
expression can be translated into an RLTL formula of the same size, whereas
the additional cost for the construction to NBAs is only a small factor in the
exponent. We extend these logics with past operators, provide new translations
constructions to NBAs, and show that the additional implementation costs are
again small.

Nested-Word Logics Another application of our alternation-elimination
construction scheme is the translation from the logic NWTL [AAB*08] to non-

1.1. SCOPE, MOTIVATION, AND RESULTS

deterministic nested-word automata (NWA). Nested words extend words by
adding nested edges to the linearly ordered sequence of positions in the word.
These nested edges connect call positions with return positions and are not
allowed to cross. The data of many applications can be represented by nested
words. For instance, in natural language processing, a sentence is viewed
as a linear sequence of words while the underlying syntactic categories—the
building blocks of sentences and the units of grammatical analysis—impart a
nesting structure. In software verification, nested words model the control flow
of sequential computations in typical programming languages with nested, and
potentially recursive, invocations of program modules such as procedure calls.
Another example is the representation of hierarchical data like XML docu-
ments as streams, that is, when viewing such a document as a linear sequence
of characters, along with hierarchically nested edges connecting opening and
closing tags.

For describing nested-word languages, Alur and Madhusudan use visibly-
pushdown automata [AMO04], a computational model whose access on the stack
is input-driven. That is, a visibly-pushdown automaton or equivalently, nested-
word automaton [AMO09], is a finite automaton that accesses its stack only if
the automaton processes a letter at a call or return position. In [AM04,AM09],
Alur and Madhusudan show that this restricted class of pushdown automata
enjoy similar properties as finite-state word automata such as being closed
under union, intersection, and complementation. Furthermore, they provide
efficient algorithms for deciding the membership, emptiness, and language in-
clusion of languages that are represented by nested-word automata. Due to
these closure properties of NWAs, they call the class of languages definable by
NWAs regular.

Apart from representing nested-word languages by computational models
such as nested-word automata, the use of temporal logics to describe nested-
word languages in a declarative way is often more natural. In [AEMO04], Alur,
Etessami, and Madhusudan introduce CaRet, a temporal logic over nested
words that extends the well-known PLTL by operators such as abstract next
or abstract until that are not only interpreted along the linear paths of a
nested-word but also along paths that are implied by the additional nesting
structure. The definition of CaRet is motivated by practice, namely, to describe
requirements for recursive state machines. However, the theoretical question
remains open whether CaRet is expressively complete with respect to first-
order logic over nested word structures. Further development on the logic

INTRODUCTION

CaRet led to the variants NWTL, NWTL", and CaRet+W in [AABT08]. The
authors show that all three logics are as expressively complete with respect to
first-order logic over nested words. In [Boz07], Bozzelli presents the temporal
logic uNWLTL, an extension of the well-known pLTL. She shows that this
logic can describe all regular properties over nested words, and hence, the
logic is even more expressive than any first-order logic over nested words. In
subsequent papers, she also investigates variants of the logic CaRet [Boz08,
Boz09]. For all of these logics, the authors provide translations to nested-word
automata. So they reduce decision problems such as satisfiability and model
checking to combinatorial problems for nested-word automata. However, the
translations are non-trivial and hardly share any construction ideas.

We follow Vardi’s two-step approach for translating logics over nested words
to nested-word automata. We use alternating automata as an intermediate
step and then apply our alternation-elimination scheme by providing several
novel complementation constructions. Apart from the benefits we gain by using
Vardi’s two-step-approach, we also clarify and simplify many constructions. In
particular, one of our constructions fixes a flaw in the translation from NWTL
to NWAs given in [AABT08]. Another construction provides an alternative,
more modular translation from uNWLTL to NWAs than Bozelli’s translation
given in [Boz07]. Due to the modularity, our construction is simpler, easier
to prove, and to implement. Moreover, for formulas with a restricted use of
past operators, we can easily exchange the alternation-elimination part and
obtain translations whose resulting NWAs are smaller than those obtained
from Bozzelli’s construction. Finally, we present a novel logic NWPSL that is
more expressive than NWTL and show how to utilize our novel translations
to easily obtain language-equivalent NWAs.

1.2 Contributions

We see our main contributions of this thesis as follows.

First, we improve and generalize Vardi’s approach to eliminating alternation
and formalize it as an alternation-elimination scheme. Our scheme is not
only restricted to tree automata as in Vardi’s case but also applies to graph
automata and, in particular, to nested-word automata. Furthermore, instances
of our scheme produce smaller worst-case results by an exponential factor in
the size of the input.

1.3. OVERVIEW

Second, we provide new constructions for complementing restricted classes of
2-way automata. Together with the scheme, we obtain alternation-elimination
constructions for several restricted classes of 2-way automata over words and
nested words. The classes in consideration are important in the sense that
they correspond to common temporal logics with past operators known from
the literature and used in practice.

Third, we extend various temporal logics from the literature with past op-
erators and present translations into alternating automata. Furthermore, we
discuss the matter of succinctness that past operators provide. In particular,
we extend the IEEE standardized temporal-logic PSL with past operators and
show that—in contrary to a widely held belief—model checking systems with
respect to this logic remains feasible. We also show that PSL with past op-
erators is exponentially more succinct than PSL. We show similar results for
the logics DLTL and RLTL. Moreover, we provide an alternative, mathemat-
ically clean way to translate NWTL into nested-word automata, correcting
an error in a recently published construction. We also show how to extend
NWTL by regular expressions, obtaining a new, more expressive logic and we
provide constructions to nested-word automata. Furthermore, we present an
alternative translation from uNWTL to nested-word automata. Our construc-
tion improves the state-of-the-art construction by a constant in the exponent.
Furthermore, for formulas without past operators, our construction produces
automata whose worst-case sizes improve upon the best-known construction
by the factor log(n?)/n? in the exponent, where n is the size of the input.

1.3 Overview

This thesis is organized as follows.

In Chapter 2, we recall basic definitions. In Chapter 3, we present the
alternation-elimination scheme and prove some properties of this scheme.

The next two chapters have a similar structure. In Chapter 4, we first de-
velop complementation constructions for automata over words to obtaining
alternation-elimination instances from our scheme. Then, we present exten-
sions of temporal logics known from literature and present translations to
nondeterministic automata, for these logics. Furthermore, we establish an
exponential gap between certain logics and its extensions by past operators.

In Chapter 5, we first present novel complementation constructions that

INTRODUCTION

translate nondeterministic automata into nondeterministic visibly-pushdown
automata. Then, we present temporal logics known from literature and present
translations to visibly-pushdown automata for these logics.

10

Chapter 2

Preliminaries

In this chapter, we fix notation and define the mathematical objects and the
different automata classes that we use throughout this thesis. We also give
a brief summary over some fundamental complementation constructions of
nondeterministic automata that we use as running examples and as building
blocks in the proofs in this thesis.

2.1 Graphs, Words, and Trees

We write N := {0,1,2,...} for the set of natural numbers and N; := N\ {0}
for the set of natural numbers that start with 1. For n € N, we write [n] for
the set {0,1,...,n —1}.

Graphs Let D be a finite set of directions. A D-graph is an edge-labeled
graph (V, E), where V is a set of nodes and E = (Eg)qep is a family of
edges E; C 'V x V with label d € . We denote the set of directions of
the outgoing edges of a node v € V by D,, i.e., we write D, := {d € D |
there is a node v" with (v,v") € E;}. We write ¢ for the empty graph, i.e., the
graph is of the form (0, #). A graph is finite if the cardinality of the set of its
nodes is finite. Otherwise, we call it infinite. A pointed D-graph (G,vy) is a
D-graph G with an initial node vy € V. A (X, 1D)-graph (V, E,vr, \) is pointed
D-graph (V, E, v;) with a labeling A : V' — ¥ of the nodes by elements from 3.
For a class of pointed D-graphs G, we write %9 for the set of all (3, D)-graphs
(G, \) with G € G.

Words A word over ¥ is a (X,{—1,0,1})-graph of the form (V| E,0,w),
where V € {[n] | n e N}U{N}, By = {(i,j) e VXV |j=i+1}, E; =

11

PRELIMINARIES

{(i,j) e VxV | j=1i—-1}, By ={(i,i) | i € V}. In the following, we denote a
word over X by just giving its labeling function w : V' — ¥. We write ¥* and
> for the set of all finite and infinite words over X, respectively. We denote
the union of ¥* and X by »*°. For a word w, we denote the 7th letter by
w; = w(i) € X, its length by |w| := |V|. We write w;_ for the suffiz w;w;y1 . ..
of the word. We write w; ; for the sub-word w;w;;, ... w;. For convenience,
w;. ; denotes the empty graph ¢ if j < i. We write vw for the concatenation of
the two words v and w.

Example 2.1 Consider the alphabet ¥ := {a,b} and the finite word w :
[5] = ¥ with wyw;wowswsws = ababa. The following figure depicts the graph
structure of this word.

a b a b a
] 1 1 1
07— 1 ———>2——>3 ——> 4
-1 —1 —1 —1
()U ()U ()U oU (JU

Nested Words Nested words [AEMO04, AM09] are words equipped with a
hierarchical structure. This structure is imposed by letters that denote the
start and the end of block structures. Prominent examples of nested words
are, e.g., XML documents or source code of imperative programming languages
with nested block structures. Formally, for an alphabet X, we define ¥; := %
as the set of internals, ¥. := {(a | a € £} as the set of calls, and ¥, := {a) |
a € X} as the set of returns. The tagged alphabet of ¥ is Y i=NUS. U,
We call a finite word w € 3% well-matched if w is a word that can be build by
the grammar v ::=¢ | av | corv, where a € X;, ¢ € ¥, and r € %,

A nested word over X is a (i], {-2,-1,0,1,2})-graph of the form (V, E, 0, w),
where

L. (V. (Eq)ae{-1,01},0,w) is a word,

2. By =A{(i,)) | w; € ¥, w; € E,,w;_j is well-matched, and any prefix
w;. 1s not well-matched, for any k with i < k < k'}, and

3. By = {(Zvj) | (]al) S EQ}

For convenience, we denote a nested word (V,~+,0,w) by the tuple (w,~-)
consisting of the word and the family of labeled edges.

12

2.1. GrAPHS, WORDS, AND TREES

mo—w—»o@)—»o—»m

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2.1: Graph structure of a nested word.

We call an element in E_o U Ey a nested edge. We call a position i < |w|
internal, call, and return, if w; is a letter in X;, ., and Y., respectively. A
call position i is matched if it has a matching return position j, i.e., there is an
j > i such that (i,j) € E,. Otherwise, the call position is pending. A return
position j is matched if it has a matching call position 7, i.e., there is an ¢ < j
such that (i,7) € FEs. Otherwise, the return position is pending. We call a
position k sync position if the two sub-words wg_j and w41y, of w are not
connected by some edge in F5. Formally, £ € N is a sync position if there is
no (i,7) € Ey such that ¢ < k and j > k. For a position ¢ < |w|, a caller of i
is the greatest matched call position j < 7 whose matching return position is
after 7. Formally, j is a caller for ¢ if j < ¢ is a call and either ¢ is a call and
wj.i—1 is well-matched, or 7 is not a call and w;_; is well-matched. We write Pk
and 3¢ for the set of all finite and infinite nested words over ¥, respectively.

Example 2.2 Consider the alphabet ¥ := {a,b} and the finite nested word
(w, ~) with w : [8] = %, where wo.7 = a)(b(a(bab)ab). The following figure
depicts the graph structure of this nested word. For readability, we omit the
0-labeled self-loops. Note that position 0 and 1 are pending positions.

—1 —1 -1 —1 —1 —1 —1

a) (b (a (b a b) a b)

Example 2.3 Consider the alphabet ¥ := {a} and the nested word (w, ~) €
>*, where w = (aalaaa)a)a)(aaa)(a{a{aaa)aa). Figure 2.1 depicts the graph
structure of w. For readability, we omit self-loops and edges with negative
directions. The positions 1, 3, 8, 13, and 15 are internal positions. The
positions 0, 2, 7, 10, 11, and 12 are call positions and 10 is a pending call.
The positions 4, 5, 6, 9, 14, and 16 are return positions, where position 6 is
pending. Position 11 is the caller position for position 12, 15, and 16. Finally,
the positions 5, 6, 9, 10, and 16 are sync positions. o

13

PRELIMINARIES

AN N

121 122 222

Figure 2.2: The graph structure of a tree.

Trees A tree over ¥ is a (X,N; U {0,—1})-graph (T, E, ¢,t), where

1. T'C N7 is prefiz-closed, i.e., for every x € Nj and d € Ny, if zd € T then
reT,

2. B C{(z,zd) | x € T and zd € T}, for d € Ny,
3. By :={(z,z) |z €T}, and
4. E_1 :={(z,y) | there is a d € N with (y,z) € Ey}.

The root of a tree is its initial node ¢ € T'. For an edge (z,y) € Ey, for some
d € Ny, the node y is the child of the node x. In the following, we will denote
a tree over X by just giving its labeling function ¢ : T" — 3. A path in t is a
sequence of nodes 7w € T such that my = € and for every ¢ € N, the node 7,
is a child of m;. We write ¢(7) for the word ¢(mg)t(m) ... € X°°. For a set S,
we denote all prefix-closed subsets of S* by S* and write ©''1 for the set of all
trees over X..

Example 2.4 Consider the alphabet ¥ := {a,b} and the prefix-closed set
T :={x € N} | |z] <2} U{121,122,222}. We define the tree t : T — X,
where for every node = € T, the labeling t(x) = a if and only if the sum of
the digits of x is even. Figure 2.2 depicts the graph structure of the tree t.
For readability, we omit the O-labeled self-loop of each node. The sequence
of nodes m := ¢ 1 12 122 is a path in ¢. And the labeling of this path is
t(m) = abbb.

14

2.2. AUTOMATA

2.2 Automata

Propositional Logic Let P be a finite set of atomic propositions. We denote
the set of Boolean formulas over P by B(P), i.e., B(P) consists of all formulas
that are inductively built by the grammar

pu=tt[ff|p|~p|eVe|lpAyp,

where tt and ff denote the Boolean constants tt and ff and p is a proposition
in P. We write B (P) for the set of positive Boolean formulas that do not use
the connective =. We write BY(P) and B"(P) for the set of positive Boolean
formulas that only use the connectives V and A, respectively. For a set M C P
and a formula ¢ € B(P), we say that M satisfies ¢ and write M = ¢ if and
only if ¢ evaluates to true when assigning true to the propositions in M and
false to the propositions in P \ M. Moreover, we write M |= ¢ if and only
if M is a minimal model of ¢, i.e., M |= ¢ and there is no p € M such that
M \ {p} E b. For a proposition p € P and a formula p € B(P), we say p
occurs in o if the formula ¢ has a minimal model M that contains p. If p
occurs in p, we also write p € .

Automata In the following, we define D-way alternating automata that op-
erate over (X, D)-graphs. Intuitively, the automaton starts by reading the label
of the initial node and then proceeds by moving its read-only head along the
outgoing directions to the nodes whose labels are processed next. Formally, let
D be a finite set of directions in which the read-only head of the automaton
can move. A D-way alternating automaton A is a tuple (@, X, 9, qr, A), where

e () is a finite set of states,

Y. is a finite input alphabet,

e § = (0p)pcp is a family of transition functions with ép : Q X ¥ —
BY(Q x D), for D C D,

qr € Q is an initial state, and

e A C (Q¥ is an acceptance condition.

15

PRELIMINARIES

The size |A| of an automaton A is the number of its states.

Let G := (V, E,vr,A) be a (X,D)-graph. We define C := @ x V as the set
of configurations. Intuitively, a configuration (¢, h) € C denotes the current
state ¢ and the position h of the read-only head in the input graph. A run of
Aon G is a tree r : R — C such that r(¢) = (qr,vr) and for every node x € R
with (x) = (p, h), we have M |= op, (p, A(h)), where

M :={(¢q,d) € @ x D | z has a child y,r(y) = (¢,), and (h, 1) € E4}.

That is, the positive Boolean formula dp, (p, A(h)) specifies a constraint that
has to be fulfilled by the successor states of the node denoted by the current
head position h.

A path 7 € T in a run r with 7(7) = (qo,ho)(q1, k1) ... is accepting if
qoq1 - - - € A. The run r is accepting if every path in r is accepting. The graph,
word, finite-word, and nested word language of A is, respectively, the set

L(A) := {G € ¥9 | there is an accepting run of A on G},
L¥(A) := {w € ¥* | there is an accepting run of A on w},
L*(A) ;= {w € ¥* | there is an accepting run of A on w},

L™(A) := {(w,~) € £¥| there is an accepting run of A on (w,~-)}.

We say that a graph, word, finite-word, and nested-word automaton A accepts
a language L if its corresponding language L(A), L*(A), L*(A), and L™ (A)
is equal to L, respectively. We call two automata A and B over graphs, words,
finite-words, or nested-words (language-)equivalent if their corresponding lan-
guages are equal, i.e., L(A) = L(B), L*(A) = L¥(B), L*(A) = L*(B), and
L™ (A) = L™ (B), respectively.

In the following, we consider several special classes of automata. We start
with the directionality of an automaton. Consider a D-way alternating au-
tomaton A with D C Z. The automaton A is 1-way if D C N. For these
kind of automata, we abuse notation and omit writing the ID component in the
transitions and the runs. Otherwise, the automaton A is 2-way. The automa-
ton A is locally 1-way if for every state g € @, letter a, and set D C I, we
either have dp(q,a) € BY(Q x N) or dp(q,a) € BY(Q x (Z\ N)). That is, in
each processing step, the automaton moves its read-only head only forwards
or only backwards.

Next, we distinguish between different branching modes of an automaton
according to its transition function. We call A existential if op : Q X ¥ —

16

2.2. AUTOMATA

BY(Q x D), for all D CD. We call it universal if ép : Q x 3 — B*(Q x D),
for all D C D, for all D C ID. An automaton is deterministic if it is universal
and existential. For D C Z, we call an automaton nondeterministic if for
every state p, letter a, set D C D, and minimal model M of dp(p,a), either
(7) |[M| =1, (ii) for every (q,d),(¢',d") € M, we have d > 0 and d # d', or
(zii) for every (q,d),(¢’,d’) € M, we have d < 0 and d # d'. That is, the
transition function cannot be satisfied by two different successor states along
the same direction. Intuitively, a nondeterministic automaton annotates the
nodes of the input by configurations while an existential automaton annotates
only a path in the input by configurations.

Finally, we define the fype of an automaton that specifies the acceptance
condition of A in a finite way. Commonly used types of acceptance conditions
are listed in Table 2.1. Here, Inf(7) is the set of states that occur infinitely
often in an infinite path @ € T¥. The integer k is called inder of A. For
instance, the acceptance condition A of a Biichi automaton (@, X, 9, g7, F, B)

with B C @ is defined as A = {7 € Q| Inf(7) N B # 0}.

Conventions For readability, we use the following standard abbreviations
and conventions. Each four-letter acronym from the set

{1,2} x {A, E, U, N, D} x {F, cF, B, C, G, ¢G, P, cP, R, S} x {A}

refers to one particular automata class. The first letter corresponds to the
directionality (1-way, 2-way), the second letter to the branching mode (alter-
nating, existential, universal, nondeterministic, deterministic), and the third
letter to the acceptance condition (finite, co-finite, Biichi, co-Biichi, generalized
Biichi, generalized co-Biichi, parity, co-parity, Rabin, Streett). The fourth let-
ter A stands for automaton. For instance, a 2URA is a 2-way universal Rabin
automaton.

For existential and universal automata, we use the standard set notation to
denote the disjunction or conjunction of all successors of a state, respectively.
Formally, we write the transition function as dp : Q x 3 — 29%P for all D C D.
Note that an empty set is regarded as ff for existential automata, whereas for
universal automata, an empty set is regarded as tt. For a direction d € D, we
write 0% (R,a) == U,cp{e | (¢,d) € dp(r,a)} for all d-successors of the set R,
where R C @, D C D, and a € ¥. For a transition function ép : Q x ¥ —
BT (QxD), for D C D, the dual transition functionis dp : Q x X — BT(Q xD),

17

PRELIMINARIES

type finite description «, acceptance condition A
a=FCQ
Finite A={r € Q" | mz-1 € F'}
co-finite A={r e Q" | mz-1 ¢ F'}
a=FCQ
Biichi A:=Q*U{r e Q¥ |Inf(m)NF # 0}
co-Biichi A:=Q*U{reQ®|Inf(m)NF =0}

a={Fy,...,Fp} C29
generalized Biichi A:=Q*U ﬂie[k]{w eQ¥ | Inf(m)NF; =0}
generalized co- A=Q " UU;ep{r € Q¥ [Inf(m) N E; # 0}

Biichi
a={Fy,...,Fo_1} C29 where Fy CFy C - C Foq
parity A:=Q*U{r e Q¥ |min{i € [2k] | F; NInf(r) # 0} is even}
co-parity A:=Q*U{r € Q¥ |min{i € [2k] | F; NInf(r) # 0} is odd}
a = {(30700)5 BRI (Bk—la Ck—l)} - 20 x 2¢
Rabin A= Q" Uy im € Q¥ Inf(r) N B; # 0 and Inf(7) N C; = 0}
Streett A= Q" UNgyylr € Q° | Inf(r) N B; =0 or Inf(m) N C; # 0}
o = {MO,...,Mk_l} - 2Q
Muller A:=Q"U Uie[k]{ﬂ' € Q¥ | Inf(r) = M;}

Table 2.1: Types of acceptance conditions.

where each dp(q, a) is obtained from dp(q, a) by swapping all V and A operators
and the Boolean constants tt and ff, for all g € Q, D C DD, and a € 3.

Restricted Automata Classes We introduce several restrictions on the
definition of alternating automata that will be exploited in the automata con-
structions. Let A = (Q, X, 9, q;, A) be a D-way alternating automaton.

Weakness. The notion of weakness has been introduced in [MSS92]. Intu-
itively, weakness means that there is a partition on () into either accepting or
rejecting subsets Qo, ..., Q,_1, for some n € N, such that every path of any
run gets trapped in exactly one @;, for some ¢ € [n], and is accepting if and
only if the partition @); is accepting.

Formally, we call a set of states P C Q accepting if Inf(r(mw)) C P implies
r(m) € A, for each run r and path 7 in r. We call a set P C Q rejecting if
Inf(r(7)) C P implies r(m) ¢ A, for each run r and path 7 in . The automaton

18

2.2. AUTOMATA

A is (inherently) weak if there is a partition on @ into sets Q, ..., Qn_1, for
some n € N, such that (a) for every i € [n], the set Q; is either accepting or
rejecting, and (b) for every i,j € [n], p € @i, ¢ € Q;, a € ¥, D C D, and
d € D, if (¢,d) occurs in dp(p,a) then j < i. The automaton is called very
weak [GOO01] (also known as 1-weak or linear) if additionally each @, for every
i € [n], is a singleton.

We append the letters W and V to the four-letter acronym of an automa-
ton to characterize the automaton as weak and very weak, respectively. For
instance, a V2ABA is a very weak 2ABA.

FEventually 1-Way. Let D C Z. Intuitively, being eventually (strictly) 1-way
means that in every infinite path of any run, the automaton will eventually
move its head position only forwards. Formally, the automaton A is eventually
1-way if there is a partition on @) into subsets Qq, @1, . .., Q,_1, for somen € N,
such that for every i,j € [n], p€ Qs, ¢ € Qj, a € £, D CD, de D, and (¢,d)
occurs in dp(p, a), if (i is even and d < 0) or (i is odd and d > 0) then j < i.
Intuitively, each subset); represents states from which the automaton moves
only forwards or only backwards. Since there are only finitely many such @);s,
the automaton may only change its direction finitely often and hence, it will
eventually proceed only forwards.

Nested Word Automata
A nested word automaton (NWA) is a tuple A = (@, S, %, 9, qr, F'), where
e () is a finite set of states,

e S is a finite set of stack symbols with L ¢ S,

Y is a finite alphabet,

qr € @ is an initial state,

0 = (0z)acficry consists of three nondeterministic transition functions
with

1. (5Z‘IQ><EZ‘—)2Q,
2. 0,:Q x X, — 29%5
3. 0, : Qx (SU{L}) x %, =29

19

PRELIMINARIES

e [C (Q is the set of accepting states.

A run of A on a nested word (w,~+) € ¢ is a sequence of configurations
(G0, $0)(q1,81) - .. € (Q x S)¥ such that gy = ¢; and for every position ¢ € N in
(w, ~),

L. if w; € 3; then g1 € 6;(qi, w;),

2. if w; € X, then (gir1, Siv1) € 0c(qi, w;),

3. if w; € ¥, and i is pending then ¢; 1 € 0,.(q;, L, w;),

4. if w; € ¥, and 7 has a matching call j then ¢;11 € 6,(qi, Sj+1,w;),

The run is accepting if some state ¢ € F' is visited infinitely often, i.e., we have
Inf(goqy...) N F # (). We denote the nested word language of the automaton
A by

L™(A) == {(w,~) € %¢ | there is an accepting run of A on (w, ~)}.

Note that the NWA A implicitly uses a stack. Consider a run of the NWA
A. First, the stack is initialized with the bottom stack symbol L. Whenever
A reads a letter in X, it pushes a symbol s € S on the stack. Whenever A
reads a letter from Y, it pops a symbol from the stack. In case the position
is matched, it pops the top stack symbol that was previously pushed on the
stack at the matching call position. In case the position is pending, it pops
and pushes the bottom stack symbol 1.

2.3 Complementation Constructions

In the following, we present complementation constructions from literature
that we will use as basic building blocks throughout this thesis. Let D :=
{—1,0,1} be the set of direction.

The first construction is the standard subset construction [RS59,HU79], also
known as powerset construction that complements the finite-word language of
an 1EFA.

20

2.3. COMPLEMENTATION CONSTRUCTIONS

Theorem 2.5 Let A = (Q,%,9,q;, F) be a 1EFA. Then, the 1DFA B :=
(QQ’ Ea n, {QI}; QQ\F), where

np(R,a) == 0p(R, a)
for Re29, a€ X, and D CD, accepts ©* \ L*(A). -

Intuitively, the automaton B simulates each run of A simultaneously and ac-
cepts if all runs end in a non-accepting state. Observe that the theorem also
holds if we replace the 1EFA and 1DFA by a 1EcFA and 1DcFA, respectively.

Another construction is the 2-way subset construction [Var89] that com-
plements the finite-word language of a 2-way EFA. In the next theorem, we
present an improved version of Vardi’s construction in terms of the resulting
automata worst-cases sizes. We translate a 2EFA of size n into a 1EFA of size
(2")% + 1 rather than (2")% + 2" as in Vardi’s construction.

Theorem 2.6 Let A = (Q,%,8,q1,F) be a 2EFA. Let B = (29 x 29 U
{QI}v Eﬂ%QI,G) be a ZEFA7 where G := (QQ\F X QQ) U ({ql} N (Q \ F))7

no(qr,a) == {(Ro, Ry) | qr € Ry and 6%,(Ry,a) C Rg, for alld € {0,1}},
nD((R—hRO)’a’) = {(Role) | 5%(R0aa’) - Rda fOT all d €]D}a
for R_i,Ry, Ry €29, a €, and D CD. Then, B accepts ¥* \ L*(A). o

Intuitively, the automaton B guesses a sequence RoR;...R, € (29)* and
checks that the sequence includes every run of A on the input word. That is, if
the sequence (qo, ho)(q1,h1) - - (qn, hn) € (@ X N)* is a run of A then ¢; € Ry,
for all i € [n + 1]. Obviously, the sequence RyR; ... R, contains every run, if
the following maximality condition holds: for every position i € [n + 1] and
state p € R;, all d-successors are contained in the adjacent sets R; 4 (if they
exists).

The following construction is the breakpoint construction [BJWO05, MH84].
The construction is used to complement the infinite-word language of a 1ECA.

Theorem 2.7 Let A = (Q,%,0,q1, F) be an 1ECA. Then, the 1IDBA B :=
(29 x 28,5, n, q7,29 x {0}), where

np((R,0),a) := (6p(R,a),0p(R,a)\ F) and
nD((Rv S)va) = (5D(R’ a)a(sD(Sa a))v
for Re29, S €28\ {0}, aeX, and D C D accepts X¢ \ L¥(A). o

21

PRELIMINARIES

Intuitively, the automaton B simulates each run of A simultaneously with its
R component by using the subset construction. The S component of the state
space is used to check that no run of A accepts by the co-Biichi condition.
Roughly speaking, B stores states in S that owe a visit to F'. A configuration
with S = 0 is a breakpoint. By filling up S with all states from R at breakpoints
and removing F-states from the S component, in every processing step, the
automaton B ensures that all states visit F' before the next breakpoint is
reached. Hence, B visits infinitely many breakpoints if and only if all runs of
A visit F infinitely often.

Note that the 1DBA B has only 3" states, where n is the size of the 1IECA A.
The reason is that a state (R,.S) of B can be represented by a vector v € 3",
where every component of v corresponds to a state of A that is (i) contained
in R and S, (i) contained in R but not in S, or (#i7) neither contained in R
nor in S.

22

Chapter 3

Alternation-Elimination Scheme

In this chapter, we present a general construction scheme for removing alterna-
tion of D-way alternating automata. The construction scheme is general in the
sense that it can be instantiated for different classes of alternating automata.
We provide such instances in the following chapters.

We proceed as follows. We first give an intuition of the construction scheme.
Then, we show how to encode run trees of alternating automata as labeling
functions of the input graphs of those automata. Afterwards, we present the
construction scheme and some of its properties.

3.1 Overview on Construction Scheme

In this section, we introduce the idea of the alternation-elimination scheme. We
present this from a game-theoretic point of view. Consider a D-way alternating
automaton A, an input graph G, and the two players called Automaton and
Refuter. Player Automaton claims that A accepts GG, whereas player Refuter
tries to refute this claim. They compete against each other in the following
game.

1. First, player Automaton suggests a tree and claims that this tree is an
accepting run of A on GG. That is, the tree is a run of A on G and every
infinite path in the tree is accepting.

2. Second, player Refuter examines Automaton’s suggested tree and checks
whether the claim is true. In particular, Refuter can refute the claim
in two ways. Either, Refuter shows that the tree is not a run of A on
G, i.e., Refuter picks a reachable node such that the labels of the node’s

23

ALTERNATION-ELIMINATION SCHEME

Alternating automaton A = (Q, %, d, q;, A) accepts G

3t :t € runs(A, G) AVr € paths(t) : t(m) € A

3t —(t ¢ runs(A, G) vV 3Ir € paths(t) : t(m) ¢ A)

Jt: —|(the existential refuter automaton B accepts (G, t))

3t : the nondeterministic automaton C accepts (G, t)

to T

the nondeterministic automaton D accepts G

Figure 3.1: Overview of the alternation-elimination scheme.

children do not satisfy the transition function of A. Or, Refuter identifies
an infinite path in the tree that is not accepting.

Obviously, A accepts G if and only if player Automaton can win this game.

With this game in mind, we can describe the overall idea of the scheme as
follows. First, we encode player Refuter’s strategy by a existential automa-
ton B. The automaton B reads the input graph G and player Automaton’s
suggested tree t. The tricky part of this step is to represent t in such a way
such that its representation has the same structure as the input graph G. The
objective of the existential automaton B is twofold. It looks for a node in ¢
that witnesses that ¢ is not a run of A4 on G. Alternatively, it looks for an
infinite path in ¢ that is rejecting. In a second step, we translate B into a
nondeterministic automaton C that accepts the complement of the language
of B. That is, C accepts a graph G with its suggested ¢ if and only if ¢ is an
accepting run of A on G. Finally, we define D as the projection of C on G,
which is a standard operation on nondeterministic automata. The resulting
nondeterministic automaton D accepts G if and only if there is a tree ¢ that is
an accepting run of A on G. A sketch of this general overview is depicted in
Table 3.1, where runs(A, G) denotes the set of all runs of A on G and paths(t)
denotes the set of all infinite paths in t.

In the following sections, we present this idea formally. Before going into
the details of the construction scheme, we start with some preparatory work.

24

3.2. MEMORYLESS STRATEGIES AS INPUT

3.2 Memoryless Strategies as Input

In this section, we show how to represent a memoryless run of an alternating
automaton in such a way such that the representation has the same structure
as the input graph that is read by the alternating automaton. We need this
kind of representation of a run as a prerequisite for the alternation-elimination
scheme. We remark that the construction of the representation is based on
constructions given in [Var88, Var98, KPV01]. In this thesis, we simplify the
presentation of their representation of a memoryless run. A memoryless run is
essentially a so-called positional strategy of player Automaton and we view the
strategy as a function rather than as a relation. Furthermore, we generalize
their representation to be able to represent memoryless runs on general graph
inputs rather than just word or tree inputs.

We start with the formal definition. Let D be a set of directions, A =
(@Q,%,6,qr,A) a D-way alternating automaton, and r : R — @ x V a run of A
on a (3,D)-graph (V, E,vr, A). The run r is called memoryless' if all equally
labeled nodes have isomorphic subtrees, i.e., for every =,y € R and z € Nj, if
r(x) = r(y) then

1. xz € R if and only if yz € R, and
2. if zz € R then r(zz) = r(y2).
We define

M(A) :={G € X9 | there is an accepting memoryless run on G}.

We call A memoryless if L(A) = M(A).

Obviously, we have M(A) C L(A). For a D-way alternating automaton
A with Biichi, co-Biichi, parity, co-parity, or Rabin acceptance condition, we
also have the converse M (A) O L(A), see [EJI1, Jut97, Var98, Zie98| for more
details. Note however that the converse does not hold in general.

In the following, we represent a memoryless run by a new labeling of the
input graph. Since children of equally labeled nodes in a memoryless run

IThe choice of the term “memoryless” becomes clear when viewing a run of an alternating
automaton as a representation of a strategy of the first player in a two-person infinite
game [MS87]. A memoryless run encodes a memoryless strategy (also known as a po-
sitional strategy) of the first player, i.e., a strategy that does not take the history of a
play into account.

25

ALTERNATION-ELIMINATION SCHEME

r: R — @ xV are also equally labeled, we represent the memoryless run r by
a successor function 7: (Q x V) — 292 where

7(q,v) == {(q’, d) € @ x D | there is a node = with a child y in R such that
r(z) = (q,v),r(y) = (¢',v'), and (v,0') € Ed}.

That is, we map a configuration (¢,v) to the set of labels of the children
of some node that is labeled by (¢,v). By “currying” the function 7, we
obtain the function o : V' — (Q — 29*P) that is isomorphic to 7. We call o
the representation of the memoryless run r. Note that this representation is
unique, i.e., every representation of r is isomorphic to o.

Example 3.1 We list some representations of memoryless runs for special
cases of input graphs. Note that the representations are labeling functions
of graphs that have exactly the same structure as the input graphs of the
alternating automata.

e If the input of A is a finite word w = wq...w,_1 € ¥X* then a run is a
tree 7 : R — @ x [n]. If r is memoryless, we represent the run by a finite
word o : [n] = (Q — 29%P), where D = {—1,0,1} and for i € [n], the
labeling (i) : Q@ — 29*P is the function that maps a state ¢ to the set
that contains all tuples of the from (¢’, d) if and only if in the run r, the
automaton A visits ¢ having head position i and moves to state ¢’ and
head position i + d.

e If the input of A is an infinite word w € X* then a run is a tree r :
R — @ x N. If r is memoryless, we represent the run by an infinite word
o:N—= (Q — 29D) where D = {-1,0,1}.

e If the input of A is a nested word (w,~») € % then a run is a tree
r: R — @ x N. If r is memoryless, we represent the run by a nested
word (o, ~) with o : N — (Q — 29*P) where D = {—2,—1,0, 1, 2}.

e Iftheinput of Aisantreet: T — X thenarunisatreer: R — (QxT).
If r is memoryless, we represent the run by a tree o : T — (Q — 29*P),
where D = {—1,0,...,n} and n is the greatest direction that occurs in
the transition function of A. O

26

3.3. REDUCTION TO COMPLEMENTATION

3.3 Reduction to Complementation

Based on the representation of memoryless runs as input graphs, we formally
introduce the alternation-elimination scheme.

Definition 3.2 Let A = (Q,%,4,q;,A) be a D-way alternating automaton
and I := Q — 29%P. From A we construct the D-way existential refuter
automaton B of A that is defined as

B:=(Q,XxT'n,q,Q U(Q"\A)).

Forqe @, D C D, and (a,g) € X x I', we define the transition function as

(g, (a,9)) = {g(q) if g(q) = 0p(q, a),

tt otherwise. o
Intuitively, the existential automaton B from Definition 3.2 works as follows. It
reads the input graph G and the run representation of the D-way alternating
automaton 4 and inspects one single path in the run representation. The
refuter automaton B accepts the input if one of the following holds. (a) The
inspected path is finite and leads to a node in the run that witnesses that the
run is broken. That is, the labels of its children do not satisfy the transition
function of A. (b) The inspected path is infinite and its labeling yields a
rejecting sequence with respect to the acceptance condition of A.

Throughout this section, we fix the D-way alternating automaton A and its
refuter automaton B as defined in Definition 3.2. Moreover, we abbreviate the
function space Q — 29%P by T'.

The next lemma is at the core of the results of this chapter. It states that
the refuter automaton B rejects an input if and only if the input consists of
a graph G and a representation of an accepting memoryless run of A on G.
We use the following notation. For a graph G € (X x)9, we write Gy € X9
and Gt € I'Y to denote the graphs with the projections of their labeling of the
nodes on X and I', respectively.

Lemma 3.3 For every graph G € (X x)9, we have

G ¢ L(B) iff Gr is a representation of an accepting run of A on Gx.

27

ALTERNATION-ELIMINATION SCHEME

PROOF Let G = (V, E, v, \) € (X x T')9 be a graph. We write Ay and A for
the projection of A on the alphabets > and I', respectively.

We first prove the if direction. Let t : T —) x V be an accepting mem-
oryless run of A on Gy such that Gr is a representation of ¢t. For the sake of
contradiction, assume there is an accepting run r of B on G. We show that ¢
contains a rejecting path 7, which contradicts the fact that ¢ is accepting. We
consider the following two cases.

Case 1. Suppose that r is infinite. Let r := (qo,v0)(q1,v1) ... € (Q x V)¥
with qoq1 ... ¢ A. Moreover, we have (qo,v0) = (qr,v;) and Ar(v;)(q;) =
op,, (¢i; As(vi)), for all © € N.© We recursively construct the rejecting path
TeV«inT.

e We define 7y := €. By definition of a run of A on Gy, we have t(m) =
(qja UI) = (q07 UO)'

e For i > 0, we define m; as some child of m;_; that is labeled by t(m;) =
(gi, v;). We show that the child 7; exists. Since r is a run of B, we have
(gi,vi) € Ar(vi—1)(g;—1). Since Gr is a representation of the memoryless
run ¢, the set Ar(v;_1)(¢;—1) contains all labels of the children of any node
x € T that is labeled by (g;_1,v;—1). Thus, there is a child m; € T of m;_4
that is labeled by (g;, v;).

Since 7 is a path in 7" with ¢(7) = r and qoq; . . . ¢ A, the run ¢ is not accepting.

Case 2. Suppose that r is finite. Let r := (qo,v0)(q1,v1) - - (¢n-1,Vn-1) €
(@ x V)*. Moreover, we have (qo,v0) = (qr,vr), Ar(vi)(ai) [E dp,, (6, As(vi)),
for all i € [n], and Ar(vy—1)(gn-1) [# Op,, (@n-1,An(vn-1)). We recursively
construct the rejecting path 7 € V* in T'. Using the construction from Case 1,
we obtain a path m = momy ... 7,1 in T with ¢(7) = r. Since Gr is a repre-
sentation of the memoryless run ¢, the set Ap(v,_1)(g,—1) contains all labels
of the children of the node m, 1 € T that is labeled by (¢,_1,v,-1). Since
Ar(Vn-1)(qn-1) [# 0p,, (@n-1,Ax(vn-1)), the tree t is not a valid run of A on
Gs.

Now, we prove the only if direction by contraposition. By assumption, G is
not a representation of an accepting run A on Gy,. We make a case distinction.
Case 1. Suppose Gr is not a representation of a run of A on Gy. Consider
atreet: T — Q x V with t(¢) = (qr,vr) such that Gr is a representation of ¢.
It is easy to verify that such a tree exists and we omit this proof step. Since

28

3.3. REDUCTION TO COMPLEMENTATION

t is not a run of A on Gy, there is a node x € T with label t(x) = (¢,v), for
some ¢ € () and v € V, such that the set

{(¢’,d) € Q@ x D | yis a child of z,t(y) = (¢',v'), and (v,v') € E4}

is not a minimal model of dp, (¢, As(v)). Let © € T be chosen in that way such
that k := |z| is minimal. Now, we define an accepting run r of B on G. For
i € [k], we define r; := (g;,v;) := t(xo ;). By the minimality of |z|, we have
Giv1 € Ar(vi)(q:) and Ar(vi)(¢:) = O, (¢, As(vs)), for every i € [k — 1]. Since
Ar(vk—1)(qr—1) b, , (qk—1, As(vk-1)), we conclude that r is an accepting run
of Bon G.

Case 2. Suppose Gr is a representation of a run of A on Gy. Consider a run
t:T — QxV of Aon Gy such that Gr is a representation of ¢. By assumption,
the run ¢ is rejecting. Consider a rejecting path 7 in 7. Note that the path 7
is infinite. We claim that (qo, vo)(q1,v1) ... := t(m) is an accepting run of B on
G. Since t(¢) = (qr,vr) and g1 € Ar(vi)(g:) and Ar(vi)(g:) = Op,, (4 A (vi)),
for all 7 € N, the sequence #(7) is a run of A on Gyx. Since qoq ... ¢ A, the
run ¢(m) is accepting. -

The next theorem combines the results of this chapter. Whenever G(A) =
M (A), the problem of eliminating the alternation of A (i.e., constructing a
language-equivalent nondeterministic automaton) reduces to the problem of
complementing the existential refuter automaton B.

Theorem 3.4 If L(A) = M(A) then L(A) ={Gx | G ¢ L(B)}. a
Proor Consider a graph G € £9.

Ge L(A)
it GeM(A)
There is a graph H € (¥ x I')9 such that

iff Hy, = G and Hry is the representation of some
memoryless accepting run r of A on Hy,.

There is a graph H € (X x I')9 such that
Hy, =G and H ¢ L(B).

iff Gel{Hs|H¢L(B) .

iff

29

ALTERNATION-ELIMINATION SCHEME

Example 3.5 The following examples are simple instances of the scheme.

e Consider an AFA A and a construction 7 : EcFA — NFA that comple-
ments the word or tree language of an EcFA. According to the scheme,
we can translate A into a language-equivalent NFA as follows. First,
we construct the refuter EcFA B = (Q,%X x I',n, qr, F') as described in
Definition 3.2. Then, we project 7(B) on ¥ and obtain an NFA that is
language-equivalent to A.

e Consider an ABA A and a construction 7 : ECA — NBA that comple-
ments the word or tree language of an ECA. According to the scheme,
we can translate A into a language-equivalent NBA as follows. First,
we construct the refuter NCA B = (Q,% x I',n, q1, F) as described in
Definition 3.2. Then, we project 7(B) on ¥ and obtain an NBA that is
language-equivalent to A.

e Consider an ABA A and a construction 7 : ECA — NWA that comple-
ments the nested word language of an ECA. According to the scheme,
we can translate A into a language-equivalent NWA as follows. First,
we construct the refuter ECA B = (Q,X x I',n,q;, F) as described in
Definition 3.2. Then, we project 7(B) on ¥ and obtain an NWA that is
language-equivalent to A. O

3.4 Inherited Properties

In the next lemma, we prove several properties that are inherited by the ex-
istential automaton B from the alternating automaton .A. We exploit these
properties in the alternation-elimination construction. Intuitively, the proper-
ties discussed in Lemma 3.6 describe properties that are fulfilled by all runs of
the given alternating automaton A. By construction, a run of the nondeter-
ministic automaton B corresponds to some path of some run of A. So, every
run of B also inherits these properties.

Lemma 3.6 Let A be a D-way alternating automaton and B the D-way non-
deterministic automaton defined in Definition 3.2. Then the following holds.

1. If A is weak then B is weak.

30

3.4. INHERITED PROPERTIES

2. If A is very weak then B is very weak.
3. If A is locally 1-way then B is locally 1-way.

4. If A is eventually 1-way then B is eventually 1-way. o

PROOF Let A :=(Q,%,d,q;,A) and B := (Q, X xT',n,q;,Q” \ A) be the two
automata defined in Definition 3.2.

We prove that B inherits the weakness and very weakness property from
A. Let Qo, ..., Q,—1 be a partition of A’s state space such that (a) for every
i € [n], Q; is either accepting or rejecting, and (b) for every i,j € [n], p € Q;,
g €Qj,aec X DCD,andd e D, if (¢,d) occurs in dp(p,a) then j < i.
We claim that Qq,...,Q,_1 is a partition of B’s state space such that for
every i,j € [n], p € Qi, ¢ € Qy, (a,9) € ¥ x (Q — 290 D C D, and
d € D: if (q,d) occurs in np(p, (a,g)) then j <i. Let i,5 € [n], D C D, and
(a,g) € ¥ xTI'. Consider a tuple (¢,d) € Q; x D that occurs in np(p, (a, g)), for
some p € @);. By definition of the transition function of B, we have (g, d) € g(p)
and g(p) = dp(p,a). Thus, (q,d) occurs in dp(p,a). Since Qq,...,Qn_1 is a
partition of A’s state space, we obtain j < ¢. Note that the arguments in this
proof are also valid if the @);s are singletons.

Next, we show that B is locally 1-way if A is locally 1-way. Consider a
transition np(p, (a,g)), for some p € @, D C D, and (a,9) € ¥ xI'. We
have two cases. (a) If g(p) £ dp(p, a) then np(q,a) = tt € BT (Q x N). (b) If
9(p) Eép(p, a) then (¢,d) € g(p). Thus, (¢, d) occurs in dp(p, a). We conclude
that 7p(q,a) is either in BT(Q x N) or in B*(Q x Z \ N).

Finally, we prove that B is eventually 1-way if A is eventually 1-way. Let
Qo, Q1, ..., Qn_1, for some n € N, be a partitioning of the states of A such that
forevery i,j e N, pe @Q;, g€ Q;,ac X, DCD, and d <0, if (¢, d) occurs in
0p(p,a) then j < i. We use the same partitioning to show that B is eventually
l-weak. Let 7,7 € N, p € Q;, ¢ € Q;, (a,9) € ExI', D CD, and d < 0.
Assume (g, d) occurs in np(p, (a,g)). Then, (q,d) € g(p) and g(p) |= 0p(p, a).
Hence, (¢, d) occurs in dp(p, a) and we conclude that j < i. n

31

Chapter 4

Translating Logics over Words
to Automata

In this chapter, we present translations from various classes of alternating
automata over infinite words to 1-way nondeterministic Biichi automata. We
obtain these translations from our alternation-elimination scheme by providing
complementation constructions for the corresponding classes of nondetermin-
istic automata over infinite words. We utilize these alternation-elimination
constructions for translating various temporal logics over infinite words to 1-
way nondeterministic Biichi automata.

We proceed as follows. First, we present complementation constructions
for different classes of nondeterministic automata over infinite words. Then,
we introduce the linear-time temporal logic PPSL, present a translation from
PPSL to 1INBAs, and provide succinctness results. Finally, we introduce ex-
tensions of PPSL and show how to translate these to 1-way nondeterministic
Biichi automata using our alternation-elimination scheme.

4.1 Complementation Constructions

In this section, we present several novel constructions for complementing the
languages of nondeterministic automata over infinite words. The constructions
translate various classes of nondeterministic automata into 1-way nondetermin-
istic Biichi automata. Table 4.1 depicts the blow-ups of these constructions,
where n is the size of the nondeterministic automaton and k its index. For
instance, in Theorem 4.6, we present a complementation construction that
translates an eventually 1-way very-weak nondeterministic co-Biichi automa-
ton over infinite words into a 1-way nondeterministic Biichi automaton of size

33

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

V2NCA 2NCA 2NPA
1-way O(2"n) O(3™) 20 (nklogn)

Theorem 4.8 Theorem 2.7 Theorem 5.15
eventually and O(|Z]2™n) O(|Z]3™) 20 (nklogn)
locally 1-way Theorem 4.7 Theorem 4.3 Theorem 5.15
eventually O(2%n) 0(2"3m) 20 (nklogn)
1-way Theorem 4.6 Theorem 4.2 Theorem 5.15
2-way O(25™n) 20(n?) 20((nk)*)

Theorem 4.6 Theorem 5.16 Theorem 5.16

Table 4.1: Sizes of INBAs obtained by the complementation constructions.

O(2%"n). In the following sections, we write D := {—1,0,1} for the set of
directions in an infinite word.

4.1.1 Complementing co-Biichi Automata

We start with a construction for complementing the word language of an even-
tually 1-way nondeterministic co-Biichi automaton. The construction can be
seen as a combination of two known constructions. The first one is Vardi’s
2-way subset-construction [Var89] for complementing the language of a 2-way
nondeterministic automaton over finite words. The construction is given in
Theorem 2.6. The second one is Boigelot, Jodogne and Wolpers’ breakpoint
construction [BJWO05] for complementing the language of a 1-way nondeter-
ministic co-Biichi automata over infinite words. This construction is given in
Theorem 2.7. As remarked in [BJWO05], this construction is one essential part
in the Miyano-Hayashi alternation-elimination construction [MH84, KV01] for
translating 1ABAs into language-equivalent 1INBAs.

Before presenting the construction, we give a characterization of the words
that are rejected by an eventually 1-way 2NCA.

Lemma 4.1 Let A = (Q,%,6,q1, F) be an eventually 1-way 2NCA and w €
Y. We have w ¢ L*(A) if and only if there are words R € (29)* and
S € (29 such that the following conditions hold.

(1) g1 € Ro.

34

4.1. COMPLEMENTATION CONSTRUCTIONS

2) Foralld €D andi € N with i +d > 0, we have 5%i(Ri,wi) C Ritq.

(2)
(3) Fornoi €N and q € R;, we have () = op,(q, w;).
(4) For alli € N, we have of, (S;,w;) \ F C Sij1.

()

5) For infinitely many i € N, we have S; =0 and S;y1 = Riv1 \ F o

PROOF First, we prove the only if direction. Assume w ¢ L“(A), i.e., every
run of A on w visits a state in F' infinitely often. We need the following
definitions. We call a sequence of configurations (qo, ko) - . . (¢n, hn) € (Q X N)*
a run segment if (gi+1, hiv1 —h;) € op,(¢;, w;), for all ¢ < n. The run segment is
initial if (qo, jo) = (qr,0). For i € N, we define R; as the set of states that can
be reached by A when reading w and ending with head position i. Formally,
for i € N, we define

R; :={q, € Q| (o, ho) - - (qn, hy) is some initial run segment with h,, = i}.

We show that R fulfills the first two conditions of the lemma. R satisfies (1)
since (gr,0) is an initial run segment. To show that (2) holds, assume i € N,
p,q € Q,and d € D. If p e R;, (¢,d) € dp,(p,w;), and i + d > 0 then there
is an initial run segment r¢...7r, € (Q x N)* such that r, = (p,7). Hence,
ro...Tn(q, i+ d) € (Q x N)* is also an initial run segment. Thus, ¢ € R4
Condition (3) is fulfilled since otherwise, there is an i € N and a state ¢ € R;
such that there exists an accepting run (qo, ho) - - - (¢n, hn) With (g,, hy) = (g, 1)
of A on w.

Now, we define S € (2¢9M). 1In the following, we call a run segment
(G0, ho) - - - (Gn, hn) € (Q X N)* F-avoiding if ¢; ¢ F, for all i < n. For defining
S inductively, it is convenient to use the auxiliary set S_; := ().

Let m € NU {—1} such that S,, = 0. For every m, we define the word
T™ € (Q x N)* as the set of F-avoiding run segments that start in R, \ F.
For brevity, we just write T instead of T™. Formally, for i < m, we define
T; = 0 and for ¢« > m, we define

T; = {qx € Q| there is an F-avoiding run segment (qo, ho) - .. (qx, hx)
with g9 € Ryps1,ho =m+ 1, and hy = i}.

We show that there is a position n > m such that T,, = (). Assume that such a
position n does not exist. By Konig’s Lemma, it is easy to see that 1" contains

35

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

an infinite F-avoiding run segment. Thus, there is an accepting infinite run of
A on w. This contradicts the assumption w ¢ L¥(A). For the positions i € N
with m < ¢ < n, we define S; := T;.

By construction of S, conditions (4) and (5) are fulfilled. This is shown by
a similar argumentation as above, where we show that R fulfills condition (2).

Now, we prove the if direction. Assume there are words R € (29)* and
S € (29\)« fulfilling the conditions (1)-(5). Consider a run r of A on w that
has the form (qo, ho)(q1, k1) - -+ € (Q x N)*. Due to conditions (1) and (2), we
have ¢; € Ry, for all 7 € N.

We show that r is rejecting. Suppose that r is accepting. Then, there is
a k € N such that ¢; ¢ F, for all ¢ > k. Due to condition (5), there is a
breakpoint S,, = () with m > hy and S,,41 = Ryq1 \ F. Since 7 is eventually
1-way, there is a position n > k such that h, = m + 1. Without loss of
generality, we assume that n is maximal. Since r is eventually 1-way and the
set () is finite, such an n exists. We have h; > m + 1, for all 7 > n.

Since ¢, € Ry, and g, ¢ F, we have g, € Sp,,. According to the condition
(4), we infer that ¢; € Sy,, for all @ > n. Since r is eventually 1-way, there is
no m’ > m such that S,y = 0. We obtain a contradiction to condition (5). m

The following theorem extends the breakpoint construction to 2-way au-
tomata that are eventually 1-way. We call it the 2-way breakpoint construc-
tion. Roughly speaking, the constructed NBA C guesses a run that satisfies
the conditions of Lemma 4.1 with respect to a given 2NCA.

Theorem 4.2 For every eventually 1-way 2NCA A of size n, there is an
INBA B that accepts the complement of L¥(A) and has O(2"3") states. 0

PROOF We construct a INBA that for an input word w € X¥, guesses the
words R € (29)% and S € (29\F)“ from Lemma 4.1. It locally checks the
conditions (1)—(4). Using the breakpoint construction and its Biichi acceptance
condition, it ensures that condition (5) is fulfilled. We first construct the INBA
and then prove the correctness of the construction.

Construction Consider an eventually 1-way 2NCA A = (Q, %, 6, g1, F') with
n states. We define the INBA B := (P, X, n, p;, G) as follows.

o P:= (29 x 20\ x 29) U {p;}.

36

4.1. COMPLEMENTATION CONSTRUCTIONS

o G:=29 x {0} x 29.

The transition function 7 is defined as follows. For the initial state p;, D =
{0,1}, and a € X, we have np(ps,a) > (Ro, So, R1) if and only if the following
conditions hold.

1. qr € RO-

2. For all d € D, we have 6% (Ry,a) C Ry.

3. For all p € Ry, we have 0 £ dp(p, a).

For the states in P\ {p;}, D = {-1,0,1}, and a € ¥, the transition function
nD((R,l, S_1, Ro), a) contains (R, So, R1) if and only if the following condi-
tions hold.

1. For all d € D, we have 6%(Ry,a) C Ry.

2. For all p € Ry, we have () £ dp(p, a),

3. For all d € {0, 1}, we have 64(S_1,a) \ F C S_1.4,

4. ISy =0 then Sy = Ry \ F.

Obviously, the size of B is in O(2%"). Observe that we can restrict P to the
set of states {(R,S,R) | (R,S,R') € P,S C R} U {p;}. With this optimiza-
tion and the argumentation as in Theorem 2.7, we obtain an automaton with
O(2"3") states.

Correctness It remains to show that L¥(B) = 3¢\ L¥(A). Consider a word
w e X¥.

Assume that w € L¥(B). Let r := p;(Ry, So, R})(Ry, 51, R})... be an
accepting run of C on w. It suffices to show that the words R := RoR; ... €
(29)% and S := S,9; ... € (29\)¥ satisfy the conditions (1)-(5) of Lemma 4.1.

Since n(pr, wo) 3 (Ro, So, Ry), we have ¢ € Ry. Thus, (1) holds.

By the definition of the transition function, for all d € D and ¢ € N with
i+d >0, we have 6%, (R;,w;) € Riyq. Thus, (2) holds. Similarly, we can show
that (4) holds.

Condition (3) holds since by the definition of the transition function, we
have tt ¢ op, (p, w;), for all i € N and p € R;.

Since r is accepting, S,, = () for infinitely many m € N. By definition of 7,
we also have that S,,11 = Ryt \ F whenever S, = (), for all m € N. Thus,
condition (5) holds.

For the other direction, assume that w ¢ L(A). By Lemma 4.1, there are
words R € (29)¥ and S € (29\F)“ that satisfy the conditions (1)-(5). We

37

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

define r := p;(Ry, So, R1)(R1,S1, R2) ... and show that r is an accepting run
of B on w.

From the conditions (1)—(5), it follows that n(pr,wo) > (R, So, R1) and
T}((Rz‘_l, Si—1, Rl), wl) > (Rz> Si, Ri+1)7 for all 2 > 0.

Since S, is empty for infinitely many m € N, the run r is accepting. n

Now, consider the case where the eventually 1-way 2NCA whose language
has to be complemented is locally 1-way. In this case, we can modify condi-
tion (2) of Lemma 4.1 since the automaton does not move its read-only head
backwards and forwards at the same time. The following requirement must
hold.

(2) For all d € {0,1} and i € N, we have 6f (R;, w;) € Riq and for all
d e {-1,0} and i € N with i 4+ d > 0, we have &f, (R;,w;) C Rijq.

From this observation, we directly obtain the following theorem as a special
case of Theorem 4.2.

Theorem 4.3 For every locally and eventually 1-way 2NCA A of size n, there
is an NBA B that accepts the complement of L¥(A) and has O(]%]-3") states.n

PROOF The construction is a special case of the construction given in Theo-
rem 4.2. Consider a locally and eventually 1-way 2NCA A = (Q, %, 6, qr, F).
We define the INBA B := (P, X, n,p;, G) as follows.

e We define P := (¥ x 29 x 29\F) U {p;}. The automaton preserves
the following invariant. Whenever A goes to the state (a, R,.S) then a
must be equal to the letter that will be read next. This invariant can
be checked at every step when the next letter is actually read. Hence,
if A moves from state (a, R, S) to a state (b, R, S’) then it can check
the forward constraints of condition (2') for R and S and the backward
constraints of condition (2') for R’ and S’, locally. Then, one step later,
after reading the next letter, the forward constraints of R’ and S’ will be
checked.

e We define G := % x 29 x {0}.

The transition function 7 is defined as follows. For the initial state p;, D =
{0,1}, and a € X, we have np(pr,a) > (b, R1,S1) if and only if the following
conditions hold. There is some set Ry C @ and some set Sy C @\ F' such that

38

4.1. COMPLEMENTATION CONSTRUCTIONS

q1 € Ry.

For all d € {0, 1}, we have 6% (R, a) C Ry.

For all d € {—1,0}, we have 5?717071}(}31, b) C Rita.
For all p € Ry, we have () j= 0p(p,a).

For all d € {0, 1}, we have 6%(Sp,a)\ F C Sq.

For states in P\ {p;}, D = {—1,0,1}, and a € ¥, we have nD((a’, Ry, Sp), a) S
(b, Ry, S1) if and only if the following conditions hold.

1. d =a.
For all d € {0, 1}, we have 0% (R, a) C Ry.
For all d € {—1,0}, we have §%(Ry,b) C Ry 4.
For all p € Ry, we have () j= 0p(p, a).
For all d € {0, 1}, we have 6%(Sp,a)\ F C Sq.

6. IfSO:chen Sl :Rl\F

Intuitively, for an input word w, the automaton guesses the words R € (29)%
and S € (29\F)% from Lemma 4.1. In the first component, it guesses the
next letter of the input word. With the second component of P, it checks the
conditions (1)—(3). With the third component, it checks that (4) holds. Finally,
the breakpoint construction and the Biichi acceptance condition ensure that
the condition (5) is fulfilled. It easy to check that B accepts the complement
of L¥(A).

The size of B is in O(]X] - 22"). Observe that we can restrict P to the set of
states {(a, R, S) | (a,R,S) € P and S C R} U{p;}. Hence, the cardinality of
the state space is O(|X| - 3"). n

Ok W

A el

Remark 4.4 Consider the automata 4 and B from Theorem 4.2 and assume
that the alphabet ¥ has the form A x T'. Clearly, the worst-case size of B is in
O(]A x X -3"™). Consider now the automaton C that represents the projection
of B on A. It is straightforward to see that we can restrict the state space of C
on the set A x 29 x 2@\ U {p;}. This restricted state space suffices since the
first component of a state of C just guesses the letter that will be read next
and checks in the successive step that this guess has been right. So, the overall
worst-case size of the automaton C is in O(|A| - 3"). 0

For 1-way automata, we further optimize condition (2') of Lemma 4.1 since
the automaton does not move its read-only head backwards. The following
requirement must hold.

39

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

(2") For all d € {0,1} and i € N, we have 6, (R;,w;) C Rita.

From this observation, we directly obtain Boigelot, Jodogne, and Wolper’s
breakpoint construction given in Theorem 2.7.

4.1.2 Complementing Very-Weak Automata

In this section, we develop constructions for translating very weak 2NCAs into
language-equivalent INBAs. The constructions can bee seen as special cases of
the 2-way breakpoint construction presented in Theorem 4.2. In particular, we
exploit the very-weakness property of an eventually 1-way 2NCA to optimize
the construction in Theorem 4.2. The optimization is based on the following
observation. Each infinite run of a very-weak automaton will eventually get
trapped in a state with a self-loop. Thus, the conditions (4) and (5) from
Lemma 4.1 can be simplified accordingly. The simpler conditions allow us to
reduce the state space of the resulting INBA. Roughly speaking, instead of
guessing the word S € (29\F)% from Lemma 4.1 and checking that S fulfills
the conditions (4) and (5), the constructed INBA only checks that no run of
the V2NCA gets trapped in a non-accepting state.

Additionally, for very-weak automata, we can easily extend the above con-
struction such that it also translates V2NCAs that are not necessarily eventu-
ally 1-way. This extension is based on the observation that there are only two
types of loops. A very-weak automaton loops if (a) it gets trapped in a state
without moving the read-only head any more, or (b) it gets trapped in a state
by alternately moving its the read-only head to the right and then to the left.
Such kind of loops can be detected locally.

Based on these two observations, we simplify Lemma 4.1. The lemma char-
acterizes words that are rejected by a given 2VNCA.

Lemma 4.5 Let A = (Q,%,6,qr, F) be a V2ZNBA and w € ¥¥. We have
w ¢ LY(A) if and only if there is a word R € (29)% such that the conditions
(1)~(3) of Lemma 4.1 and the following conditions hold.

(5') There is non € N and g € R, \ F such that for all i > n, we have
((L 1) € 5Dn (qa wl)

(5") There is noi € N and g € R; \ F' such that (¢,0) € dp, (¢, w,) or such
that (q,1) € dp, (q,w;) and (g, —1) € op, (¢, Wis1)-

40

4.1. COMPLEMENTATION CONSTRUCTIONS

Furthermore, if A is eventually 1-way, condition (5") is not required. O

The optimized automaton construction to complement a very-weak 2NCA
is given in the following theorem.

Theorem 4.6 For every V2ENCA A of size n, there is a INBA B that accepts
the complement of L¥(A) and has O(23"n) states. Moreover, if A is eventually
L-way then B has O(2?"n) states. 0

PROOF The proof is similar to the proof for Theorem 4.2. We construct a
INBA that guesses the word R € (29)“ from Lemma 4.5, locally checks that
the conditions (1)—(3) are fulfilled, and uses a focus and its Biichi acceptance
condition to check that condition (5”) holds. We present the construction of
the INBA and then its correctness proof.

Construction Let A= (Q,X,0,q;, F) bea V2NCA. Let E := (Q\ F)U{x}.
Furthermore, let < be a total ordering on the set E, where x is the greatest
element. The function next : £ — E maps the greatest element * to the

smallest one and each of the other elements to the next greater one. We define
the NBA B := (P, %, n,pr, G) as follows.

o P:= (29 x 29 x 29\ x E)U {p;}. The component in F is called focus.
It is used to find a state in @ \ F' that can get trapped in a self-loop.

o G :=29 x 29 x 2Q\F x [x}.

The transition function 7 is defined as follows. For the initial state py,
D = {0,1}, and a € X, we have np(ps,a) > (Ro, R, R}, *) if and only if the
following conditions hold.

1. qr € RO-

2. For all d € D, we have 6% (Ry,a) C Ry.

3. For all p € Ry, we have () £ dp(p, a).

4. For all ¢ € Ry \ F, we have (¢,0) ¢ 0p(q,a).

5. Ry={g€ R\ F|(g,1) € dp(g,a)}.

For the other states in P\ {p;}, D = {-1,0,1}, and a € X, the transition
nD((R,l,RO,Rll,s),a) contains (R, Ry, Ry, s’) if and only if the following
conditions hold.

1. For all d € D, we have 6%(Ry,a) C Ry.

41

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

2. For all p € Ry, we have () £ dp(p, a).

s if s € RyNdp(s,a),

next(s) otherwise.

4. For all ¢ € Ry \ F, we have (¢,0) ¢ 0p(q,a).

R6 = {q € RO \ F | (Q7 1) € 5D(qaa’)}‘
6. For all g € R |, we have (¢, —1) ¢ 0p(q,a).

3. 5 =

o

Correctness It remains to show that L¥(B) = X\ L¥(A).

Assume that w € L¥(B). Let r = pop; ... € P¥ be an accepting run of the
1-way automaton B on w.

It suffices to construct a word R € (29)“ that fulfills the conditions (1)
(3), (5’), and (5”) of Lemma 4.5. By definition of the transition function,
po = pr and for all ¢ > 0, each p; is a tuple of the form (A;, B;,s;) € P.
Define R; := A; 1, for all © € N. By the same the arguments as in the proof
of Theorem 4.2, it follows that R fulfills the conditions (1)—(3). Moreover, R
fulfills condition (5”) since for every i € Nand D = {—1,0, 1}, there is no state
gin theset {g € R;\ F'| (¢,1) € dp(q, w;)} such that (¢, —1) € dp(q, wis1).

It remains to show that R fulfills condition (5). For the sake of contradiction,
assume (5’) does not hold. Then, there is an n € N and a state ¢ € R,,\ F' such
that (¢, 1) € dp,(q, w;), for all ¢ > n. Therefore, there is a position k£ > n such
that s, = g. By the definition of the transition function, there is no [> k such
that s; # ¢q. Hence, the run r is not accepting since G is not visited infinitely
often.

For the other direction, assume w ¢ L*(A). Let R € (29)“ be a word that
fulfills the conditions (1)—(3), (5'), and (5”). We construct an accepting run of
B on w. We need the following definitions of the sequences R’ € (29\f') and
se€ EY ForieN let R :={qe R\ F|(q,1) € dp,(q, w;)}. Furthermore,
let sy := * and for ¢ € N, we define

;1=
' next(s;) otherwise.

{Si if S; = Rz N 5]11))1_(81', wl-),

We define the sequence r := pyp; € P*, where py := p; and for ¢ > 0, p; is the
tuple (R;—1, R, Ri_y, si-1).

By construction, r is a run of B on w. We show that r is accepting. Assume
the opposite, i.e., G is not visited infinitely often. Then, by definition of the

42

4.1. COMPLEMENTATION CONSTRUCTIONS

run, B gets trapped in a state ¢ € @ \ F with the F component of its states.
Therefore, there is a position n € N such that (¢, 1) € ép,(q, w;), for all i > n.
Thus, condition (5') holds.

We remark that we need the third component in a state because B forgets
the previously read letter. There is an alternative construction, namely, we
construct an automaton with the state space (29 x 2¢ x ¥ x (Q \ F)) U {ps}
that remembers the last letter with its third component of a state.

If A is eventually 1-way, the automaton B does not have to check (5”).
Hence, we can remove the third component from B’s state space. =

If the eventually 1-way V2NCA whose language has to be complemented is
also locally 1-way, then we can further improve the construction from Theo-
rem 4.6. In particular, we replace condition (2) of Lemma 4.5 by condition (2)
and then use the same construction technique as presented in Theorem 4.3.
We directly obtain the following theorem.

Theorem 4.7 For every locally and eventually 1-way V2NCA A with n states,
there is an INBA B that accepts the complement of L*(A) and has O(|X]-2"n)
states. o

Finally, consider the case, where the very-weak nondeterministic co-Biichi
automaton whose language has to be complemented is 1-way. We further sim-
plify the construction from Theorem 4.7. In particular, we replace condition
(2') of Lemma 4.5 by condition (2”) and then use the same construction tech-
nique as presented in Theorem 2.7.

We point out that the idea of this construction is implicitly used in the
Gastin and Oddoux’s alternation-elimination construction [GO01, BCPRO7]
that translates VIABAs into NBAs, and in the Lange and Stirling’s focus
approach of the satisfiability checking algorithm for LTL formulas presented
in [LS01, DLO5].

Theorem 4.8 For every VINCA A with n states, there is a 1DBA B that
accepts the complement of L*(A) and has O(2™n) states. o

PRrROOF Consider a VINCA A = (Q,%,,qr, F). Let E:=(Q\ F) U {x} and
let < be a total ordering on the set E, where * is the greatest element. The
function next : E — F maps the greatest element * to the smallest one and
all other elements to the next greater one.

43

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

We define the IDBA B := (29xE, %, 1, ({1}, *), 2¢x{x}), where for R C Q,
se E, DCD, and a € X, we have

nD((R, s),a) =

{(5(3, a), s) if s € RNdb(s,a)
(6(R,a),next(s)) otherwise.

The VINCA A accepts a word w if and only if there is a run that gets
trapped in a state ¢ ¢ F. This is equivalent to the fact that the 1IDBA B
detects the existence of such a run with its £ component and rejects. n

4.1.3 Transition Systems Instead of Automata

In this section, we investigate an alternative model for representing word lan-
guages, namely, transition systems, which are used in state-of-the-art model
checkers that are based on the symbolic model checker SMV, see [McM92].
We show how to optimize the complementation constructions for locally and
eventually 1-way nondeterministic co-Biichi automata when the resulting rep-
resentation is a transition system rather than an automaton.

We start with the definition of a transition system. A transition system is
a quintuple 7 = (Q, %, A, I, F), where @ is the set of states, ¥ is a finite,
nonempty alphabet, A C (Q x X) x (@ x X) is the transition relation, I C
(Q x X) are the initial locations, and F' C @ is a Biichi acceptance condition. A
location is a tuple in @) x 3. A run of a transition system on a word w € >“ is a
sequence of locations (go, wo)(q1,w1) ... € (Q x X)¥ such that for all i € N, we
have ((gi, w;), (giv1,wir1)) € A. The run is accepting if the word qogy ... € Q¥
contains infinitely many states from F. The word language of a transition
system T is LY(T) := {w € X¢ | there is an accepting run of 7 on w}. The
size of T is the number of its states |Q).

Remark 4.9 The definition of the size of a transition system is motivated
from model checking with symbolic model checkers like SMV. Since the transi-
tion system of a (negated) specification S shares the alphabet of the transition
system (without fairness constraints) of its system model M, the overall search
space is just (Qar X Xpr) X Qg, where Q) is the state set of the system, Xy,
is the system alphabet, and @)g is the state set of the specification S. o

Example 4.10 Consider the set of propositions P := {a, b} and the alphabet
¥ = 27, Figure 4.1 depicts a Biichi automaton and a transition system that

44

4.1. COMPLEMENTATION CONSTRUCTIONS

a,b

8
=l
<
>

S

a b
ONe ()
O O @

a

S

Figure 4.2: Infinitely often proposition b.

accepts all words over Y, where eventually always b occurs. We draw states
that belong to the Biichi acceptance set by double lines.

Another example is presented in Figure 4.2. It depicts a Biichi automa-
ton and a transition system that accepts all words over ¥ that contain the
proposition b at infinitely many positions.

Lemma 4.11 We can translate every 1NBA into a language-equivalent tran-
sition system of the same size. 0

PrROOF Let A = (Q,%,6,qr, F) be a INBA. We define the transition system
T=(Q,%,A,Q, F) with

b QI = {(qaa’) | qc 5{0,1}(QI7a)a for some qc Qaa' S E} and

o A:={((¢g,a),(¢,a") | ¢ € d-1013(q,a’), for some ¢,¢' € Q,a,da" € 3}.

We show that L“(T) = L*(A). Let w € ¥ be a word. Consider an
accepting run (qo, wo)(q1,w1) ... of T on w. We show that g;qoq; ... is a run
of A on w. Since (qo,wy) € Qr, we have qo € 0g013(qr,a). Now, consider
an arbitrary position ¢ € N. Since ((g;, w;), (¢iv1, wir1)) € A, we have ¢;41 €
0¢-1,01}(¢, wi+1). Obviously grqogs - . . is accepting. Hence, w € L¥(A).

We show the other direction. Let ggq ... be an accepting run of A on w.
We show that (g1, wp)(g2,w1) ... is an accepting run of 7 on w. Since ¢; €
d70,13(qr, wo), we have (g1, wo) € Qr. Next, consider an arbitrary position 7 > 0.
Since ¢i11 € di—1,013(q;, w;), we have ((g;, wi—1), (¢ip1,w;)) € A. Obviously,
q1Goq: - - - 1s accepting. Hence, w € L¥(A). -

45

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

In the remainder of this section, we show that the transition systems ob-
tained from the constructions for complementing the languages of locally and
eventually 1-way 2NCAs have the same worst-case sizes as the transition sys-
tems obtained from the constructions for complementing the languages of
1INCAs. Recall the complementation constructions from Theorem 4.7 and The-
orem 4.3 that translate locally and eventually 1-way 2NCAs into INBAs. One
component in the states of these INBAs is used to guess the letter that will oc-
cur after the letter that is currently read. When translating those 1INBAs into
transition systems, this component is not needed any more since the transition
systems always see the letter that will occur next in the transition relation.
So, while a 1INBAs has to guess the correct letter in each step and addition-
ally, has to store its guess in its state for checking afterwards that its guess
has been correct, a transition system is able to directly move to the correctly
labeled successor state. Hence, when translating the 1INBAs obtained from
Theorem 4.7 and Theorem 4.3 into transition systems, we may dispose of the
component in the state space that is used for storing the guessed letter. We
state this observation in the next theorem.

Theorem 4.12 For every locally and eventually 1-way 2NCA A of size n,
there is a transition system T that accepts the complement of L¥(A) and has
O(3") states. If A is very weak then T has just O(2"n) states. 0

State-of-the-art symbolic model checkers like NuSMV use transition systems
for representing the specification. Theorem 4.12 states that the worst-case
blow-ups for complementing INCAs and eventually 1-way 2NCAs are both in
O(3"), where n is the size of the input automata. It follows that alternation-
elimination translations from 1ABAs and eventually 1-way ABAs to transition
systems share the same worst-case bound. In the following section, we exploit
this fact when translating logics with past operators to transition systems.

4.2 The Linear-Time Temporal Logic PPSL

In this section, we introduce the linear-time temporal logic PPSL. We first
define the logic and illustrate its use by formalizing some properties in PPSL.
Then, we present a translation from PPSL to nondeterministic Biichi au-
tomata. Finally, we discuss succinctness properties of PPSL with respect to
other logics used in practice.

46

4.2. THE LINEAR-TIME TEMPORAL Locic PPSL

4.2.1 The Logic PPSL

PPSL extends the linear-time core of the IEEE standard Property Specification
Language (PSL) [Psl05] by past operators. PSL is an descendant of the pop-
ular linear-time logic LTL [Pnu77] with operators that handle semi-extended
reqular expressions (SEREs), which are essentially regular expressions with an
operator to represent the intersection of regular languages. As PSL, the logic
PPSL consists of two layers: a (semi-extended) regular-expression layer and
a logic layer that combines semi-extended regular expressions with temporal
operators. In the following, we define each layer separately.

Semi-Extended Regular Expression Layer Let P be a set of propo-
sitions and ¥ := 27 a finite alphabet. A semi-extended reqular expression
(SERE) over P is given by the following grammar.

ro=celblrUr|rnr|r;r|rir|rt,

where b € B(P). We call the N the intersection operator, U the union operator,
; the concatenation operator, : the fusion operator, and + the plus operator.
Furthermore, for a SERE r, we define the Kleene star operator r* := e U r™.
A regular expression (RE) is a SERE that does not contain the intersection
operator M.

The language of a SERE is inductively defined. Let b € B(P) and r, s are
SEREs.

L*(e) :={e}.
L*(b) :={w € X" | lw| =1 and wy fulfills b}.
L*(rUus) :={we X |we L (r) orw e L*(s)}.
L*(rns) :={we X |we L*(r) and w € L*(s)}.
L*(r;s):={vw e X |ve L (r) and w € L*(s)}.
L*(r:s) :={vaw € ¥* | a € ¥,va € L*(r), and aw € L*(s)}.

L'(r)y={weX |IneN:w=1vy...v,_1 and Vj € [n] : v; € L*(r)}.
The size |r| of a SERE r is its syntactic length.

Logic Layer Now, we define PPSL. The syntax of a PPSL formula over P
is given by the following grammar.

pu=bl-pleVeleUp|eSp|rosp|res o,

47

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

where b € B(P) and r is a SERE. We denote the set of PPSL formulas whose
SEREs are all REs by PPSL™ . For a SERE r and formulas ¢ and v, we define
the standard syntactic abbreviations p Ay := = (—pV—1), RY := =(=pU—1)),
T :==(—pS—), ro-p = =(rO>—p), and rB8- ¢ := —(ré-> —p). Using
these abbreviations, we can obviously translate any PPSL formula into positive
normal form, i.e., negations occur only in front of propositional-logic formulas.
Note that such a translation might double the size of the formula. Additionally,
we introduce the following operators as syntactic sugar: Oy := tt;tt O o,
Yo =ttt &= ¢, Zo := Yttt VYo, Fp :=ttU ¢, and Gy :=ff R p.

A PSL formula is a PPSL formula that does not use the past operators S
and ©-. We denote the set of PSL formulas whose SEREs are all REs by
PSL™ . Next, we define the well known linear-time temporal logic [Pnu77]. A
PLTL formula is a PPSL formula that contains the operators ¢—, O—, ¢-,
and 8- only in a restricted way. Namely, only the SERE “tt ; tt” is allowed.
An LTL formula is a PLTL formula that has no Y, S and T operator.

We interpret PPSL formulas over infinite word over . For a word w € »¢
and a position ¢ € N, we define the semantics of PPSL as follows.

(w,i) Eb iff w; satisfies b

(i) Eovy I (1) or (i) Fo

(w,4) = = i (w, 1) ¢

(w,)) EpUy iff Fk>i:(wk)EvYandVi<j<k:(w,j)Ee
(i) pSe i 3k<i:(wk) oandVE<j<i:(wj) g
(wyi) Erose it Fk>i:w € L*(r) and (w, k) ¢
(wyi) Eréo-sye iff Jk<i:wg; € L*(r)and (w, k) E ¢

The language of a PPSL formula ¢ is L¥(¢p) := {w € ¥ | (w,0) = ¢}. Two
formulas ¢ and v are initially equivalent if L¥ () = L¥(¢). As for SERESs, the
size || of a PPSL formula ¢ is its syntactic length. We write Sub(y) for the
set of sub-formulas of a PPSL formula .

Remark 4.13 In the PSL standard [Psl05], we also have atomic formulas of
the form ended(r) and prev(r), where r is a SERE. For instance, the word
w € X¥ satisfies ended(r) at position i if and only if there is a subword u of
w that ends at ¢ and w € L*(r). The operators ended and prev can be seen as
restricted variants of the past operator é—. For instance, in PPSL, ife ¢ L*(r),
ended(r) is syntactic sugar for r&—tt, and tt otherwise. Observe that ended and
prev can only be applied to SEREs, and, in contrast to €—, it is not possible

48

4.2. THE LINEAR-TIME TEMPORAL Locic PPSL

to define the classical past operators Y, H, and O with them. We also remark
that the literature, for example, [BDBF*05, CRST06, Lan07, PZ06] usually
considers the essential core of the PSL standard to which the operators ended
and prev do not belong. We follow this convention, this means, the formulas
in our fragment PSL of PPSL do not contain ended(r) and prev(r). Finally,
we remark that the automata constructions [BDBF*05] for PSL cannot cope
with the operators ended and prev, which are handled by our construction in
Corollary 4.18 for PPSL. O

Example 4.14 A standard example for showing that the past operators of
PLTL can lead to more intuitive specifications is G(grant — Orequest), this
means, every grant is preceded by a request [LPZ85]. An initially equivalent
LTL formula is request R (—grant V request). Let us now illustrate the beneficial
use of SEREs and past operators. Suppose that a request is not a single event
but a sequence of events, for example, a request consists of a start event that is
later followed by an end event such that no cancel event happens between the
start and the end event. Such sequences are naturally described by the SERE
(start;tt*;end) N (—cancel)*. Using this SERE and the new past operator ¢—,
we can easily express the property in PPSL that every grant is preceded by a
request:

G(grant — (((start ; tt* ; end) N (—cancel)*) ; tt* - tt)). (4.1)

Note that according to the semantics of the operator -, the end event has to
happen before or at the same time as the grant event. Alternatively, we can
express the property in PLTL as

G(grant — O(end A —cancel AY(—cancel S (start A —cancel)))). (4.2)

Although debatable, we consider that the PPSL formula (4.1) is easier to
understand than the PLTL formula (4.2). In PSL, we can express the property
as norequest 0— —grant, where the SERE norequest describes the complement
of the language L(tt* ; ((start ; tt* ; end) N (—cancel)*) ;tt*), that is, norequest
is the SERE

((—start)U(start Acancel)U(start;(—end)*;cancel))”; (U(start Aend)) ;(—end)*.

Note that in general, complementation of SEREs is difficult and can result in
an exponential blowup with respect to the size of the given SERE. o

49

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

Example 4.15 Let us give another example to illustrate the usefulness of past
operators, in particular, the operator ¢-. For n > 1 and i € [n], consider the
PPSL formula

¢ni = G(send; — (switch; N (init ; (—~init)*) & tt)),

where switch; counts the number of switch events modulo n, this means,

switch; = ((mswitch)™ ; switch ; . .. ; (—switch)™ ; switch)*;
n t;rrnes
(mswitch)* ; switch ; ... ; (mswitch)™ ; switch ;(—switch)*.

7 times

(4.3)
Intuitively, ¢,,; expresses the property that the process i is only allowed to
send a data item if it possesses the token. The process ¢ possesses the token
if and only if k& switch events with kK =7 mod n occurred previously since the
last init event. Note that this property is not expressible in LTL since it is
not star-free (see, for example, [DGOT]).

The negation of the PSL formula

((minit)* o send;) V F(init A ((tt; (—init)*) N (U; i switchy) o> send;))
(4.4)
is initially equivalent to ¢, ;. Note that the size of the formula (4.4) is quadratic
in n, whereas the size of the formula (4.3) is only linear in n. In Section 4.2.3,
we prove that PPSL is exponentially more succinct than PSL. o

4.2.2 From PPSL to Automata

In this section, we translate PPSL formulas into language-equivalent Biichi
automata. We first recall constructions for the regular layer. The following
lemma summarizes standard constructions for translating SEREs and REs into
NFAs and for computing the mirror language of an NFA, see [BDBF05,HU79].
The mirror language of a word language L C 3* is defined as the set {w,, ... wy |
wo ... w, € L}.

Lemma 4.16 Let s be a SERE, v a RE, and A a 1NFA of size n each.

1. We can construct an NFA A" of size 2" with L*(A") = L*(s).

50

4.2. THE LINEAR-TIME TEMPORAL Locic PPSL

2. We can construct an NFA A" of size n with L*(A") = L*(r).

3. We can construct an NFA A" of size n that accepts the mirror language

of L*(A). u]

The following theorem shows how we can translate a PPSL"™ formula into a
language-equivalent locally and eventually 1-way 2ABA.

Theorem 4.17 We can translate every PPSL' formula that is in positive
normal form, and is of size n into a language-equivalent locally and eventually
1-way 2ABA with at mostn states. Furthermore, for PSL™ formulas the 2ABA
is 1-way and for PLTL formulas the 2ABA is very weak. o

PROOF Let ¢ be a PPSL™ formula. We translate this formula into a language-
equivalent locally and eventually 1-way 2ABA.

For every RE 7 in ¢, let A, and A, be the corresponding automata con-
structed according to Lemma 4.16 such that L(r) = L(A,) and A, accepts
the mirror language of L(r). We assume that the state sets of these automata
are pairwise disjoint. In the following, we split the proof into several parts:
construction of the 2ABA, correctness of the construction, proof of being even-
tually 1-way, and finally, translation to an 1INBA.

Construction Next, we define the 2ABA A = (Q,3,9,qr, F'). We define
the set of states as @ := Sub(y) U @, where

Q :={s*> 1|+ € {O0>,0-},7 %> 1 € Sub(p), and s is a state in A, }U
{s*x> 1| %> € {&>,8>},r x> 1) € Sub(yp), and s is a state in A} }.
The initial state q; := . We define the set of accepting states as
Fi={yR4 [yR € Sub(p)}U
{so> 1 | ro—>1 € Sub(p) and s is a state in A, }.

It remains to define the transition function §. The following definitions
are similar to the standard construction for translating LTL into alternating
automata. Let a € ¥ and D C D.

e For b € B(P), we define

5p(b, a) tt if a satisfies b,
,a) =
b ff otherwise.

51

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

e For the Boolean connectives A and V, we define
op(y AN, a) = (v, 0) A (4,0) and dp(y Ve, a):=(7,0)V(¥,0).
e For the binary temporal operators U, R, S, and T, we define
op(yU¥,a) = (4,0)V ((7,0) A (v U w, 1),

op(y R, a) := (1,0) A ((,0) V (YR, 1)),
op(y S, a):= (,0)V ((7,0) A (vsw, 1)), and
5D(7 T@Z),a) = {E¢ 0§ (%O) (7 e _1)) i)ft}:ei\:isl(z’

Now, we turn to the transitions for the subformulas with an RE. We follow
the construction given in [BDBF*05] for PSL.

e The state r &> 1) € Sub(yp) is used to start a simulation of the NFA
A, = (S,%,n,sr, E) on the input word. If the simulation reaches a final
state of the NFA, A, may terminate the simulation and proceed with
the state 1. Formally, we define ép(r O ¢, a) := (s; ¢ 1,0) and for
s €S,

. \/te (s,a) (t o= wa 1) V (w, O) lf 77(87 a) N E 7§ @’
5(8 . w’ a> - {vtEZ(s,a) (t N wa 1) otherwise.

The transitions for a subformula r ¢ 1) € Sub(y) are defined similarly.
Instead of simulating the NFA A, A, simulates the NFA A’ where it
moves the read-only head to the left instead of to the right.

o If the state is aO—1 € Sub(yp), the automaton A, simulates a run of the
NFA A, = (S,%,n, s, F) viewed as a universal automaton. Whenever
the simulation reaches a final state, A, has to proceed with the state 1.
Formally, we define dp(r 0 ¢, a) := (s; O- ,0) and for s € 5,

Neengs.ay(ET=> 0, 1) A ($,0) if (s, a) N E #0,

/\tEn(s,a) (toey,1) otherwise.

op(sO—>1,a) = {

The transitions for a subformula r 8- ¢ € Sub(y) are similarly defined.
However, if the read-only head is at the beginning of the input word, A,

52

4.2. THE LINEAR-TIME TEMPORAL Locic PPSL

can stop the simulation. Formally, for the NFA A/ = (S,%,n, s;, E) and
s € S, we define dp(r8=1,a) ;== (s8> 1,0) and for —1 ¢ D, we have

(1,0) ifn(s,a)NE # 0,
) =
p(s&>¢,a) {tt otherwise.
For —1 € D, we have
(s 8 ,0) i 4 Perea (T B> VD) A (,0) i (s, a) N E #0,
Nicyis.a) (LB ¥, —1) otherwise.

We remark that the e-transitions in our construction (i.e., the transitions of
A, in which the read-only head does not move) can be easily eliminated by
replacing a proposition (s,0) that occurs in d(q,b) by d(s,b), where ¢,s € Q
and b € 3.

Note that from the definition of the state set () and Lemma 4.16, we directly
obtain |A| € O(n). By inspecting A’s transition function, we also see that A
is locally 1-way.

Correctness In the remainder of the proof, we show the correctness of the
given construction. In particular, we prove that for every word w € ¢,
subformula ¢ € Sub(y), and position ¢ € N, the following holds

(w,i) Ev¢ if and only if A accepts w from configuration (¢, 7).

This equivalence immediately implies L¥(A) = L¥(p). We prove the equiva-
lence by induction over the formula structure of . Let w € ¥¢.

Consider the base case 1 = b, for some b € B(P). Let i € N. By definition,
(w, 1) = b is equivalent to “w; satisfies b”. By construction, this is equivalent
to the fact that A accepts w from configuration (b, 7).

Consider the case 1) = Y1 Ay, Let i € N. Assume (w, 1) = ¢, i.e, (w,i) E ¢n
and (w,i) = 1y. By the induction hypothesis, this is equivalent to the fact
that A accepts w from configuration (¢,) and from configuration (¢,). By
construction, this is equivalent to the fact that A accepts w from configuration
(11 A\ 1bg, 7). The step case for » = 11 V 1, is analogous.

Consider the case v = 1; U ty. Let ¢ € N. Assume (w,i) = 11 U 1),
i.e., there is a k > i such that (w,k) = ¥, and for all i < j < k, we have

53

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

(w,j) = 1. By the induction hypothesis, this is equivalent to the fact that
() there is a k > i such that A accepts w from configuration (19, k) and A
accepts w from configuration (i1, 7), for all i < j < k. We claim that this is
equivalent to the fact that (ii) A accepts w from configuration (¢; U 1, 1).
We first show the direction from left to right. Assume that (i) holds. By
the induction hypothesis, A accepts w from configuration (¢, k). Thus, by
definition of the transition functions, A also accepts w from configuration (¢, U
19, k). Furthermore, by assumption and the induction hypothesis, A accepts
w from configuration (¢1,k — 1). Thus, by the definition of the transition
function, A also accepts w from configuration (¢4 U g, k — 1). If we iterate
this argumentation, we infer that A accepts w; from configuration (11 U1, j),
for all i < j < k. Thus, (i7) holds.

For the other direction, assume that the condition (i7) holds. Let r be an
accepting run of A on w from configuration (i; U 19,7). For the sake of
contradiction, we additionally assume that (i) does not hold, i.e., we have
(—i): there is no k > ¢ such that A accepts w from configuration (9, k) and A
accepts from configuration (11, j), for all i < j < k. From (i), it follows that
A does not accept w from configuration (v¢,,7). By assumption, A accepts w
from configuration (¢); U1, 7). Hence, by construction of A, it also accepts w
from configurations (1,4) and w from configuration (11 U 19,7 + 1). Again,
since (—4) holds and A does not accept w from configuration (9, 7+ 1), it must
accept w from configuration (19, i+ 1) and w from configuration (11 Ut)s, i+2).
If we repeat this argumentation, we obtain the following infinite rejecting path
(11 U aha, 1) (101 U e, i + 1)(¢y U g, i + 2) ... in the run r of A on w from
configuration (1 U1y, 7). The existence of such a path is a contradiction to
the fact that A accepts w from configuration (¢; U 1)9,7) by the run r. The
case for ¢ = 1)1 Sy is analogous.

Consider the case ©» = 11 Ry, Let i € N. Assume (w,i) | ¥ Ry, ie.,
for all £ > 4, either (w, k) |= 19 or there is a j with ¢ < j < k such that
(w,j) = v1. By the induction hypothesis, this is equivalent to the fact that
(¢) for all k > i, either A accepts w from configuration (¢, k) or there is a j
with ¢ < j < k such that A accepts w from configuration (¢4, 7). We claim
that this is equivalent to the fact that (i) A accepts w from configuration
(1 R .).

We first show the direction from left to right. Assume (i) holds. It is easy
to see that (i) is equivalent to the following statement. Either, (a) A accepts
w from configuration (g, k), for all & > i, or (b) there is a k > i such that

54

4.2. THE LINEAR-TIME TEMPORAL Locic PPSL

A accepts from (i1, k) and for all j with i < j < k, we have A accepts from
(19,7). Assume that the first case holds. We consider the run of A from
configuration (¢ R, k), where A behaves as follows. Whenever A arrives in
a configuration (¢ R1s, 1), for [> k, it moves to configuration (9,1) and (¢4 R
9,1 + 1) respecting the transition function. By assumption, A accepts from
every configuration (ig,1), for [> k. Thus, the run of A from configuration
(11 Ry, k) is accepting if the infinite path (¢1 R 99, k)(¢1 R e,k + 1) ... is
accepting, as well. This path is accepting since 11 R is an accepting state of
A. So, A accepts w from (¢ R1)9,4). Assume that the second case holds. Let
k > i be a position such that A accepts w from configuration (i1, k) and for
all j with ¢ < j <k, A accepts w from configuration (19, j). Since A accepts
from (19, k) and from (11, k), it follows that by the definition of the transition
function, A accepts from (11 R4, k). Again, by assumption and the previous
step, A accepts from (19, k — 1) and from (1)1 R1)g, k). Thus, by the definition
of the transition function, A accepts from (¢ R g, k — 1). If we iterate this
argumentation, we conclude that for all 7 with ¢ < j < k, we have A accepts
from (11 R 4)g, j). Thus, A accepts w from configuration (11 R 19, 1).

Now, we show the other direction by contraposition. Assume that (i) does
not hold. That is, (—i) there is a k& > ¢ such that A does not accept from
(19, k) and for all j with ¢ < j < k we have A does not accept (¢1,7). Let
k > i be the least number such that the (=) holds. In particular, A does not
accept w from (19, k). By the definition of the transition function, A does not
accept w from configuration (11 R, k). By assumption, A does not accept w
from configuration (1, k —1). Thus, A does not accept w from configuration
(1 Rpg, k — 1), too. If we repeat this argument, we infer that A does not
accept w from configuration (¢; Rs, j), for all ¢ < j < k. Thus (ii) does not
hold, and we are done. The step case for ©¥» = ¥, T 15 is analogous.

Consider the case ¢ = r O— . Let i € N. Assume (w,i) = v, i.e, there
is a position k > ¢ such that w; , € L(r) and (w, k) = 7. By the induction
hypothesis, this is equivalent to the fact that there is a k > ¢ such that w; ; €
L(a) and A accepts w from configuration (v,k). That is, A accepts from
configuration (r ¢ ,14) if and only if there is a position k such that A has
an accepting run on w;_j and A accepts from (v, k). It is easy to see that by
the definition of the transition function, this is equivalent to the fact that A
accepts w from configuration (r O 7,7). The step case for ¢ = a &> 7 is
analogous.

Consider the case ¢ = r - 7. Let i € N. Assume (w,i) = 1, i.e, for all

59

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

positions k > i such that w; j € L(a), we have (w, k) |= . By the induction
hypothesis, this is equivalent to the fact that for all positions £ > ¢ such that
w;. € L(a), we have A accepts w from configuration (v, k). This is equivalent
to the fact that there exists a run of A on w from configuration (r&—+,4) such
that for every path in the run is labeled by (qo,7)(q1,7 + 1)... the following
holds: for all j € N such that (qo,7)...(q;,7+ j) is an accepting run of A on
w;. ;, the automaton A accepts w from (g;,7 + j). That is equivalent to the
fact that A accepts w from configuration (r -+, 7). The step case ¥ = rg--y
is analogous.

Eventually 1-Wayness We show that A is eventually 1-way. For the ease
of exposition, we assume that the e-moves of A from the states of the form
rxa are eliminated, where r is a SERE and x € {¢-, 6, 0-,8>5}. Let Q@ :=
{q € Sub(y) | q is of the form aSB or aTB} U {q € Q | ¢ is of the form s &
a or s B- a} denote the states that are built by past operators.

For defining the partitioning of the state set (), we need the following func-
tion that assigns weights to states.

weight(q) = {2\5ub(q)| +1 ifge Q_,

2|Sub(q)| otherwise.
Let n := 2|Q| + 1. Let (Q;)i<, be a partitioning of @, where for i < [n], we
define Q; := {q | weight(q) = i}.

Let p,g € Q, D CD,d € D, and a € ¥ such that (q,d) € dp(p,a). It suffices
to show the following claim: if (weight(p) is even and d < 0) or (weight(p) is
odd and d > 0) then weight(q) < weight(p).

Consider the case p € Q~. We have weight(p) is odd. Assume d > 0. By
the definition of the transition function, d # 1. It follows that ¢ € Sub(p) and
hence weight(q) < weight(p).

Consider the case p € @\ Q. We have weight(p) is odd. Assume d < 0. By
the definition of the transition function, d # —1. It follows that ¢ € Sub(p)
and hence weight(q) < weight(p). n

Finally, we translate the locally and eventually 1-way 2ABA A obtained
from the PPSL formula into a language-equivalent INBA. Using our scheme
for removing alternation and appropriate complementation constructions from
Section 4.1, we directly obtain the following result.

56

4.2. THE LINEAR-TIME TEMPORAL Locic PPSL

PLTL PPSL' PPSL
no past operators O(2™n) O(3™) 0(3%")
with past operators O@2™ -2™n) o@2m - 3m) o@2m -3%2")

Table 4.2: Sizes of INBAs obtained from PPSL formulas.

Corollary 4.18 Let ¢ be a PPSL formula in positive normal form that has
m propositions and is of sizen. We can translate the formula into a language-
equivalent INBA A with

(O(2"n) if ¢ is an LTL formula,
O(2™-2"n) if p is a PLTL formula,
Al € O(3™) if ¢ is a PSL™ formula,
O2m-3") if ¢ is a PPSL™ formula,
0(3?") if v is a PSL formula,
LO@2™-32") if ¢ is a PPSL formula. 5

Table 4.2 summarizes the worst-case bounds of the INBAs for the correspond-
ing formulas with m propositions and of size n that have no past operators,
in the first line, and the bounds for formulas that have past operators, in the
second line.

4.2.3 Succinctness Results

In this section, we examine several succinctness gaps between the logics that we
have introduced in Section 4.2.1. Let L and L’ be two logics from Section 4.2.1.
We call L exponentially more succinct than L', if there is a family of L formulas
(¢n)n>0 such that for every i > 0 and every L’ formula v that is initially
equivalent to ,,, the size of v is exponential in the size of ¢,. The language
L is double-exponentially more succinct than L’ if ¢ is double-exponential in
the size of ¢,. Figure 4.3 summarizes the results of this section. For the sake
of readability, we define 2% := x and 2% := 2%-1, for k > 0.

We proceed as follows. First, we recall a result by Markey to obtain suc-
cinctness gaps between PSL and PSL"™ and between PPSL™ and PSL™. Then,
we present a novel result to obtain succinctness gaps between PPSL and the

o7

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

PPSL exponential PSL
Theorem 4.24

double exponential (zxponentiag 0
Theorem 4.25 emma <.
exponential
PPSL™ PSL™

Figure 4.3: Succinctness gaps.

logics PSL, PSL', and LTL. The proof technique for our new result has a sim-
ilar flavor to Markey’s proof in [Mar03]. However, our proof is more involved
since we must take SEREs into account.

Gaps Inferred from Markey’s Result In the following, let n > 0, P,, be
the set of propositions {py,...,p,}, and ¥, be the alphabet 27». Consider the
following language that states that for any position, py’s truth value is equal to
its corresponding truth value at the initial position whenever the truth values
of the propositions py,...,p, are equal to the corresponding truth values at
the initial position.

M, consists of all words w € ¥ such that for every position i € N,
we have w; N {po} = wo N {po} whenever w; \ {po} = wo \ {po}-

The next theorem directly follows from Markey’s proof in [Mar03].

Theorem 4.19 Let L be a logic such that for alln > 0 there is an L formula
of size O(n) that describes M,,. Let L' be a temporal logic such that

1. L' has no past operators,
2. L' has the generally operator G, and

3. every L' formula of size m can be translated into a language-equivalent
INBA of size 200

Then, the logic L is exponentially more succinct than the logic L. O

Lemma 4.20 PSL and PPSL™ are exponentially more succinct than PSL™
and LTL. 5

58

4.2. THE LINEAR-TIME TEMPORAL Locic PPSL

PROOF Let n > 0 be a natural number. We present a PSL and a PLTL
formula that are linear in n and describe the language M,,. The PSL formula

is r O— ff, where r is the SERE

((pos tt" 5 =po) U (=po i tt" 1 p0)) N [((ps st 5 i) U (i s 175 =py)).

1<i<n

The PLTL formula, which is also a PPSL"™ formula, is

G(/\ (pi <> OHp;) — (po <> OHpy))

1<i<n

By Theorem 4.19, we obtain the succinctness gaps. n

Novel Construction and Gaps Let us now turn to the succinctness gaps
between PPSL and the logics PSL, PSL™, and LTL. For this, we first introduce
n-counting words, which can be defined in LTL by formulas of size O(n). In
the following, let n > 0, P,, be the set {cy,...,c,_1,p,q} of propositions, and
¥, the alphabet 27». The n-value of the letter b € ¥,, is

/ 1 if) b)
val, () := Z 24 with ¢ ::{ hee

0<i<n 0 otherwise.

In other words, the n-value of b is obtained by reading co, ..., c,_1 as bits of
a positive integer in binary representation. A word w € ¥¥ is n-counting if
val, (wg) = 0 and val,(w;11) = val,(w;) +1 mod 2", for all i € N.

Lemma 4.21 For every n > 0, there is an LTL formula count,, of size O(n)
such that L*(count,) C X% is the language of n-counting words. O

PROOF Recall that the temporal operators G and X can easily be defined in
PSL and PSL"™ by using the operator ¢—.
We define count,, as the LTL formula

(/\ _'Cz') A G(_|XCO g Co) N /\ G(XCZ — (Cz' — (Cifl — XCi,1)>).
0<i<n 1<i<n

Note that for ¢ with 1 < i < n, the formula ¢; <+ (¢;_; — X¢;—1) is equivalent to
the formula (ci/\ﬁcarryifl) V (ﬂciAcarryl-fl), where carry;_; == ¢;_1 — Xc;j_1.
It is easily checked that w € ¥¥ is a model of count,, if and only if w is n-
counting. n

59

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

An n-segment of a word w € ¥¢ is a subword v = wj; ... w;9n_1 such that
t = 0 mod 2", for some ¢ € N. The n-segment v is wnitial if i = 0. For
a proposition r € {p,q}, the words u,v € X are r-equal if |u| = |v| and
r € wu; < r €, forall i € N with i < |v|. In other words, the projection of
two r-equal words onto r yields the same word. Let L,, and L/ be the following
two languages:

e [, consists of the n-counting words w € ¥ such that if an n-segment of
w is p-equal to the initial n-segment of w then they are also g-equal.

e L/ consists of the n-counting words w € ¢ such that if the n-segments
u and v of w are p-equal then they are also g-equal.

The languages L, and L/, have the following properties.

Lemma 4.22 For every n > 0, there is a PPSL formula v, of size O(n) such
that Lw(@n) = Ln =]

PRrROOF First, we define the SERE samepos,, such that for every subword v €
¥¥ of an n-counting word w € ¢, it holds that v € L¥(samepos,,) if and only
if v = w;_;, for some ¢,7 € N with ¢ < j and ¢ = 7 mod 2". Note that since
v is a finite subword of an n-counting word, one only has to assert that the
n-values of the first and the last letter of v are equal. We define

samepos,, 1= ﬂ (i3t 5 ¢) U (e st).
0<i<n

With the SERE samepos,, at hand, we easily define a PPSL formula that
checks whether a position is in the initial n-segment of an n-counting word:

initial, := —(samepos,, & tt).

For an n-counting word w € ¥ and a position i € N, we have w, i |= initial,
if and only if i < 2". Moreover, for a PPSL formula), we define

back? := samepos, & (initial, N\ 1)).

For an n-counting word w € ¥ and i € N, it holds that w,i = back? if and
only if w,7 mod 2" |= ¢. Intuitively, back;f goes back in the word w until it
reaches the position in the initial n-segment with same counter values as the

60

4.2. THE LINEAR-TIME TEMPORAL Locic PPSL

current position, and there it checks that 1) holds. Next, we define the SERE
withing, := (=c,—1)*; (cn—1)*. We use it for checking if a larger position than
the current position is still in the same n-segment of an n-counting word. Note
that the highest bit ¢, _; of the counter is only allowed to change its value from
0 to 1 once. The formula start, := /\,.,., —¢; checks that a position is the
first one of an n-segment in an n-counting word.

Finally, consider the PPSL formula ¢,, := count,, A ¥,,, where

Uy = G(startn A (within,, O (p <+ back?)) — (within,, 0 (q < back%))).

The formula 1, states that for any n-segment of an n-counting word, if the
Boolean value of p at every position of that n-segment coincides with the
Boolean value of p at the corresponding position of the initial n-segment, then
the same holds for the Boolean values of ¢q. Hence, we have L¥(p,) = L,.
Furthermore, the size of the formula ¢, is in O(n). -

Lemma 4.23 For everyn > 0, if A is an NBA with L¥(A) = L/, then |A| >
25. a]

PRrROOF Consider a natural number n > 0. Let m be the bound 2. Let
00 .. v e {0, {p}}* be an enumeration of all pairwise different words of
length 2". Let 3 be the alphabet 3, U{p, ¢}. We define the language S,, C ¥*

such that for every word w € S,

1. the projection of w on ¥, is n-counting and

m—1

2. the projection of w on {0, {p}} is the word v%v! ... v

Note that S,, contains exactly 272" different words that only differ in the
distribution of the proposition ¢. Also, for every w € S,, we have w* € L.
Suppose that |A| < |S,|. Then, by the pigeon hole principle, there are words
v,w € S, with v # w such that A visits the same state s when reading the
prefix v of the word v* and when reading the prefix w of the word w*. Hence,
A also accepts the word vw® even though vw* ¢ L! . Thus, |A| > |S.| > 2}.m

With the above lemmas we obtain our succinctness results.

Theorem 4.24 PPSL is exponentially more succinct than PSL. o

61

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

PROOF Let n > 0 be a natural number and ¢, denote the PPSL formula
from Lemma 4.22. Suppose that ¢ is a PSL formula that is initially equivalent
to ¢n. We define ¢ := count,, A G(—cog A ... A =¢c,—1 — ¥). Note that ¢/
describes the language L!. By Theorem 4.18, there is an INBA A of size
290D and L#(A) = L(¢'). By Lemma 4.23, we have |A| > 27. It follows
that |/ € Q(2l¥#l). Since ¢’ is linear in the size of v, we conclude that
4] € Q2lel), ;

Note that L, is a star-free language. This means, there is an LTL formula
©n such that L¥(p,) = L,. We can easily adapt the proof of Theorem 4.24
to obtain a double exponential succinctness gap between PPSL and the logics
PSL™ and LTL.

Theorem 4.25 PPSL is double-exponentially more succinct than PSL™ and
LTL. O

PROOF Let n > 0 be a natural number. Let ¢, be the PPSL formula from
Lemma 4.22. Suppose that 1 is an LTL formula that is initially equiva-
lent to ¢,. Let ¢’ := count, A G(—-co A ... A =¢,_1 —). Note that ¢’
describes the language L. By Theorem 4.17, there is an INBA A of size
20U¥) and L¥(A) = L(¥'). By Lemma 4.23, we have |A| > 2%. It follows
that [¢/| € Q(24¥"1). Since ¢ is linear in the size of ¢,, we conclude that
I € Q1. In case, ¢ is a PSL™ formula, we obtain |¢] € Q(25"1) by the
same argumentation. n

Remark 4.26 We conclude this section by stating some open problems re-
lated to the presented succinctness gaps. First, it is open whether the expo-
nential succinctness gap still holds between PPSL and extensions of PSL with
restricted variants of the past operators like the ones discussed in Remark 4.13.
We succeeded neither in proving such a gap nor in expressing the languages
L, concisely in such an extension. Second, it is open whether the succinctness
gaps carry over to a fixed and finite proposition set. Note that the proposition
sets P, over which the PPSL formulas ¢,, are defined grow linearly in n. As
shown in [DS02], we can encode any number of propositions by a single propo-
sition. However, the sizes of the adapted formulas for ¢,, are no longer linear
in n. In particular, the sizes of the adapted SEREs samepos,, in Lemma 4.22
are quadratic in n. It is not obvious how to adapt these SEREs so that their
sizes remain linear in n. Therefore, for a fixed and finite proposition set, we

62

4.3. TRANSLATIONS FOR EXTENSIONS OF PSL

only obtain a superpolynomial succinctness gap between PPSL and PSL. Note
that for similar reasons, the adapted proof of the succinctness gap between
PLTL and LTL in [Mar03, LMS02] for a fixed and finite proposition set also

only shows that PLTL is superpolynomially more succinct than LTL. O

4.3 Translations for Extensions of PSL

The two linear-time temporal logics DLTL [HT99] and RLTL [LS07] extend
the IEEE standard PSL by more general fix-point operators. We first present
a translation from DLTL to INBAs that improves over the translation given
in [HT99]. For a formula of size n, we obtain a INBA of size O(3™) by our
translation and a INBA of size O(3"2%") by the translation in [HT99]. Fur-
thermore, our translation is simpler since it is based on standard automata
constructions. We also extend DLTL by past operators (PDLTL) and utilize
an alternation-elimination construction from this chapter to obtain a transla-
tion from PDLTL to 1NBAs.

Second, we extend RTL by past operators (PRTL) and show that every
PRTL formula can be translated into an alternating co-Biichi automaton.
Utilizing our alternation-elimination scheme and the construction from The-
orem 5.15, we obtain a translation from PRTL into INBAs whose worst-case
sizes are the same as the worst-case sizes of the 1INBAs obtained from the
translation from RTL to 1INBAs given in [L.S07]. We remark that in [SL10],
Leucker and Sanchez also extends RTL by past operators (pRTL). However,
the linear-time temporal logic uLTL [BB89, Var88| generalizes over their sug-
gested logic since all pRTL formulas can be rewritten as uLLTL formulas with
only a linear blow-up when using construction techniques from [Lan07]. Since
the translation from pRTL to INBAs does not improve over Vardi’s transla-
tion of uLLTL to 1INBAs, we see no advantage of using pRTL over using uLTL.
In contrast, our extension of RTL is as expressive as pLLTL and the presented
translation from PRTL to 1INBAs improve over the translation from pLTL to
INBA.

We fix the set of atomic propositions P and the finite alphabet ¥ := 27.

63

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

4.3.1 Translations for the Logic DLTL

A variant of the logic PSL is Dynamic Linear-Time Logic (DLTL). In [HT99],
Henriksen and Thiagarajan introduce this logic as an extension of LTL by a
modified until operator U” whose second argument must hold at the end of
some sequence that is described by the regular expression r.

Remark 4.27 In dynamic logics [HKT00, HT99], we distinguish between se-
quences of actions A that describe possible executions of a program, and propo-
sitions P that may or may not hold after some program execution aga; . ..a; €
A* for i € N. Let ¥ = A x 2% be a finite alphabet. For a word w € ¥,
we write w? € A“ for the projection of w on A. The logic DLTL describes
languages of the form L C ¥* such that for every two words v,w € L and
i € N, if vg', = wi', then v; = w;. In this thesis, we identify program actions
and set of propositions. That is, we set A C 27 and only consider words over

(27)«. o

In the following, we consider the logic PDLTL that is an extension of DLTL
by the past operator S”. The syntax of a PDLTL formula over P is given by
the grammar

pu=bloeVe|-p|eU p|pS oy,

where b € B(P) and r is a regular expression. The size |¢| of a PDLTL formula
@ is its syntactic length. We write Sub(p) for the set of all sub-formulas of a
PDLTL formula .

For a RE r and formulas ¢ and v, we define the following syntactic abbre-
viations @ A 1= (= V=), R™ Y = (= U" =), o T ¢ 1= = (=p S" —)).
Using these abbreviations, we can obviously translate any PDLTL formula into
positive normal form, i.e., negations occur only in front of propositional logic
formulas. Note that such a translation might double the size of the formula.

64

4.3. TRANSLATIONS FOR EXTENSIONS OF PSL

We proceed with defining the semantics of PDLTL. Let ¥ denote the set of
propositions 27. Let w € ¥ and i € N be a position in w.
(w,i) = b iff w; fulfills b.
w,i) EeVvy iff (w,i) @ or (w,i) E .
1) = e iff (w,7) ¥ .
i) EeUy iff there is a k > ¢ such that (w, k) =,
L*(r) contains wj;_, and
for all j with ¢ < j < k, we have (w, j) | ¢.
(w,i) = @S"¢ iff thereis a k < i such that (w, k) E v,
L*(r) contains w;_j, and
for all j with £ < j <, we have (w,j) = ¢.

For a PDLTL formula ¢, we write L“(¢) := {w € ¥ | (w,0) = ¢} to denote
its language, |p| for the size of ¢ that is defined as its syntactic length, and
write Sub(y) for the set of its sub-formulas.

In the next theorem, we present a construction to translate a PDLTL formula
into a language-equivalent eventually 1-way 2ABA.

Theorem 4.28 We can translate every PDLTL formula in positive-normal
form of size n into a language-equivalent locally and eventually 1-way 2ABA
of size O(n). For DLTL formulas, the resulting automaton is 1-way. O

PROOF Let ¢ be a PDLTL formula. We translate this formula into a language-
equivalent locally and eventually 1-way 2ABA.

For every RE 7 in ¢, let A, and A! be the corresponding automata con-
structed according to Lemma 4.16 such that L*(r) = L*(A,) and A/ accepts
the mirror language of L*(r). We assume that the state sets of these automata
are pairwise disjoint. In the following, we (i) present a construction of the
2ABA, (ii) prove the correctness of the construction, and (iii) finally show
that the 2ABA is eventually 1-way.

Construction We define the 2ABA A = (@Q,%,6,qr, F), where the set of
states is @ := Sub(y) U @ with
Q :={aU*B|aU" B cSub(p) and s is a state in A,} U
{aR* 3| aR" 3 € Sub(p) and s is a state in A, } U
{aS* B | aS" B €Sub(p) and s is a state in A} U
{aT°B|aT B € Sub(p) and s is a state in A}

65

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

The initial state q; is . The set of accepting states

F:=Q\{aU’p|alU" 5 e Sub(p) and s is a state in A, }

contains all states except for the until formulas.
We proceed to define the transition function §. Let a € ¥ and D C . First,
we define the transitions from states that are LTL formulas.

e For b € B(P), we define

tt if a satisfies b,

5D(b, a) = {

ff otherwise.

e For the Boolean connectives A and V, we define

op(YAY,a) == (7,0) A (¥,0) and dp(yVe,a):=(7,0)V (¥,0).

We now turn to the transitions for states that correspond to the temporal
operators with the REs.

66

e The state a U" § € Sub(yp) is used to start a simulation of the NFA

A, = (5,%2,n,s7, E) on the input word. If the simulation reaches a final
state of the NFA, 4, may terminate the simulation and proceed with the
state 8. Furthermore, the simulation must visit state « at every step until
the final state is reached. Formally, we define dp(aU” 3, a) := (a U1 3,0)
and for s € S,

(@, 0) A Vigysay (@ Ut B, 1) if n(s,a) N E =1,

5D(Oz us ﬁa Cl) = {((a, O) A Vten(s,@(a Ut 67 1)) V; (B’ ()) otherwise.

The transitions from the state a S § € Sub(yp) are defined similarly.
Instead of simulating the NFA A,, A, simulates the NFA A, where it
moves the read-only head to the left instead of to the right.

If the state is & R" 8 € Sub(yp), the automaton A, simulates a run of the
NFA A, = (S,%,n, s, F) viewed as a universal automaton. Whenever
the simulation reaches a final state, A, has to proceed with the state).

4.3. TRANSLATIONS FOR EXTENSIONS OF PSL

Alternatively, the simulation may break up and proceed from state .
Formally, we define 0p(a R" 8,a) := (o R*7 3,0) and for s € S,

(@, 0) V Ateysay (@R B, 1) if n(s,a)NE =1,

5D(Oé R* 3, Cl) = {((a, O) v /\ten(s,a)(a Rt B, 1)) A (B’ ()) otherwise.

The transitions from state o T" § € Sub(y) are similarly defined. How-
ever, if the read-only head is at the beginning of the input word, A, may
stop the simulation. Formally, for the NFA A/ = (S,X,n,s;, E) and
s € S, we define op(aT" B,a) := (aR°" 3,0) and for —1 ¢ D, we have

tt if n(s,a)NE =10,

Sp(a T B,a) = {(ﬁ,o) otherwise,

and for —1 € D, we have

5D(Oé T ﬁ, a) =
(@,0) V Ateysay (@ TF 8, 1) if n(s,a) N E =1,
((a,0) Vv Nicns.ay(@ T8, —1)) A (8,0) otherwise.

We remark that the e-moves in our construction (i.e., the transitions of A in
which the read-only head does not move) can be easily eliminated by replacing
a proposition (s, 0) that occurs in (g, b) by dp(s,b), where ¢,s € Q and b € X.

Note that from the definition of the state set () and Lemma 4.16, we directly
obtain |A| € O(n). By inspecting A’s transition function, we also see that A
is locally 1-way.

Correctness In the remainder of the proof, we show the correctness of the
given construction. In particular, we prove that for every word w € >¢,
subformula ¢ € Sub(y), and position ¢ € N, the following equivalence holds

(w,i) ¢ if and only if A accepts w from configuration (¢, 7).
This equivalence immediately implies L¥(A) = L¥(¢). We prove the equiva-

lence by induction over the formula structure of ¢. Let w € ¥“ be an infinite
word and ¢ € N a position in w.

67

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

Consider the base case ¢ = b, for some b € B(P). By definition, (w,i) = b
holds if and only if w; fulfills b. By construction, this is equivalent to the fact
that A accepts w from configuration (b, 7).

Consider the case ¢ = aAS. Assume (w, i) = ¢, ie., (w,i) F aand (w,i) =
B. By the induction hypothesis, this is equivalent to the fact that A accepts w
from configuration («,4) and from configuration (/3,7). By construction, this
is equivalent to the fact that A accepts w from configuration (a A 3,7). The
step case for ¢ = a VvV 3 is analogous.

Consider the case ¥ = a U" . Let A, = (S,%,n, s, F) be an INFA that
accepts L*(r). Assume (w,i) = aU" 3, i.e., there is a k > ¢ such that (w, k) |=
B, L*(r) contains w; g, and for all j with ¢ < j < k, we have (w, j) = a. By
the induction hypothesis, this is equivalent to the fact that

there is a k > i such that A accepts w from configuration (3, k),
L*(r) contains w;_x, and A accepts w from configuration (o, j), for (i)
all i < j < k.

We claim that this is equivalent to the fact that
A accepts w from configuration (o U” 53, 1).)

We first show the direction from left to right. Assume that (i) holds. Let
SiSix1---Spr1 € S* be an accepting run of A, on w; ;. By assumption, A
accepts w from configuration (S, k). Thus, by the definition of the transition
functions, A also accepts w from configuration (a U 3, k). Furthermore, by
assumption, A accepts w from configuration («, k—1). Thus, by the definition
of the transition function, A also accepts w from configuration (aU%*-1 3, k—1).
If we iterate this argumentation, we infer that .4 accepts w; from configuration
(aU% 3, 4), for all i < j < k. Since (o U% B,1) is reached from (a U" g,1i) by
an e-moves, we obtain (i7).

For the other direction, assume that the (i7) holds. That is, A accepts w
from configuration (a U” §,4). In particular, A accepts w from configuration
(U1 3,4). For the sake of contradiction, we additionally assume that (i) does
not hold, that is, we have

there is no k > i such that A accepts w from configuration (f, k),
L*(r) contains w; x, and A accepts from configuration («,j), for (—i)
all i < 5 < k.

68

4.3. TRANSLATIONS FOR EXTENSIONS OF PSL

From (—i), it follows that A does not accept w from configuration (/3,7). Hence,
A accepts w from configurations (a,) and there is also a successor s; of sy
such that A accepts w from configuration (o U** 5,7+ 1). Again, since (—i)
holds and A does not accept w from configuration (3,7 + 1), it must accept w
from configuration («, i + 1) and there is also a successor sy of s; such that A
accepts w from configuration (o U2 3,7+ 2). If we repeat this argumentation,
we obtain an infinite sequence of states s;sysy... € S¥ and the following
infinite rejecting path (a U §,4)(a U B,i+ 1)(a U*? 5,i+ 2)... in the run
of A on w from configuration (o U 8,4). The existence of such a path is a
contradiction to the fact that A accepts w from configuration (a U 3,4). The
case for ¢ = a'S" 3 is analogous.

Consider the case 1 = a R" 5. Let A, = (S,%,n, s, E) be the NFA that
accepts L*(r). Assume (w,i) = aR" 3, i.e., for all k > 4, if L*(r) contains w;_j
then either (w, k) = /8 or there is a j with i < j < k such that (w, j) = a. By
the induction hypothesis, this is equivalent to the fact that

for all k£ > 4, if L*(r) contains w; ; then either A accepts w from
configuration (8, k) or there is a j with ¢ < j < k such that A (iv)
accepts w from configuration («, j).

We claim that this is equivalent to the fact that
A accepts w from configuration (o R” 3, 1). (v)

We first show the direction from left to right. Assume (iv) holds. It is easy to
see that (iv) is equivalent to the following statement.

Either for all k£ > 4, if L*(r) contains w;_; then A accepts w from .,
. (")
configuration (3, k), or
there is a k > ¢ such that A accepts w from (o, k) and for all j
with ¢ < j <k, if L*(r) contains w;_; then A also accepts w from (iv")
(8,3)-
Assume that (iv') holds. In the following, we just consider runs of A from
configuration (a R*’ 3,i), where A behaves as follows. Whenever A arrives
in a configuration of the form (o R® f3,7), for any 7 > 4, it avoids moving
to configuration («,j). We show by contradiction that A still accepts from
(o R B,4) Suppose that A does not accept from (a R* ,4). Due to the

69

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

definition of the transition function, there are two cases. If n(s;,w;) N E =0
then there must be a state sy € n(sy, w;) such that A rejects from (aR*' 3, i+1).
Otherwise, if (s, w;)NE # () then there must be a state s € n(sy, w;) such s;s’
is an accepting run of A, on w; ;1. Thus, A accepts from (3,i+1). Therefore,
as in the first case, there must be a state s; € n(sy, w;) such that A rejects from
(aR*'3,i+41). If we iterate this argument, the only possible way to reject from
(aR%1 3,4) is by the path (aR*Z 8,7)(aR* 5,i+1)(aR*25,i+2)... € (Q xN)~.
Since this path is accepting, we conclude that A accept from (a R (3,7).
Assume that (iv”) holds. Let k > i be the least position such that A accepts
w from configuration («, k) and for all j with ¢ < j <k, if L*(r) contains w;_;
then A accepts w from configuration (5, j). In the following, we just consider
runs of A from configuration (a«R®! 3, 7), where A behaves as follows. Whenever
A arrives in a configuration of the form (a R® 3, j), for any 7 > 4, it moves to
configuration («, k) if j = k and otherwise, it avoids moving to configuration
(cr, k). We show by contradiction that A4 still accepts from (aR*" 3,4) Suppose
that A does not accept from («R® §,4). Due to the definition of the transition
function, there are two cases. If n(s;,w;) N E = () then there must be a
state s; € n(sy, w;) such that A rejects from (aR**f,i+ 1). Otherwise, if
n(sr,w;) N E # () then there must be a state s’ € n(sy, w;) such s;8' is an
accepting run of A, on w; ;41. Thus, A accepts from (5,7 + 1). Therefore,
as in the first case, there must be a state s; € n(sy, w;) such that A rejects
from (aR*3,i+ 1). If we iterate this argument, we obtain the only possible
way to reject from (a R* §,4) is by a the path that starts with the prefix
(R B 1) (R Bli4+ 1)(aR25,i4+2)...(«R% 5,1+ j) € (Q x N)*, where
i+j = k. But then, one of the following two cases holds. If n(s;, w;+;) NE = ()
then A moves to (a, k) and accepts. Otherwise, if 1(s;, w;;) N E # (0 then
there must be a state s’ € n(s;, wi4;) such sysy...s;1;s is an accepting run of
A, on w; ;1;. Thus, A accepts from (5,7 + j). Therefore, as in the first case,
there A moves to (o, k) and accepts. Therefore, there is no rejecting path. We
conclude that A accept from (a R 3,1).

Now, we show the other direction by contraposition. Assume that (iv) does
not hold. That is,

there is a k > i such that L*(r) contains w; ,, A does not accept
w from (5, k) and for all j with i < j < k, A does not accept w (—iv)
from («, j).

Let k > i be the least number such that the (—iv) holds. Furthermore, let

70

4.3. TRANSLATIONS FOR EXTENSIONS OF PSL

SiSis1---Sky1 be an accepting run of A, on w; ;. By assumption, A rejects
w from (B, k). Hence, A rejects w from configuration (a R** g, k), too. By
assumption, A rejects w from configuration («, k — 1). Thus, A also rejects w
from configuration (a R*-1 8,k — 1), too. If we repeat this argument, we infer
that A does not accept w from configuration (a R% 3, 5), for all i < j < k.
Thus (v) does not hold, and we are done. The step case for ¢ = a T" § is
analogous.

Eventually 1-Wayness We show that A is eventually 1-way. For the ease
of exposition, we assume that the e-moves of A from the states of the form
a*" (3 are eliminated, where r is an RE and x € {U,R,S, T}. Let Q@ :={q €
Sub(yp) | ¢ is of the form aS™5 or aT" 3} denote the states that are built by
past operators.

For defining the partitioning of the state set (), we need the following func-
tion that assigns weights to states.

weight(q) = {2\5ub(q)| +1 ifge Q_,

2|Sub(q)] otherwise.
Let n := 2|Q| + 1. Let (Q;)i<, be a partitioning of @, where for i < [n], we
define Q; := {q | weight(q) = i}.

Let p,g € Q, D CD,d € D, and a € ¥ such that (q,d) € dp(p,a). It suffices
to show the following claim: if (weight(p) is even and d < 0) or (weight(p) is
odd and d > 0) then weight(q) < weight(p).

Consider the case p € Q~. We have that weight(p) is odd. Assume d > 0.
By the definition of the transition function, d # 1. It follows that ¢ € Sub(p)
and hence weight(q) < weight(p).

Consider the case p € Q\Q~. We have that weight(p) is odd. Assume d < 0.
By the definition of the transition function, d # —1. It follows that ¢ € Sub(p)
and hence weight(q) < weight(p). n

Corollary 4.29 We can translate every PDLTL formula in positive normal
form of size n and having m propositions into a language-equivalent INBA of
size O(2™ - 3"). 0

Corollary 4.30 We can translate every DLTL formula in positive normal
form of size n into a language-equivalent INBA of size O(3™). O

71

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

We remark that the translation in Corollary 4.30 improves over the trans-
lation from DLTL to 1INBAs given in [HT99]. For DLTL formulas in positive
normal form of size n, the worst-case sizes of the INBAs obtained from Hen-
riksen and Thiagarajan’s translation is in O(3"22"). Moreover, the constant
hidden in the O notation is four times bigger than the constant in the bound
of our translation.

4.3.2 Translations for the Logic PRLTL

Regular Linear-Time Temporal Logic (RLTL) [LS07] is an extension of a frag-
ment of PSL" by a variant of the until operator U” that is equipped by a regular
expression r. Leucker and Sanchez present a translation of RLTL formulas of
size n into to INBAs of size O(3"). In the follow-up paper [SL10], they extend
RLTL with a negation operator in the regular layer and past operators in the
regular-expression layer. We call this logic pRLTL. In their paper, Leucker and
Sanchez also provide a translation of pRLTL formulas of size n and k nested
negations into 1INBAs of size 20((nk)?), Although they mention that k& can be
bounded by the constant 3. However, no details are given.

In this section, we present an alternative extension of RLTL by the nega-
tion operator and past operators. We call the logic PRLTL. Based on our
alternation-elimination construction in this chapter, we also provide a trans-
lation of PRLTL formulas of size n into INBAs of size 20(1os™),

The syntax of a PRLTL formula over P is defined as follows.

pu=bloeVe|-p|Ep|eU p|pS g,

where b € B(P) and r is a RE over P. For a RE r and formulas ¢ and
1, we define the following syntactic abbreviations ¢ A 1) = =(=p V =),
A"p = =(E"—p), o R" ¢ := (= U" =), o T ¢ := —(—¢ S" —1)). Using these
abbreviations, we can obviously translate any PRLTL formula into positive
normal form, i.e., negations occur only in front of propositional logic formulas.
Note that such a translation might double the size of the formula.

72

4.3. TRANSLATIONS FOR EXTENSIONS OF PSL

Let us define the semantics of the operators. Let w € (27)% and i € N.

(w,i) = b iff w; satisfies b.
Ew,zg)ch\/w iff (w,i) Epor (w,i) = .
(w,)

~.

0 i (w,1) I
i) EEe iff FkeN:ky=iandVjeN:
kjr1 > kj,wiy ny,, € L7(r), and (w, kj) | .
(w,i) EpU ¢ iff IneNkeNt k=i (w k,) E, and Vj € [n] :
kjv1 > kj,wi, k., € L*(r), and (w, k;) = .
(w,i) EpS" ¢ iff IneNkeN" k=i (wk,) E, and Vj € [n] :
kj+1 < kj7wkj+1--k'j € L*(T)a and (w> k])): -

For a PRLTL formula ¢, we write L¥(¢) := {w € X* | (w,0) &= ¢} to denote
its language, |p| for the size of ¢ that is defined as its syntactic length, and
write Sub(y) for the set of its sub-formulas.

Next, we give a construction to translate PRLTL formulas into locally and
eventually 1-way 2ABAs.

Theorem 4.31 For every PRLTL formula in positive normal form of size n,
there is a language-equivalent locally and eventually 1-way 2APA with three
priorities and of size O(n). If the formula has no past operators then the
2APA is 1-way. -

PRrROOF Let ¢ be a PRLTL formula in positive normal form. For any regular
expression r that occurs in a subformula of ¢, let A,., A/ be the NFAs for the
language L*(r) and the mirror language of L*(r), respectively. We proceed as
follows. First, we give the construction and prove its correctness. Then, we
show that the constructed automaton is eventually 1-way.

Construction We define the 2APA A := (Q, %, 6, qr, { Fo, F1, F2}). The set
of states is @ := Sub(p) U QT U Q~, where

t:={s 0> E"B | E' € Sub(p) and s is a state in A, } U
{so—> A"3 | A" € Sub(p) and s is a state in A, } U
{s o> alU"] alU" e Sub(p) and s is a state in A, } U
{sOo—> aR" B |aR" g €Sub(y) and s is a state in A, }

73

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

and

Q™ ={s¢o>aS f]aS" e Sub(p) and s is a state in A} U
{sB>aT B |aT" B €Sub(p) and s is a state in A_}.

The initial state ¢y is the input formula ¢. The parity acceptance condition is
given by the following three sets.

Fo :={A"8 | A" € Sub(p)},
Fy:={aU" B |aVU" g eSub(p)} U
{s 0> aU"] alU" e Sub(p) and s is a state in A, }, and
F2 I:Q \ (FO U Fl)
We proceed to define the transition function §. Consider the transition

function ¢’ from the 2ABA in the proof of Theorem 4.17. For a state ¢ € Q,
D C D, and a letter a € ¥, we define

(8,0) Ao (7" O Ep, a) if ¢ is of the form E"j3,
(ﬁ,O)\/(Sb(TEHA’"ﬁ,a) if ¢ is of the form A"j3,
(8,0) V ((a,0) A0 (r 0> a U™ B,a)) if g is of the form a U" 3,

op(g,a) == ¢ (5,0) A ((a,O) Voh(ro-aR" ﬁ,a)) if ¢ is of the form a R" 3,
(8,0) Vv ((a,O) NIy (rée—>aS" B,a)) if ¢ is of the form ' S” 3,
(8,0) A ((a,O) Vip(resaTr ﬁ,a)) if ¢ is of the form o T" 3,
(g, a) otherwise.

\

Note that by definition, A has at most O(n) states and is locally 1-way.

Correctness We show that L“(A) = L“(p). In particular, we prove that for
every word w € ¥*, subformula 1) € Sub(y), and position i € N, the following
holds.

w,i =1 if and only if A accepts w from configuration (v, 7).

This equivalence immediately implies L¥(A) = L¥(¢). We prove the equiva-
lence by induction over the formula structure of v. Let w € ¥ and ¢ € N be
a position in w. We only consider the cases that are different from the ones
proven in Theorem 4.17.

74

4.3. TRANSLATIONS FOR EXTENSIONS OF PSL

Consider the case » = E"3. Let A, = (S,%,n, s;, F) denote the NFA that
accepts L*(r). We first show the direction from left to right. We apply the
induction hypothesis on the assumption and obtain

there is an infinite path & € N¥ with kg = i such that 1. L*(r)
contains wg; k,,,, for all j € N, and 2. A accepts w from (5,k;), (i)

for all j € N.

G410

Consider a sequence of positions k& € N* that satisfies (i). For the sake of
contradiction, suppose A rejects from (E", 7). By the second condition of (7),
A must reject from (r &> E"(3,i). By the first condition of (i), there is an
accepting run sy, ...Sk,+1 € S* of A, on wy, x,. Hence, A must reject from
(E", ky). If we iterate this argumentation, we obtain the infinite sequence
(E", ko)...(E",k1)... € (Q x N)*. Furthermore, A can only reject if this
sequence is rejecting. Since this is not the case, we conclude that A accepts
from (E", 7).

Now, we show the direction from right to left. We construct an infinite path
k € N¥ that satisfies condition (7). Define ky := i. By assumption A accepts
from (E", ko). Since A accepts from (3, kg), we have (w, ko) = 3. Since A also
accepts from (r O— E"3, kg), there is a k; € N such that L*(r) contains wy, g,
If we iterate this argumentation, we obtain an infinite sequence of positions
koky ... € N¥ that fulfills condition (7). By the induction hypothesis, the left
hand side holds.

Consider the case ©» = A"5. Let A, = (S,%,n, s;, E) denote the NFA that
accepts L*(r). We first show the direction from left to right by contraposition.
Let ko := 4. So, assume A rejects w from (A", ko). Then, A rejects from (53, 17).
Since, states of the from sO— A"3, where s € S, are accepting, there must be a
position k; such that A, accepts wg, , and A rejects from (A", kq). If we iterate
this argumentation, we obtain an infinite sequence of positions kok; ... € N¥
such that A rejects (3, k;), for all ¢ € N, and L*(r) contains wy,. x,,,, for all
i € N. We apply the induction hypothesis and obtain (w, kg) = E"—3. Thus,
(w, ko) = A" and the left-hand side does not hold, either.

Now, we show the direction from right to left. Let kg := ¢. Assume A accepts
w from configuration (A”3, ko). We show by contradiction that the following

75

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

holds.

For all k € N¥ with ky = 4, we either have
1. there is an n € N with (w, k,,) | 8 and for all j < n, L*(r)
contains wy, ., and (w, k;) = 3, or (i)
2. there is an n € N with L*(r) does not contain Whyy. kpy, and
for all j <n, L*(r) contains wy, &, , and (w, k;) |= .

Assume (i7) does not hold. Then, we easily see that the following fact holds.

There is an infinite path k& € N with kg = ¢ such that 1. L*(r)
contains wy, &, ,, for all j € N, and 2. (w, k;) = 3, for all j € N. (i)
Consider the path k from (i7i). By assumption, A accepts from (A", ko).
By (7i7) and the induction hypothesis, A must also accept from (r o— A", ko).
By (iii), L*(r) contains wyg, , and so, A must also accept from (A", ky). If
we iterate this argumentation, we infer that A only accepts from (A", kg) if
the infinite path (A"8, ko) ... (A"B, k1) ... (A"5, k) ... € (Q x N)¥ is accepting.
This is not the case and thus, we infer that (i7) holds. It is easy to see that
this is equivalent to the fact that (w,7) = A"S.

Consider the case ¥ = o U" 3. We first show the only if direction. Assume
w, i = aU” 5. By the definition and application of the induction hypothesis, we
can fix a finite sequence k = kg . . . k,, such that A accepts w from configuration
(B, ky), ko = 1, and for each j € [n], A accepts w from configuration (a, k;),
and wy, k;,, € L*(r). From the fact that A accepts w from configuration
(B, kn), we infer that A accepts from (o U" 8, k). Since wy, , x, € L*(r), we
further infer that A from (r &> o U" 3, k,_1). Since A accepts from («a, k,,—1),
we conclude that it accepts from (aA (rO—>aU”B), k,_1). Thus, it accepts from
(aU" B, ky—1), by the definition of the transition function. If we iterate this
argumentation, we conclude that A accepts from (a U" 5, k;), for all j € [n].
Since kg = 7, we are done.

Now, we show the if direction. Assume A accepts w from configuration (a U"
B,i) by the run ¢. For the sake of contradiction, we assume that w,i [~
a U” 5. By the definition and application of the induction hypothesis, this
means the following. We cannot fix a finite sequence k = ky . . . k,, such that A
accepts w from configuration (3, k), ko = i, and for each j € [n], A accepts
w from configuration (o, k;), and wy,.x,,, € L*(r). In particular, it means
that A does not accept from (f3,7). Thus, A must accept from («,i) and

76

4.3. TRANSLATIONS FOR EXTENSIONS OF PSL

from (r & (a U"),1), by the definition of the transition function. Define
ko := 4. So, there must be a k; > ¢ such that wy, x, € L*(r) and A accepts
from (a U" 8, k;), by the definition of the transition function. From that, we
infer that A does not accept from (3, k;). If we iterate the argumentation, we
obtain an infinite path (a U" 8, ko) ... (aU" 5,k1) ... € (Q x N)¥ in the run ¢
such that every state in this path is rejecting. This contradicts the assumption
that ¢ is accepting. The case for ¢y = a S” 3 is similar.

Consider the case ©v = a R" 8. We first show the if direction. Assume
w,i = a R" . By the definition and application of the induction hypothesis,
this means the following. We cannot fix a finite sequence k = kg ...k, such
that A accepts w from configuration (5, k,), ko = i, and for each j € [n], A
accepts w from configuration (o, k), k; < kjy1, and wy;.x,,, € L*(r). This is
equivalent to the following statement: either

J+1

(7) there is an infinite sequence k = koky ... € N¥ such that kg = ¢, and for
each j € N, A accepts w from configuration (3, k;), and wy, &, , € L*(r),

(77) there is a finite sequence k = kg ...k, € N* such that there is no h € N
with k, < h and wy, , € L*(r), ko = i, A accepts w from configuration
(B, ky), and for each j € [n], A accepts w from configuration (3, k;), and
W, k;,, € L¥(r), or

(77i) there is a finite sequence k = kq ...k, € N* such that A accepts w from
configuration («, k,) and from (8, k,), ko = 4, and for each j € [n], A

accepts w from configuration (3, k;), and wy, x;,, € L*(7).

Let ko :=i. We consider the case (i). We construct an accepting run of A4 on w
from configuration («R” 3, 7). Whenever, A arrives at configuration (aR" 3, k;),
for j € N, it moves to configuration (3, k;) and (r &= aR" 3, k;) respecting the
transition function. Furthermore, from (r 0—aR" 3, k;), for j € N, it moves to
configuration (a R" 3, k;y1) simulating the transition function of the NFA for
r. By assumption, A accepts from (8, k;), for all j € N. Thus, the constructed
run is accepting if the infinite path (¢, kq) ... (¥, k1) ... is accepting. This is
the case since every state of a configuration in this path belongs to the set of
accepting states.

We consider the case (ii). In particular, A accepts from (3, k). Since there is
no h with k, < h and wy,, , € L*(r), A accepts from (r O- 1, k,,), by the defi-
nition of the transition function. Therefore, A accepts from (v, k,,) respecting

77

TRANSLATING LOGICS OVER WORDS TO AUTOMATA

the transition function. If we iterate this argumentation, we conclude that A
accepts from (¢, k;), for all j € [n] and we are done.

We consider the case (i7i). In particular, A accepts from (f,k,) and from
(v, k). Thus, A accepts from (¢, k,) respecting the transition function. If
we iterate this argumentation, we conclude that A accepts from (¢, k;), for all
j € [n] and we are done. The case for 1) = a T" § is similar.

Eventually 1-Wayness We show that the automaton A is eventually 1-way.
For a RE r and a state s in A, or A’ we define Sub’(s&o—»>aU” 3) := Sub(aU"3).
Similarly, we define Sub’ for the all other states ¢ € QT U Q~. Furthermore,
let Q := {q € Sub(¢) | ¢ is of the form aS" § or a T" }.

For defining the partitioning of the state set (), we need the following func-
tion that assigns weights to states.

2|Sub(q)] if ¢ € Sub() \ Q,
weight(q) — 2|Sub(q)| :L 1 ?f qe Su+b(<p) NnaQ,

2|Sub(a U")| ifqge@

2|Sub(aU")| +1 ifqge @ .

Let n := 2|Q| + 1. Let (Q;)i<n be a partitioning of @, where for i < [n], we
define Q; := {q | weight(q) = i}.

Let p,g € Q, D CD,d € D, and a € ¥ such that (q,d) € dp(p,a). It suffices
to show the following claim: if (weight(p) is even and d < 0) or (weight(p) is
odd and d > 0) then weight(q) < weight(p).

Consider the case p € Sub(p) \ Q. We have that weight(p) is even. Assume
d < 0. By the definition of the transition function, d # —1. It follows that
q € Sub(p) and hence weight(q) < weight(p).

Consider the case p € Sub(p) N Q. We have that weight(p) is odd. Assume
d > 0. By the definition of the transition function, d # 1. It follows that
q € Sub(p) and hence weight(q) < weight(p).

Consider the case p € Q*. We have that weight(p) is even. Assume d < 0.
By the definition of the transition function, d # —1. It follows that ¢ € Sub(p)
and hence weight(q) < weight(p).

Consider the case p € Q~. We have that weight(p) is odd. Assume d > 0.
By the definition of the transition function, d # 1. It follows that ¢ € Sub(p)
and hence weight(q) < weight(p). -

78

4.3. TRANSLATIONS FOR EXTENSIONS OF PSL

Using our alternation-elimination scheme and the complementation con-
structions from Section 4.1, we obtain the following corollary.

Corollary 4.32 For every PRLTL formula in positive normal form of size n,
there is a language-equivalent INBA of size 20 1ogn) 0

We remark that we can translate PRLTL formulas without any E or A opera-
tor, say PRLTL™ formulas, into a 2APA with just two parities, or equivalently,
into a 2ABA. So, we obtain the following corollary.

Corollary 4.33 For every PRLTL™ formula in positive normal form of size n
and having m propositions, there is a language-equivalent INBA of size O(2™ -
3"). If the formula has no past operators then the size is in O(3"). O

79

Chapter 5

Translating Logics over Nested
Words to Automata

In this chapter, we present translations from various classes of alternating
automata over nested words to nested-word automata. We obtain these trans-
lations from our alternation-elimination scheme by providing complementation
constructions for the corresponding classes of existential automata over nested
words. We use these alternation-elimination constructions in turn to translate
various temporal logics over nested words to nested-word automata.

We proceed as follows. In Section 5.1, we present complementation con-
structions for different classes of existential automata over nested words. In
Section 5.2, we present several logics over nested words and show how to trans-
late these logics into nested-word automata using instances of our alternation-
elimination scheme.

5.1 Complementation Constructions

In this section, we present several novel constructions for complementing the
languages of existential automata over nested words. The constructions trans-
late various classes of existential automata into nested-word automata. Ta-
ble 5.1 depicts the blow-ups of these constructions, where n is the size of the
existential automaton and k its index. Furthermore, it references the theorems,
where these constructions are given. For instance, we present a complemen-
tation construction that translates an eventually 1-way very weak existential
co-Biichi automaton over nested words into a nested-word automaton of size
O(2%'n). This construction is given in Theorem 5.5. In the following sections,
we write D := {—2,—1,0, 1,2} for the set of directions in a nested word.

81

TRANSLATING LOGICS OVER NESTED WORDS TO AUTOMATA

V2ECA 2ECA 2EPA
1-way O(an) O(Sn) 2(’)(nklog n)
Theorem 5.6 Theorem 5.3 Theorem 5.15
eventually 0(22"n) O(2m3™) 9O(nklogn)
1-way Theorem 5.5 Theorem 5.2 Theorem 5.15
2-way 20(n%) 90(n?) 90((nk)?)

Theorem 5.16

Theorem 5.16

Theorem 5.16

Table 5.1: Sizes of NWAs obtained by the complementation constructions.

5.1.1 Complementing co-Biichi Automata

In this section, we translate an eventually 1-way existential co-Biichi automa-
ton A into a nested-word automaton B that accepts the complement of L™ (A).
We start this construction with a characterization of nested words that are not
accepted by a given eventually 1-way 2ECA.

Lemma 5.1 Let A= (Q, 3,8, qr, F) be an eventually 1-way 2ECA and (w, ~)
a nested word in X¥. We have (w,~) ¢ L™ (A) if and only if there are words
R € (29)% and S € (29\F)“ such that the following conditions hold.

Before presenting the proof, we give an intuition for the constraints of the
lemma. The conditions (1) and (2) ensure that the word R represents all runs
(qo, ho)(q1, h1) - .. of the existential automaton A on the given input (w,~),
i.e., Ry, contains g;, for all i« € N. The conditions (3) to (5) on the words
R and S ensure that all the runs are rejecting. Recall that a nested word is
rejected if it is not accepted by a finite run and every infinite run visits a state
in F infinitely often. Condition (3) ensures that there is no finite accepting
run. All the infinite runs are rejecting if the word R can be split into infinitely

82

5.1. COMPLEMENTATION CONSTRUCTIONS

many nonempty segments such that each run of the existential automaton that
starts at the beginning of a segment will visit a state in F' before reaching the
end of the segment. The conditions (4) and (5) on the word S ensure the
existence of such a splitting. In particular, the ks from condition (5) mark the
end positions of the segments in the splitting.

PrROOF We first prove the only if direction. Assume (w,~>) ¢ L™ (A), i.e.,
every run of A on (w,~») visits a state in F' infinitely often.

For the constructions in this proof, we use the following definitions. A word
(G0, ho) - - - (Gn, h) € (QxN)*is a run segment if for all ¢ € [n], thereisad € D
such that (h;, hiy1) € ~»4 and (gi11,d) € Op,(¢i, w;). The run segment is initial
if (qo, ho) = (q1,0). The run segment is F'-avoiding if ¢; ¢ F, for all i < n.

We construct a word R € (2%)* that satisfies the conditions (1) and (2). For
1 € N, we define R; as

{¢, € Q| there is an initial run segment (qo, ho) - . . (gn, hyn) With h,, =i}.

That is, R; contains all states that can be reached by an initial run segment
of A on (w,~) that ends with its read-only head at position i. By definition,
R satisfies the conditions (1) and (2).

Condition (3) is also fulfilled since otherwise there is an initial run segment
(qo, ho) - - - (Gn, hy), where tt occurs in dp, (g, wp,). However, this means that
A accepts (w, ~), which contradicts the assumption (w,~+) ¢ L™ (A).

Now, we define a word S € (29\") that satisfies the conditions (4)-(5). Let
b € {0,1}* be an infinite word such the bit b, = 0 if and only if £ € N is a
sync position. In the following, we define S inductively. For convenience, let
Sy :=0and by = 0. Let m € NU{—1} such that S,, = 0 and b,, = 0.
For every m, we define the word 7™ € (Q x N)¥ as the set of F-avoiding run
segments that start in R,y \ F. For brevity, we just write 7" instead of T™.
Formally, for i < m, we define T} := () and for ¢ > m, we define

T; .= {qx € Q | there is an F-avoiding run segment (qo, ho) - - . (qx, hx)
with qo € Riny1,ho =m+ 1, and hy = i}.

Next, we show that there is a position n > m such that 7,, =) and b,, = 0.
Intuitively, every run segment that starts in R,, 1 \ F' and visits positions after
n, (a) visits position n because of condition b, = 0, and (b) visits an F-state
before it reaches position n because of condition T,, = (). Let n be the smallest

83

TRANSLATING LOGICS OVER NESTED WORDS TO AUTOMATA

position after m such that T,, = () and b, = 0. We argue that the position n
exists. For the sake of contradiction, assume that this n does not exist.

We first show that the b sequence has value 0 at infinitely many positions.
Formally, for every position 7 > m, there is a position j > ¢ such that b; = 0.
Consider a position ¢ > m. If b; = 0, we are done. Otherwise, let h be the
least matched call position such that its matching return position k is greater
than 7. Since edges in ~~5 do not cross, we have b, = 0.

Now, we consider the following graph. The vertices are elements of {(q,i) €
Q xN|ieN,qeT;, and b; = 0}. This set is infinite since by assumption,
there are infinitely many positions i € N, where b; = 0 and T; # (). There is
an edge from (¢, h) to (¢, h’) if the automaton 4 can move from configuration
(q,h) to (¢',h'), i.e., there is a direction d € D such that (h,h') € ~; and
(¢',d) € 0p, (g, wp). Note that each node has only finitely many successors.
Furthermore, every node is reachable by some node in the finite set {(q, m+1) |
q € Ty} By Konig’s Lemma, the graph contains an infinite path. Note
that for each tuple (¢, h) in that path, we have ¢ ¢ F. Thus, there is an
accepting infinite run of A on (w,~). This contradicts the assumption that
(w,~) & L™(A).

For the positions ¢ € N with m < i < n, we define S; :=T;.

By the definition of S, condition (5) is fulfilled. The sequence S also fulfills
condition (4). This proof is similar to the proof from above that shows that R
fulfills condition (2).

Now, we prove the if direction. Assume that there are words R € (29)“ and
S € (29\)« that satisfy conditions (1)-(5).

For the sake of contradiction, assume there is an accepting run r of A on
(w,~). We make a case distinction. Suppose that r is finite and has the
form (qo, ho)(q1, h1) - .. (gn, hn) € (Q x N)*| for some n € N. Note that the
conditions (1) and (2) ensure that ¢; € Ry, for all i < n. Since r ends in
the configuration (g, hy), the constant tt occurs in dp, (gn,ws,). We obtain
a contradiction to condition (3).

Suppose that r := (qo, ho)(q1,h1) ... € (Q x N)“ is infinite. Note that the
conditions (1) and (2) ensure that ¢; € Ry,, for all ¢ € N. Since A is eventually
l-way and r is accepting, there is an index k£ € N such that for all ¢« > £, we
have ¢; ¢ F and (h;, hi+1) € ~»4 with d € {1,2}. By condition (5), there is a
breakpoint at position m > hy with S, = 0 and S,, 11 = Ryy1 \ F. Moreover,
there is no (i, j) € ~» such that i <m and j > m. It follows that r must visit

84

5.1. COMPLEMENTATION CONSTRUCTIONS

this breakpoint, i.e., there is an index [such that h; = m and thus, ¢ € R,,.
By condition (5), the position m is not a matched call. Hence, hj11 = h; + 1.
It follows that ¢ 11 € Siia-

Now, we show that there cannot be a further breakpoint after position m,
which contradicts condition (5). Assume there is a breakpoint at position
n > m with S, = 0 and S,;; = R,11 \ F. By condition (4), the fact that
Qis1 € Sm1, and the fact that there is no (i,7) € ~»9 such that ¢ < n and
j > mn, the run r must visit S,,, i.e., there is an index [’ such that hy = n and
qr € S,. However, this contradicts the fact that S,, is empty. n

Theorem 5.2 For every eventually 1-way 2ECA A with n states, there is
an NWA B with O(2"3") states and O(2"3"™) stack symbols that accepts the
complement of L™ (A). O

Before presenting the proof, we give an overview on the construction of the
automaton B. Let A = (Q,EA],& qr, F') be an eventually 1-way 2ECA. The
automaton B guesses the words R € (29) and S € (29\F)* from Lemma 5.1
and locally checks that the conditions (1)—(4) hold. The construction is similar
to the 2-way subset construction in Theorem 2.6. Besides, the automaton B
additionally uses its stack to check the conditions for non-local moves of A.

Let us elaborate on the construction for checking condition (5). The con-
struction extends the 2-way breakpoint construction presented in Theorem 4.2.
The automaton B guesses a sequence b € {0,1}* and checks that for every
k € N, the bit by is 0 if and only if k£ is a sync position. For the check, the
automaton B uses a bit in its states and a bit in its stack symbols. Initially,
the bit in the state is assigned to 0. For every call position, B guesses whether
the call is matched or not. In case the call is not matched, B pushes the special
symbol pending on the stack. The automaton is not allowed to pop the symbol
pending later on. In case the call is matched, the bit in the current state is
stored on the stack and then assigned to 1. If the matched return is reached
the bit in the state is restored from the stack. By using the bit sequence b and
the breakpoint construction, B ensures that condition (5) holds.

PrROOF Let A = (Q, S, 68, q1, F') be an eventually 1-way 2ECA. The proof is

structured as follows. We first formally define the NWA B. Then, we prove
the correctness of the construction.

85

TRANSLATING LOGICS OVER NESTED WORDS TO AUTOMATA

Construction We define the NWA B as (P, 0, %, n, pr, G), where P, O, and
GG are defined as follows.

o P =0 := (29 x 29\ x 29 x {0,1}) U {p;}. A state can be a tuple
or the initial state p;. Consider the case where the automaton is in
state (X, Y, X', z) and processes the ith input letter of (w,~+). Then, X
and Y correspond to the guessed sets R; and S; of the words R and 5,
respectively. The component X’ corresponds to the guessed sets R;.1 of
the word R. The component z corresponds to the bit b; of the guessed
word b.

o G :=29 x {(} x 292 x {0}. That is, at infinitely many positions i € N,
bZ:OandSZ:@

For brevity, we use pattern matching in the definition of the transition func-
tion. For instance, we write n((R_1,S_1, Ro,b),a) > (R, So, R1,1) meaning
n((R-1,5-1, Ro,b),a) > (R, Sy, R1,b'), where the following three conditions
hold: Rj = Ry and I/ = 1. For clarity, we write pending to denote the state p;.

First, we define the transitions from the initial state p;. Let a € 5.

e For an internal position, we have n;(pr,a) > (Ro, Ro \ F, R1,0) iff the
following conditions hold. Let D := {0, 1}.

1. We have q; € R,.
2. For all d € D, we have §%(Ry,a) C Ry.
3. For all p € Ry, we have) £ dp(p, a).

e For a call position, we have n.(pr,a) > ((Ro,Ro \ F, Ry,1),(Ro, Ry \
F, R,,0)) iff the following conditions hold. Let D := {0, 1, 2}.

1. We have q; € Ry.
2. For all d € D, we have §%(Ry,a) C Ry.
3. For all p € Ry, we have) £ dp(p, a).

Furthermore, 7n.(pr,a) > ((x,0), pending) iff n;(pr,a) > (z,b), for some
be {0,1} and x € (29 x 2@\F")2,

e For a return position, we have 7,(py, 0,a) contains (Rg, So, Ry, 0) iff we
have n;(pr,a) 3 (Ro, So, R1,0), where o € OU{ L} is some stack symbol.

Now, we define the transitions from states in P\ {p;}. Let a € .

86

5.1. COMPLEMENTATION CONSTRUCTIONS

For an internal position, the transition function ;(R_1,5_1, Ro,b), a)
contains (Rg, So, R1,S1,b) iff the following conditions hold. Let D :=
{~1,0,1}.

1. For all d € D, we have 6%(Ry,a) C Ry.

2. For all p € Ry, we have () £ dp(p, a).

3. For all d € {0,1}, we have 04(S_1,a) \ F C S_144.

4. 1S 1 =0 and b =0 then Sy = Ry \ F.

For a call position, the transition function 7.((R_1,5_1, Ro,b),a) con-
tains ((Ro, So, R1,1), (Ro, So, Ra, b)) iff the following conditions hold. Let
D:=1{-1,0,1,2}.

1. For all d € D, we have 6%,(Ry,a) C Ry.

2. For all p € Ry, we have) £ dp(p, a).

3. For all d € {0,1,2}, we have 64(S_1,a) \ F C S_1,q4.

4. 1S 1 =0 and b =0 then Sy = Ry \ F.

Furthermore, n.(p,a) > ((x,0), pending) iff n;(p,a) > (x,b), for some
be{0,1}.
For a return position, we have

nr((R—la S—l) R07 b)a (R—Qa S—Qa ROa C)a a’) > (R()) SO) Rla C)

iff the following conditions hold. Let D be the set {—2,—1,0,1}.

1. For all d € D, we have 6%,(Ry,a) C Ry.

2. For all p € Ry, we have) £ dp(p, a).

3. For all d € {0,1}, we have 04(S_1,a) \ F C S_1,4.
4. 1S 1 =0 and b =0 then Sy = Ry \ F.

Furthermore, we have n,(p, L,a) = n;(p,a), for p € P. Note that there
is no transition if the symbol pending is on the stack.

Correctness It remains to show that L™(B) = £« \ L™ (A).

First, we prove L™ (B) C £\ L™ (A). Assume that B accepts (w,~+) by
the run r := (po,00)(p1,01) ... € (P x O)“. We show that there are words
R € (29)% and S € (29\F)% that fulfill the conditions (1)—(5) of Lemma 5.1.

We construct the words R and S. By the definition of the transition function,
po = pr and for all i« > 0, each p; is a tuple of the from (A;, B;,C;,b;) €
(29 x 29\ x 29 x {0,1}). Define R; := A;;; and S; := B;,4, for all i € N.

87

TRANSLATING LOGICS OVER NESTED WORDS TO AUTOMATA

We show that the words R and S satisfy the conditions (1)—(5). By defini-
tion, conditions (1) and (3) are fulfilled. We show that condition (2) is fulfilled.
Let d € D with (7, j) € ~»4. We make a case distinction.

(a) Consider the case, where i = 0. Let D := D;. If ¢ is an internal,
a return or a pending call position then we have n;(pr,wy) > p1. We have
6% (A1, we) € A; and hence, 0% (R, wy) € Ry. We also have d5(A;, wy) C
Ay since C) = Ay. So, dh(Rg,wy) € Ry. If 7 is a matched call position
then we have n.(pr,wo) 2 (p1,01). By the same arguments as above, we
infer that §%(Ro,wo) C Ry, for d € {0,1}. We have §%(A;,wy) € A; and
hence, 0% (Ro,wo) C Ry. Let (A}, By, C1,V)) denote the tuple o;. We have
6% (A1, wo) C Aj1q since j is the matching return position of i and C] = A; 4.
So, 0% (R, wo) C R;.

(b) The proof for the case, where i > 0 is similar.

The proof that condition (4) is fulfilled is analogous.

We show that condition (5) is fulfilled. Since G occurs infinitely often, there
are infinitely many ¢ > 0 such that B; =) and b; = 0. Note that by, = 0 if
and only if for all (i,j) € ~»9, if i < k then j < k. Since r is a run, B; = () and
b; = 0 implies that B; 11 = R;41 \ F, for every ¢ > 0. It follows that (5) holds.

Now, we prove L™(B) D ¥¢\ L™(A). Assume (w,~) ¢ L™ (A). Then,
there are words R € (29)% and S € (29\")* that fulfill the conditions (1)-(5)
of Lemma 5.1. For convenience, we define the word b € {0, 1}, where b, = 0
if and only if £ € N is a sync position. Without lost of generality, we assume
that there is no position ¢ € N such that S; = S;;; = 0 and b; = 0. In other
words, every S; is filled up as soon as every non-pending call with position
7 <1 is matched before or at position 7. For more details, see the construction
of S in the proof of Lemma 5.1.

We construct an accepting run r := (po, 09)(p1,01) ... € (P x O)¥ of B on
(w,~>). Let py := pr and for all i > 0, we define p; := (R;_1, Si—1, Ri, bi_1)-
Next, we define the symbols that are pushed on the stack at call positions. For
every pending call position i, we define 0;,; := pending. For every (i, j) € ~v,
we define 0,41 := (R;, S, Rj, b;).

In the following, we show that r is an accepting run. We show that for all
t € N, there is a transition in B from r; to ;11 when reading the letter w;. First,
there is a transition from ry to r; when reading the letter wy. Consider the case,
where 0 is an internal or return position. By definition of ry, the automaton
is in state py, reads wy and goes to state (R, Sp, R1,0). By definition of R

88

5.1. COMPLEMENTATION CONSTRUCTIONS

and S, all conditions for this transition are fulfilled. Consider the case, where
(0,7) € ~=9, for some j € N. By definition of ry, the automaton is in state py,
reads wy and goes to state p; = (Rp, So, R1,1) and pushes 0, = (Ry, So, R;,0)
on the stack. By definition of R and S, all conditions for this transition are
fulfilled. Finally, consider the case, where 0 is a pending call position. By
definition of ry, the automaton is in state p;, reads wy and goes to state
(Ro, So, R1, 1) and pushes pending on the stack. By definition of R and S, all
conditions for this transition are fulfilled. The proof that there is a transition
from r; to ;11 when reading the letter w;, for any ¢ > 0, is analogous.

By condition (5) and the remark at the beginning of the proof, states in G
occur infinitely often. So, B accepts (w,~). -

Now, consider the case where the existential co-Biichi automaton whose
language has to be complemented is 1-way. In this case, we can simplify
condition (2) of Lemma 5.1 since the automaton does not move its read-only
head backwards. The following requirement must hold.

(2') For all (i,7) € ~»4 with d > 0, we have 0f (R;, w;) C R;.

From this observation, we directly obtain the following theorem as a special
case of Theorem 5.2.

Theorem 5.3 For every 1ECA A with n states, there is an NWA B with
O(3") states and O(3™) stack symbols that accepts the complement of L™ (A).q

PROOF Let A = (Q, 5,4, qr, F') be an 1ECA. In a nutshell, the construction
from Theorem 5.2 consists of three parts: a 2-way subset construction, a con-
struction for guessing the sync positions, and a construction to check that all
runs of A fulfill the co-Biichi acceptance condition. The construction of the
NWA B follows the same line except for one part. The 2-way subset construc-
tion is replaced by the standard 1-way subset construction.

We formally define the NWA A as (P,0,%,n,pr, G), where P, O, p;, and
G are defined as follows.

o P:=0:=(29%29x{0,1})U{p;} is the set of states and stack symbols,
where p; denotes a pending state.

e p;r:= ({qr},0,0) is the initial state.

o GG :=29 x () x {0} is the set of accepting states.

89

TRANSLATING LOGICS OVER NESTED WORDS TO AUTOMATA

Next, we define the transition function. Let Ro, Ry € 2 Sy, 51 € 29\ F,
be{0,1}, and a € X.

e For an internal position, we have 7;(Ry, So,b),a) > (Ry,Si,b) iff the
following conditions hold. Let D := {0,1}

1. For all d € D, we have 6%,(Ry,a) C Ry.

2. For all p € Ry, we have 0 £ dp(p, a).

3. For all d € {0,1}, we have §%(Sy,a) \ F C Sj.
4. If Sy =0 and b =0 then S; = Ry \ F.

e For a call position, we have n.((Ro, So,b),a) 3 ((R1,S1,1), (Ra, S2, b)) iff
the following conditions hold. Let D :={0,1,2}

1. For all d € D, we have 6%,(Ry,a) C Ry.

2. For all p € Ry, we have () £ dp(p, a).

3. For all d € {0,1,2}, we have §%(Sp,a) \ F C Sg.
4. If Sy =0 and b =0 then S; = Ry \ F.

Furthermore, n.(p,a) > ((x,0), pending) iff n;(p,a) > (x,b), for some
be{0,1}.

e For a return position, we have 7,((Ro, So, 1), (Ro, So0,b),a) > (R, S1,b)
iff the following conditions hold. Let D := {0, 1}

1. For all d € D, we have 6%,(Ry,a) C Ry.

2. For all p € Ry, we have () £ dp(p, a).

3. For all d € {0, 1}, we have 0%(Sp,a) \ F C Sq.
4. If Sy =0 and b =0 then S; = Ry \ F.

Furthermore, we have n,(p, L,a) = n;(p,a), for p € P. Note that there
is no transition if the symbol pending is on the stack.

The proof for L™(A) = ¢\ L™(B) is along the lines as the proof of
Theorem 5.2. We omit it. n

5.1.2 Complementing Very-Weak Automata

In the following, we optimize our complementation construction for restricted
classes of eventually 1-way 2ECAs. When A is very weak, we can characterize
the language of nested words that is not accepted by A by similar conditions

90

5.1. COMPLEMENTATION CONSTRUCTIONS

as those given in Lemma 5.1. The existence of the S sequence together with
condition (4) is not required anymore and condition (5) is replaced by the
requirement that no run of the existential automaton gets trapped in some non-
accepting state. We make this observation explicit, in the following lemma.

Lemma 5.4 Let A := (Q, 3.6, qr, F) be an eventually 1-way very weak 2ECA
and (w,~) € ¥, We have (w,~) ¢ L™(A) if and only if there is a word
R € (29) such that the conditions (1)~(3) of Lemma 5.1 and the following
condition hold.

(5) There is no state ¢ € Q \ F' and no sequence of positions h € N¥ such
that ¢ € Ry, and for all © € N, there is a direction d > 0 such that
(hi, his1) € ~q and q € 0f (q,wp,). o

i

ProOOF We first prove the only if direction. Assume (w,~>) ¢ L™ (A). As
shown in Lemma 5.1, we construct the sequence R € (29)“ that satisfies the
conditions (1)—(3).

It remains to show that R fulfills condition (5). Let ¢ € @\ F and h €
N¢ such that ¢ € Rp, and for all i € N, there is a direction d € {1,2}
such that (h;, hit1) € ~»q and ¢ € 0 (q,w,). Since ¢ € Ry,, there is an
initial run segment (qo, ko) - - - (Gn, kn) with (Gn, kn) = (q,ho). It follows that
(qo, ko) - - - (qn, kn)(q, h1)(g, h2) . . . is an accepting run of A on (w, ~~). However,
this contradicts the assumption (w,~>) ¢ L™ (A).

In the remainder of the proof, we show the if direction. Assume there is an
R € (29)“ such that the conditions (1)—(3) and (5’) hold. We show that any
run of A on (w,~-) is rejecting. As shown in Lemma 5.1, we infer from the
conditions (1)—(3) that every finite run must be rejecting.

Now, consider an infinite run r := (qo, ho)(q1, k1) ... € (@ x N)*. For the
sake of contradiction, assume r is accepting. First, note that the conditions (1)
and (2) ensure that ¢; € Ry, for all i € N. Second, note that there is an index
m € N and a state ¢ € Q \ F such that ¢; = ¢, for all i > m since A is very
weak. Third, note that there is an index n > m such that for all © > n, we have
h; < h;y1 since A is eventually 1-way. However, the existence of the infinite
sequence (¢n, hpn)(Gns1, Png1) - - . contradicts condition (5'). -

91

TRANSLATING LOGICS OVER NESTED WORDS TO AUTOMATA

Theorem 5.5 For every eventually 1-way V2ECA A with n states, there is
an NWA B with O(22"n) states and O(2?"n) stack symbols that accepts the
complement of L™ (A). 0

PrOOF Let A = (Q,%,6,qr, F) be an eventually 1-way V2ECA. We define
E:=(Q\F)U{x}.

The proof is similar to the proof for Theorem 5.2. We construct an NWA
B that guesses the word R € (29)* from Lemma 5.4 and locally checks the
conditions (1)—(3) and condition (5") with its acceptance condition.

Construction We formally define the NWA B := (P, S, %, n,p;,G) as fol-
lows.

e P:=5:=(29%x29x Ex{0,1}) U{pr}. The component in E is called
focus. 1t is used to find a state in @\ F' that can get trapped in a self-loop.

o (=29 x29 x {x} x {0}.

As in the proof of Theorem 5.2, we use pattern matching in the definition
of the transition function. Let < be a total ordering on the set F, where x* is
the greatest element. Furthermore, let next : E — E be a function that maps
the greatest element * to the smallest one and each of the other elements to
the next greater one. We also use the synonym pending := p;.

First, we define the transitions from the initial state p;. Let a € 5.

e For an internal position, we have n;(pr, a) > (Ro, Ry, *,0) iff the following
conditions hold. Let D :={0,1}.

1. We have q; € Ry.
2. For all d € D, we have §%(Ry,a) C Ry.
3. For all p € Ry, we have () £ dp(p, a).

e For a call position, we have n.(pr,a) 3 ((Ro, R, *,1), (Ro, R2, *,0)), iff
the following conditions hold. Let D := {0, 1, 2}.

1. We have q; € R,.
2. For all d € D, we have §%(Ry,a) C Ry.
3. For all p € Ry, we have () £ dp(p, a).

Further, n.(pr, a) 3 ((Ro, Ry, *,0), pending) iff n;(p;, a) > (Ro, Ry, *,0).

92

5.1. COMPLEMENTATION CONSTRUCTIONS

e For a return position, we have 7n,.(pr, s,a) > (Ro, R1,0) iff n;(pr,a) >
(Ro, R1,0), where s € SU{_L} is some stack symbol.

Second, we define the transitions from states in P\ {p;}. Let a € X.

e For an internal position, we have n;((R_1, Ro, S0, b),a) > (R, Ry, s1,0b) iff
the following conditions hold. Let D := {—1,0,1}.
1. For all d € D, we have §%(Ry,a) C Ry.
2. For all p € Ry, we have 0 [~ dp(p, a).
S0 if sp € Ry NdL(sp,a) or (s =x*and b= 1),

3. S1 =
next(sp) otherwise.

e For a call position, the transition function 7.((R_1, Ry, So,b), a) contains
((Ro, Ry, s1,1), (Ro, Ra, s2,b)) iff the following conditions hold. Let D :=
{~1,0,1,2}.

1. For all d € D, we have 6%(Ry,a) C Ry.
2. For all p € Ry, we have 0 £ dp(p, a).
3. For all d € {1, 2}, we have

. {30 if s € RoNd%(sp,a) or (sg=*and b= 1),
d pu—

next(sp) otherwise.

Furthermore, n.(p,a) > ((x,0), pending) iff n;(p,a) > (x,b), for some
be{0,1}.

e For a return position, we have n,((R_1, Ry, So, 1), (R_2, Ry, s(,b),a) >
(Ro, Ry, s1,b) iff the following conditions hold. Let D :={-2,—1,0,1}.

1. For all d € D, we have 6%,(Ry,a) C Ry.
2. For all p € Ry, we have) £ dp(p, a).
3. For s := min(so, s3), we have

s if s € RyNdh(s,a)or (s=xand b=1),
S1 =
next(s) otherwise.

For a pending return position, we have n,(p, L, a) := n;(p, a), for p € P.
Note that there is no transition if the symbol pending is on the stack.

93

TRANSLATING LOGICS OVER NESTED WORDS TO AUTOMATA

Correctness The correctness proof of the construction is along the same
lines as the correctness proof given in Theorem 5.2. We first prove that
L™(B) C 3¢\ L™(A). Let (w,~) € L™(B). Let r := (po, 50)(p1,51) ... €
(P x S)¥ be an accepting run of B of (w,~).

It suffices to construct a word R € (29)“ that fulfills the conditions (1)—(3)
and (5') of Lemma 5.4. By definition of the transition function, py = p; and for
all i > 0, each p; is a tuple of the form (A;, By, s;,b;) € P. Define R; := A;11,
for all 7 € N. By the same arguments as in the proof of Theorem 5.2, it follows
that R fulfills the conditions (1)—(3).

It remains to show that R satisfies condition (5). For the sake of contra-
diction, assume there is a state ¢ € @ \ F' and a sequence of positions h € N¥
such that ¢ € Ry, and for all 7 € N, there is a direction d > 0 such that
(his hit1) € ~q and g € 5]‘11»,” (¢, wn,).

We show that the automaton B will eventually recognize this sequence of
repeating gs with its third component of its states. We make this intuition
formal. Let m > hg be a sync position with s,, = *. Let n > m be the first
sync position after m with s, = %. Note that b,, = b, = 0. The positions
m and n exist since r is an accepting run. By the definition of the transition
function, it follows that for any position ¢ € N with m < i < n and s; < g,
there is a position j € N with ¢ < 7 < n such that s; = ¢. Note that s, is
the smallest element in F, by definition of the transition function. Therefore,
there is a £k € N with m < k < n such that s = ¢q. Let k be the largest
position such that m < k <n and s = q.

We show that such a k does not exist. We make a case distinction.

(a) There is some i € N such that h; = k. Since ¢; = ¢, we have ¢ € Ry.

() If h; is an internal, a pending call, or return position then h;y; = h; +1 and
q € R;,41. By definition of the transition function, we have sp,1 = ¢. That
contradicts the maximality of k.
() If h; is a non-pending call position. Then h;;; is the matching return posi-
tion. By definition of the transition function, we have s, , = ¢q. Furthermore,
we have b; = 1, for all h; < j < h;yq. It follows that k{1 < m since b, = 0.
However, the fact that h,;; > k contradicts the maximality of k.

(b) There is no ¢ € N such that h; = k. Let j € N such that h; < k and
hji1 > k. It follows that h; is a call with matching return h;;,. Moreover both
positions h; and hji; are between m and n. (i) If 55, = ¢ then by definition

of the transition function, we have s;,,, = ¢. This contradicts the maximality

94

5.1. COMPLEMENTATION CONSTRUCTIONS

of k.

(it) If s5, > q then s, > ¢, by definition of the transition function.

(ii7) If s, < q then by definition of the transition function, there is an index
[> 7 4 1 such that s;, = ¢ and Iy < n. This contradicts the maximality of k.

Now, we show that L™ (B) D 3¢\ L™(A). Assume (w,~) ¢ L™ (A). Let
R € (29)% be a word that fulfills the conditions (1)—(3) and (5). We construct
an accepting run of B on (w,~). The run r := (po, so)(p1, 1) ... € (P x S)¥
is defined as follows.

For defining the components of the run r, we need the following definitions.
Let b € {0,1}* be a word such that for every i € N, we have b; = 0 if and
only if ¢ is a sync position. Furthermore, we define the sequences u,v € E*
recursively. Let ug := % and vy := *. For ¢ € N, we define u;; and v;1 as
follows. Let D := D).

(a) If 7 is an internal, call, or pending-return position then

u; if u; € Ry N dh(us,w;) or (u; = % and b; = 1),
U; =
! next(u;) otherwise.
and
Uu; if u; € Ry N 6% (u;,w;) or (u; = % and b; = 1),
U; =
! next(u;) otherwise.

(b) If 7 is a non-pending return position with (j,i) € ~»,. Let m be the
minimum of u; and vj4.

{m it m e R; N} (m,w;) or (m =% and b; = 1),
Uit1 *= Vig1 =

next(m) otherwise.

We define pg := p; and for i > 0, we define p; := (R;_1, R, u;—1,b;—1). Next,
we define the symbols that are pushed on the stack at call positions. For every
pending call i € N, we define s;;; := pending. For every non-pending call
i € N with (4, j) € ~9, we define 5,41 := (R;, R;,v;,b;).

By construction, r is a run. In the following, we show that r is accepting.
Assume the opposite, i.e., G is not visited infinitely often. Note that each
nested word has infinitely many sync positions. Therefore, the automaton B
does not visit states of the form (R, R, *,1) with R, R’ € 29. It follows that

95

TRANSLATING LOGICS OVER NESTED WORDS TO AUTOMATA

the automaton B gets trapped in a non-F-state with its third component of its
states. That is, there is a state ¢ € @ \ F' and a sequence of positions h € N¥
such that ¢ € Ry, and for all i € N, there is a d > 0 such that (h;, hy1) € ~~4
and ¢ € 51%’% (¢, wp,). Thus, condition (5’) is violated. n

Now, consider the case where the existential very-weak co-Biichi automaton
whose language has to be complemented is 1-way. In this case, we can simplify
condition (2) of Lemma 5.4 by condition (2') from Section 5.1.1 since the
automaton does not move its read-only head backwards. We directly obtain
the following theorem as a special case of Theorem 5.5.

Theorem 5.6 For every VIECA A with n states, there is an NWA B with
O(2™n) states, O(2"n) stack symbols with L™ (B) = X\ L™ (A). 0

PrROOF Let A = (Q, 3,8, q1, F) be a VIECA. In a nutshell, the construction
from Theorem 5.5 consists of three parts: a 2-way subset construction, a con-
struction for guessing the sync positions, and a construction to check that
every run of A does not get trapped in an non-F-state. The construction
of the NWA B follows the same line except for one part. The 2-way subset
construction is replaced by the standard 1-way subset construction.

Formally, let F := (Q \ F) U{x}. Furthermore, consider a total ordering on
the set E and a function next : £ — FE that maps the greatest element * to
the smallest one and each of the other elements to the next greater one. We
define the NWA B := (P, S, %, n, pr, G) as follows.

o P:=5:=29x E x{0,1} U {pending}.
e p; = ({qr},*,0) is the initial state.
o G :=29 x {x} x {0}.
Now, we define the transition function. Let a € 3

e For an internal position, let D := {0,1}. We have n;((Ro, so,b),a) >
(Rq, s1,b) iff the following conditions hold.

1. For all d € D, we have Ry = 0%(Ry, a).
2. For all p € Ry, we have tt ¢ dp(p, a).
S0 if so € RNd}(so,a) or (sop=x* and b= 1)

3. S1 = .
next(sp) otherwise.

96

5.1. COMPLEMENTATION CONSTRUCTIONS

e For a call position, let D := {0, 1,2}. We have 1;((Ro, So,b),a) contains
((R1,51,1), (R2, s2,b)) iff the following conditions hold.
1. For all d € D, we have Ry = 04(Ry, a).

2. For all p € Ry, we have tt ¢ dp(p, a).
3. For all d € {1, 2}, we have

S0 if s € RoNd%(sp,a) or (sp=x*and b= 1)
Sqg =
a next(sg) otherwise.

Furthermore, n.(p,a) > ((x,0), pending) iff n;(p,a) > (x,b), for some
be {0,1}.

e For areturn position, let D := {0, 1}. We have ,((Ry, so, 1), (Ro, s,), a)
contains (R, s1,b) iff the following conditions hold.
1. For all d € D, we have Ry = 0%(Ry, a).

2. For all p € Ry, we have tt ¢ dp(p, a).
3. For s := min(so, s;), we have

s if s€ RyNdp(s,a) or (s==+and b=1)
S1 =
! next(s) otherwise.

For a pending return position, we have n,(p, L, a) := n;(p, a), for p € P.
Note that there is no transition if the symbol pending is on the stack.

The proof for L™(B) = % \ L™(A) is a special case of the proof given in
Theorem 5.5. [

5.1.3 Complementing Parity Automata

In this section, we present a construction to complement the nested-word lan-
guages of eventually 1-way 2EPAs. It is a generalization of Kupferman and
Vardi’s construction from [KV05]: (a) The given automaton operates over
nested words instead of just words. (b) The given automaton is not a 1-way
automaton but a 2-way automaton that is eventually 1-way.

Theorem 5.7 For an eventually 1-way 2EPA A with n states and index k,
there is an NWA B with 20(nklogn) stqtes, 20Mmklosn) stack symbols, and L™ (B)
equals ¥ \ L™ (A). O

97

TRANSLATING LOGICS OVER NESTED WORDS TO AUTOMATA

In the remainder of this section, we prove this theorem. For translating the
eventually 1-way 2EPA A into an NWA B with L™(B) = £\ L™ (A), we
start with the following preparatory steps.

(a) We increase the EPA’s parities by one to obtain a language-equivalent
eventually 1-way 2EcPA.

(b) We translate the eventually 1-way 2EcPA into its dual automaton, i.e.,
we exchange the Boolean connectives A and V and the Boolean constants
tt and ff in the transition functions of the 2EcPA. Furthermore, we in-
terpret the acceptance condition again as a parity acceptance condition.
In [MS87], Muller and Schupp show that the dual automaton accepts the
complement of the language of the original automaton.! That is, the dual
automaton is an eventually 1-way 2UPA. Note that every universal au-
tomaton is memoryless.

(c¢) Finally, we view the eventually 1-way 2UPA as an eventually 1-way alter-
nating 2ASA. Note that a parity acceptance condition is a special case of
a Streett acceptance condition and a universal automaton is a special case
of an alternating automaton.

In summary, the resulting 2ASA is memoryless, eventually 1-way, and accepts
the complement of L™ (A). Furthermore, the size and the index of the 2ASA
are constant in the size and index of the 2EPA.

In the remainder of the proof, we show how to translate an eventually 1-way
2ASA that accepts by memoryless runs into a language-equivalent NWA. The
outline of this translation is as follows. In step 1, we translate the eventually
1-way 2ASA into a language-equivalent eventually 1-way 2AGA that accepts
by memoryless and consistent runs (see definition below). For this translation,
we first show that an eventually 1-way 2ASA accepts a nested word if and only
if it has a so-called accepting Streett ranking (see definition below). Then, we
construct an eventually 1-way 2AGA that accepts a nested word if and only if
the given 2ASA has an accepting Streett ranking. In step 2, we translate the
2AGA into a language-equivalent NWA. We remark that both steps are along
the lines as Kupferman and Vardi’s construction in [KV05].

IThe result is proven for tree automata but canonically generalizes to automata over graphs.

98

5.1. COMPLEMENTATION CONSTRUCTIONS

Step 1: Streett Ranking In the following, let (w,~) € 3% be a nested
word and A = (Q, 5,68, q1, F') be an eventually 1-way 2ASA, where its accep-
tance condition F' has the form {(Cy, By), ..., (Ck_1, Bx—1)}. Furthermore, we
require that A is memoryless, i.e., LY(A) = M“(A).

Consider a memoryless run r : R — @ x N of A on (w,~>). We define a
directed graph G := (V, E') that represents this run with

Vi={ve® xN|v=r(z), for some z € R} and
E:={ecV xV|e=(r(x),r(zi)), for some z,zi € R and i € N}.

For P C @, we call (¢,h) € V a P-vertex if ¢ € P. The integer h is called
the head position of v. Obviously, if r is accepting then every infinite path
(qo, ho)(q1, h1) ... in G with (qo, ho) = (q7,0) fulfills the Streett acceptance
condition F, i.e., for all i € [k], either Inf(goqr...)NC; =0 or Inf(goqy ...) N
B; # 0.

Consider a function f : V — [2n]*. For i € [k], we denote the projection of
f on the ith component by f; : V' — [2n] and call it i-rank. The function f is
an Streett ranking for G if the following two conditions hold.

(i) For all v € V and ¢ € [k], if f;(v) is odd then v is not a C;-vertex.
(ii) For all (v,v") € FE and i € [k], either f;(v) > f;(v') or v is a B;-vertex.

For ¢ € [k], we say that the i-rank f; is accepting if every infinite path in
G either visits B;-vertices infinitely often or gets trapped in an odd rank.
Formally, f; is accepting if for every infinite path (qo, ho)(q1, k1) ... in G, either
Inf(goqy...) N B; # 0 or there is an n € N such that f;(¢,,h,) is odd and
fi(g;, hj) = fi(gn, hy), for all j > n. The Streett ranking f is accepting if each
i-rank f; is accepting, for every i € [k].

Lemma 5.8 FEvery infinite path in G fulfills the Streett acceptance condition
F if and only if there is an accepting Streett ranking for G. O

In the following, we prove this lemma. It suffices to only consider the case,
where & = 1. Obviously, by the definition of a Streett ranking, the lemma’s
statement generalizes then to any £ > 1. To increase readability, we assume
that F' is the singleton {(C, B)}.

The if direction is easy to see. Assume that there is an accepting Streett
ranking f for G. That is, every infinite path in G visits B-vertices infinitely

99

TRANSLATING LOGICS OVER NESTED WORDS TO AUTOMATA

often or gets trapped in an odd rank. By definition, this means, every infinite
path visits B-vertices infinitely often or eventually avoids visiting C-vertices.
Hence, every infinite path in G fulfills the Streett acceptance condition F'.

For proving the only if direction, assume that every infinite path in G ful-
fills the Streett acceptance condition, i.e., every infinite path visits B-vertices
infinitely often or eventually avoids visiting C-vertices. In the following, we
construct a Streett ranking for G and show that it is accepting.

Consider a subgraph G’ of G. We call a vertex v € V finite in G’ if only
finitely many vertices are reachable from v in G'. We call it C'-free in G’ if no
C-vertex is reachable from v in G'. We define an infinite sequence of subgraphs
Go,G1, G, ... of G, where the vertices V; and the edges FE; of a graph G, are
inductively defined as follows:

Vo=V and E;:=FE\{(v,v') € E|visa B-vertex}
and for 7 € N, we define

Voir1 := Vo \ {v | v is finite in Gy},
Eair1:= Egi N Va1 X Vg,

and
Voivo := Vaiy1 \ {v | v is C-free in Gy},
Esivo := Eoip1 N Vaipa X Vaiya.

Note that by removing edges from B-vertices in G, we obtain the graph Gy,
where every infinite path avoids B-vertices and eventually avoids visiting C-
vertices.

Lemma 5.9 For everyi € N, the graph Go;11 is empty or has a C-free vertex
from which an infinite path of C-free vertices starts. O

Proor Let i € N. Consider the graph G5;. We make a case distinction. If Gy;
is finite then G, is empty and we are done. Otherwise, if G; is infinite then
(211 is infinite. For the sake of contradiction, assume that there is no C-free
vertex in Gg;11. Note that every vertex in Gy 11 has at least one successor.
Consider some vertex vy in Gg;y1. Let v] be a successor of vy. Since v} is not
C-free, there is a C-vertex vy reachable from v]. Let v} be a successor of vs.
Since v is not C-free, there is a C-vertex vz reachable from v}. Let v5 be a

100

5.1. COMPLEMENTATION CONSTRUCTIONS

successor of vg. If we continue this way, we can construct an infinite path that
does not visit any B-vertex but visits C-vertices infinitely often. This path
corresponds to a rejecting path in GG, which contradicts the assumption that
every infinite path in G fulfills the Streett acceptance condition. n

In the next lemma, we show that we obtain an empty graph from G in 2n
steps by alternately removing infinite paths according to Lemma 5.9 and finite
vertices from G. Let H C N be the set of head position h such that h is not
strictly between a call position and its matching return position, i.e.,

H :={h € N | there are no i,j € N such that i <h < j and (i, j) € ~»2}.

Lemma 5.10 For every ¢ € N, either Go;11 is empty or there is a position
n € N such that for every h € H with h > n, we have |{(¢,h) | (¢,h) €

Vaira}| < {(q,h) | (g, k) € Vair1}]. o

PRrROOF If G944 is empty, we are done. Otherwise, consider an infinite path
T = (qo, ho)(q1,h1) - .. in Ga;41 that consists of only C-free vertices. This path
exists by Lemma 5.9. It suffices to show that for each h € H with h > hy,
there is a vertex (q,h) occurring in 7. This is obvious since A is eventually
1-way and cannot jump over the positions in H on infinite paths of its run. g

Corollary 5.11 Gy, is finite and G, 1 is empty. o

PROOF First, observe that H is infinite. Second, note that Gs, does not
contain any vertex (q, h) with h € H, since G contains at most n vertices with
head position h and from Lemma 5.10, it follows that for each i € [n], at least
one vertex in Gg; 1 with head position h gets removed.

Assume (g, j) is a vertex of Gg, with j ¢ H. Since H is infinite, there is a
head position h € H with h > j. Since A cannot jump over h, the vertex (g, 5)
can only have finitely many successors in GGg,,. Therefore, it is not a vertex of

G2n+1 . |

We define the Streett ranking f : V' — [2n] as follows and show that it is
accepting.

() 2i if v is finite in Gy,
V) =
2i+1 ifvis C-free in Go;yq.

101

TRANSLATING LOGICS OVER NESTED WORDS TO AUTOMATA

Obviously, f fulfills condition (i) of the definition of a Streett ranking. Con-
dition (ii) follows from the next lemma.

Lemma 5.12 For all vertices v,v" € V', we have f(v") < f(v) if v’ is reachable
from v without visiting a B-vertez. O

PrROOF By the definition of f, we have the following fact. A vertex is not in
G; anymore if it has been removed from G; before and hence, has rank j, for
i,7 € [2n] with j < i. Formally, for every © € V and i € [2n], if 0 ¢ G; then
f(v) <.

Assume that f(v) = i. We distinguish between three cases. (a) If v ¢ V;
then f(v") < f(v) by the fact from above. (b) Assume v' € V; and i is
even. Since v’ is reachable from v in G without visiting a B-vertex, it follows
that v’ is reachable from v in V;. Since v is finite, v is also finite. Hence,
f@) < f(v). (c) If v € V; and i is odd then v and v’ are C-free in V;, and
hence, /(1) < f(v). .

Finally, we show that the Streett ranking f is accepting.

Lemma 5.13 FEvery infinite path in G that does not visit B-vertices infinitely
often gets trapped in an odd rank. O

PROOF Let m = vyv; ... be an infinite path in G that avoids visiting B-vertices
infinitely often. According to Lemma 5.12, there must be a position k£ € N in
7 such that f(v,) = f(vg), for all m > k. We show that f(v;) is odd. By
the sake of contradiction, assume that f(vy) is even. Then, every vertex v in
the path that is reachable from vy is finite in Gs(,,). The path is infinite, and
therefore, vy, cannot be finite in G (,,). =

Step 2: Alternation Elimination We construct an eventually 1-way 2AGA
B and show that the automaton is language-equivalent to the eventually 1-
way 2ASA A. Furthermore, we show that B accepts by runs having a special
structure. This structure can be exploited in the alternation-elimination con-
struction to avoid an overall double-exponential blow-up when translating B
into a language-equivalent NWA.

We note that this special structure of runs of the 2ABA is observed by
Kupferman and Vardi in [KV05] when the authors remove alternation from
automata over words. Here, we make this property explicit and show that

102

5.1. COMPLEMENTATION CONSTRUCTIONS

it also holds for automata over nested words. Let) be a set of states and
k € N an index. We call a set P C Q x [2n]* consistent if and only if for
/

every two states (q,7),(¢,7") € P, if ¢ = ¢’ then r = 1. We call a tree
t: T — (Q x [2n]*) x N consistent if for every head position h € N, the set

{(q,r) | there is a node x € T with t(x) = ((¢,7), h)}

is consistent. For a node x € T, we call the last component of t(x) head
position.

Theorem 5.14 For a memoryless eventually 1-way 2ASA A with n states and
index k, there is an eventually 1-way 2AGA B with O(n*) states and L™ (B) =
L™ (A). Furthermore, B accepts by memoryless and consistent runs. o

PROOF Let A = (Q, .6, qr, {(Co, Bo), -, (Cx-1, Bk,l)}) be an eventually 1-
way 2ASA. Intuitively, the eventually 1-way 2AGA B that we construct from
A works as follows. For a nested word (w,~~) € 3¢ it simulates a run of A
on (w,~+) and annotates the run by a guessed Streett ranking. That is, each
configuration of the run is annotated by a rank in [2n]*. Then, the automaton
B checks that the guessed Streett ranking fulfills the conditions (i) and (ii).

We need the following definition for constructing the check of condition (ii).
For a state ¢ € Q and two ranks r,r’ € N¥ we write ' <, r if and only if for
every i € [k], we either have r; < r; or ¢ € B;. Intuitively, the automaton may
move to all possible successor states whose rank is lower. For a given formula
0 € BY(Q x D), astate ¢ € Q and a rank r € [2n]*, we define rel,(p,) as the
positive Boolean formula that we obtain by replacing each proposition (p,d)
in ¢ by the disjunction \/,,. .((p,7"),d).

Now, we formally define B := (Q x [2n]*, 3,0, pr. {Fo,..., Fx_1}).
e The initial state is p; := (qr,2n, ..., 2n).

e Forge @, re2n)*, DCD, and a € 33, we define

rel,(0p(q,a),r) if ¢ & C; or r; is even, for all ¢ € [k],
no((a,7) a):{ 0ol a)r) Ha ¢ 4

ff otherwise,

That is, B checks condition (i) and then moves to states with lower ranks.

103

TRANSLATING LOGICS OVER NESTED WORDS TO AUTOMATA

e For i € [k], the acceptance set F; contains the state (¢,) if and only if
q € B; or r; is odd. That is, every path in a run either visits B; infinitely
often or its ith’s component gets trapped in an odd rank.

It remains to prove that B accepts the same nested-word language as A.
We first show that L™ (B) C L™(A). Let (w,~) € L™(B) and let ¢’ :
T — (Q x [2n]*) x N be an accepting run of B on (w,~~). Consider the tree
t:T — Q x N with t(x) := (¢, h), for every z € T with ¢/(x) = (¢,4,h). That
is, t is the projection of ' on @ and N. The tree ¢ is a run of A on (w, ~~) since
the transitions of B just annotate the transitions of A by ranks. We show that
t is accepting. Since t’ is accepting, every path in t' visits some (¢,), where
for every component r; of r, for i € [k]|, we either have ¢ € B; or r; is odd.
Let i € [k]. Consider an infinite path in ¢’ that does not visit any state from
B;. By definition of the acceptance condition, the path gets trapped in the set
{(q,7) € Q x [2n]¥ | i € [k] and 7; is odd}. Thus, by definition of 7, the path
eventually avoids visiting states from C;. Consequently, the projection of the
path on () is an accepting path in r. Hence, r is accepting.

Now, we prove that L™ (B) C L™ (A). Let (w,~) € L™(A) and ¢t : T —
@ x N be an accepting memoryless run of A on the nested word (w,~). Let
G = (V, E) be the directed graph obtained from ¢. Furthermore, let f : V —
[2n]* be an accepting Streett ranking for G. We define a tree t' : T — (Q x
[2n]*) x N and show that it is an accepting run of B on (w,~). Let t/(¢) := p;
and for a node x € T\ {e} with t(z) = (¢, h), we define t'(z) := ((¢, f(g, h)), h).
We show that ¢’ is a run. By definition of t’, we have t'(¢) = p;. Consider a node
x € T with t/(z) = ((¢,7), h). By conditions (i) and (ii) of the Streett ranking
f, the set of labels of the successors of node z fulfill the transition function
np((q,7),wy), for D C D. Finally, by Lemma 5.13, every infinite path in G
that does not visit B;-vertices infinitely often, gets trapped in an odd i-rank,
for every ¢ € [k]. Hence, by definition of the generalized Biichi acceptance
condition {Fp, ..., Fy_1}, every infinite path in ¢ is accepting. Furthermore,
note that ¢ is a memoryless run and for every two configurations (¢, h) and
(¢',h') in t with (¢, h) = (¢, 1), we have f(q,h) = f(¢’,}'). By definition of
t', it follows that ¢’ is also memoryless. Hence, B accepts by memoryless runs.

It remains to show that the run ' is consistent. By definition of ¢’, for every
x € T with t/(z) = ((¢,7), h), r is the rank of vertex (¢, h) in G. Since every
vertex in GG has a unique rank, ¢’ is consistent. n

104

5.1. COMPLEMENTATION CONSTRUCTIONS

Theorem 5.15 For a memoryless eventually 1-way 2ESA A with n states and
index k, there is an NWA B with 2°k1987) states and 2°k1°87) stack symbols,
and L™ (B) = L™ (A). 0

PRrROOF First, we use Theorem 5.14 for translating the eventually 1-way 2ASA
A= (Q, 5,6, q1, F) into a language-equivalent eventually 1-way 2AGA B of
size n* that accepts by memoryless and consistent runs. Next, we use our
alternation-elimination scheme to translate B into a language-equivalent NWA
C. That is, we have to complement an eventually 1-way 2EcGA of size n*.

Recall Theorem 5.2 for complementing eventually 1-way 2ECAs. We adapt
this construction for complementing an eventually 1-way 2EcGA R as follows.
Let {Fy, ..., Fx_1} be the acceptance condition of R. We add a counter i € [k]
to each state of the resulting NWA C. The NWA C sequentially checks that
there is no run of R that gets trapped in some F;. Along the lines of the
construction of Theorem 5.2, the NWA C guesses infinitely many sync positions
i0,11, ... € N of the given input word (w,~-) such that for every such sync
position i;, for j € N, and every run of R that starts in a state that can be
reached by reading the prefix wy._;, 41, visits the set Q\ F{; mod x) before reaching
position ¢, in the input word. This is accomplished by changing the transition
function from non-initial states in the construction of Theorem 5.2. Namely,
condition (4) is changed to: whenever Sy = () and b = 0 then S; = Ry \ F;
and ¢/ = (i + 1) mod k, where i is the current counter value and ¢’ is the next
counter value.

Note that the NWA C has size O(k2%""). We now show how to restrict the
state space of the NWA C. Let R be the refuter automaton for B according to
our scheme. Consider a nested word (w, ~») € > and a memoryless consistent
run t T — (Q x [2n]*) x N of B on (w,~). We can represent this run by
a nested word (s,~>) € f“’, where I' := Q) — 2(@x[2n]")xD Now, consider the
nested word (w X s,~), where w x s € (X x I')* with (w x s)(i) := (w(i), s(1)),
for all i € N, and a tree t' : 7" — (Q x [2n]*) x N that represents all runs of
the refuter automaton R on (w X s,~-), i.e., each path of the tree represents
a run of the existential automaton R. We show that this tree is consistent.
Intuitively, the refuter automaton follows a path in the run given by (s, ~).
So, the tree that represents all runs of the refuter automaton is only a sub-tree
of the run ¢. Pick an arbitrary head position h € N. We have to show that the
set

S":={t'(x) | ¥'(z) has head position h, for some node x € T}

105

TRANSLATING LOGICS OVER NESTED WORDS TO AUTOMATA

is consistent. We show that S’ is a subset of the set
S := {t(z) | t(x) has head position h, for some node x € T"},

which is consistent by assumption. Let (¢,h) € S’. Then there is a prefix
(qo, ho)(qi, h1) - . (quy hy) € ((Q x [2n]%) x N)* of a run of R on a prefix of
(w, ~) such that (g, h,) = (g, h). Since, ¢;+1 € s;(¢;), for all i € [n], there is
a node in r that is labeled by (¢, h). Hence, (¢,h) € S.

Since t’ is consistent, we can optimize the construction of the NWA C that
complements the language of the automaton R. Recall that the state space
and space of the stack alphabet of C is P = (2(@*[2n") x 2(@x[2n]") 5 9(@x[2n]*) 5
2(@x20") 5 £0,1} x [k]) U {q;}. Consider a state (R, S, R',S",b,i) € P. The
R and R’ component correspond to labels in the tree ¢’ having the same head
position h and h + 1, for some h € N, respectively. Hence, both sets are
consistent. Since S C R and S’ C R/, we can restrict tuples in P to tuples
whose components are consistent. That is, instead of using P, we can restrict
the states space and the space of the stack alphabet to

P :={q}U{(R,S,R,S" b,i)| SCR,S"CR be{0,1},ic€ [k
and R, S, R', S’ are consistent}.

An upper bound on the cardinality of P’ is as follows. Consider a state
(R,S,R', S’ b,i) € P'. We can represent (R, S, R',S") by a quadruple of func-
tions in Q — [2n]*. Therefore, the size of P is O(k(([2n]k)*)") = 20(nklen) g

Complementing 2-way Existential Streett Automata By combining
constructions—along the same lines as in [Var88, Var98]—we can generalize
the above construction to 2EPAs. The first ingredient is Shepherdson’s trans-
lation [Sheb9, Var89] of a 2-way nondeterministic finite word automaton into a
deterministic one, which generalizes to automata over nested words with only
minor modifications. The second ingredient is a complementation construction
for nondeterministic 1-way automata. Intuitively, the first construction elimi-
nates the bi-directionality of runs of any 2-way word automaton. The second
construction is then used to complement the resulting 1-way automaton. In
our setting, we combine the generalized version of Shepherdson’s translation
with the complementation construction in Theorem 5.7. This combination
results in the following theorem.

106

5.2. FrRoM TEMPORAL LOGICS TO AUTOMATA

Theorem 5.16 For a 1EPA A with n states and index k, there is an NWA
B with 2°W%)*) states, 2000*) stack symbols, and L™(B) = £\ L™(A). o

5.2 From Temporal Logics to Automata

In this section, we discuss an application of our alternation-elimination scheme.
We show how to translate temporal logics over nested words into nondetermin-
istic nested-word automata. In particular, we identify a flaw in a translation
from the logic NWTL to NWAs given in [AABT08] and provide a correct trans-
lation that is based on our automata constructions. Then, we introduce the
new logic NWPSL based on the IEEE standard PSL. We show that NWPSL
is more expressive than NWTL whereas the worst-case sizes of the NWAs ob-
tained from the translations from the logics NWPSL and NWTL differ only
by a small constant in the exponent. Finally, we present a new translation
from the logic uNWTL [Boz07] to NWAs. For a relevant subclass of uNWTL
that contains formulas without past operators, our construction improves over
Bozelli’s translation: the worst-case sizes of the resulting NWAs are bound
by 20(mklogn) ingtead of 20(%)*) where n is the size of the formula and & the
alternation depth of the fix-point quantifiers.

For the remainder of this section, let P denote a finite, non-empty set of
propositions and let ¥ := 27 denote the finite alphabet over P. Furthermore,
for a Boolean formula o € B(P U {call, ret}) and a set M C %, we say that M
satisfies the formula ¢ if and only if either (a) M € ¥. and M U {call} | ¢,
(b) M € ¥, and M U {ret} =, or (¢) M € 3; and M = o.

5.2.1 Nested Word Temporal Logic

Nested Word Temporal Logic (NWTL) [AAB*08] is an extension of the well-
known linear-time temporal logic (LTL) that is used for describing properties
over nested words. In [AAB08], the authors show that NWTL has the same
expressive power as first-order logic over nested words. Furthermore, they give
a translation of NWTL formulas into NWAs to obtain decision procedures
for this logic. We remark that this translation has a flaw. Consider the for-
mula F7ff that is equivalent to the formula ff. The NWA constructed from
Fff accepts the nested word (((@ @ 0))“,~»), where ~ := {(i,i +2) € N? |
3 divides i}. We present an alternative translation from NWTL to NWA

107

TRANSLATING LOGICS OVER NESTED WORDS TO AUTOMATA

s N SN o s N

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Figure 5.1: Paths in a nested word

based on our alternation-elimination scheme and the novel complementation
construction from the Section 5.1.

In the following, we define the logic NWTL. The syntax of an NWTL formula
over P is given by the following grammar.

pu=bl 0|V |0p|0p|0.p|O0up|eU’p|pST¢

where b € B(P U {call,ret}). We use the syntactic abbreviation int := —call A
—ret.

We interpret NWTL formulas over nested words over Y. For the definition
of the fix-point operators, we need the following notion. A summary path
is the shortest path between two positions. Formally, a summary path in a
nested word (w, ~) is a finite sequence i . . .7, € N* of positions such that for
all j <k, we have

, r if (ij,7) € ~»9 and r < iy,
i1 = 9 . .
! i; +1 otherwise.

For instance, the path 1,2,4,5,6,10,11,12,14,15 in Figure 5.1 is a summary
path.

For a nested word (w,~») € > and a position i € N in w, we define the
semantics of NWTL as follows.

(w,~,1) Eb iff w; satisfies b

(wawaw): P iff (w?waw i?é 2

(i i) @V (w,.4) = o (w0, 1) = 9

(w,~,1) = Op it (w,~,i+1)E=¢

(w,~,1) = Op iff ¢>0and (w,~,i—1)F¢

(w,~,7) = 0up i (i,)) € v and (w,~»,j) = ¢, for some j € N

(w,~,1) = O,p iff (j,1) € ~»3 and (w,~>, j) = ¢, for some j € N

(w,~,i) E U7 iff there is a summary path [y...[; such that
lo="1,(w,~,l;) Ev,and Vj < k: (w,~.,[;) E¢

(w,~,i) EpS7 iff there is a summary path [y...[; such that

lp = iy (w,~, o) | ¥, and Vj > 02 (w,~, 1)) |= ¢,

108

5.2. FrRoM TEMPORAL LOGICS TO AUTOMATA

where b € B(P U {call, ret}). We denote the language of an NWTL formula ¢
by an((,@) = {(w’ W) S | (w’ W’O)): 90}‘

We use the following abbreviations to translate any NWTL formula into
positive normal form, i.e., negations occur only in front of propositional-logic
formulas. For the two NWTL formulas ¢ and v, we define the following
operators.

e Oy := —0-yp. That is, Oy is equivalent to ~Ott V @y, which intuitively
means that either there is no previous position, or ¢ holds at the previous
position.

e O,p == =0,~¢. That is, O,¢ is equivalent to —O,tt V O,¢p, which
intuitively means that either the current position is not a call with a
matching return position, or at the matching return position ¢ holds.

e ©R7 1 = —p U7 —). The operator R? corresponds to the release oper-
ator R known from LTL. While R is interpreted over linear paths, R? is
interpreted over summary paths.

o 0 T7%¢ :=—-pS? —p. The operator T? corresponds to the past operator
T known from LTL.

For the translation of NWTL formulas into automata, we additionally need
to substitute the fix-point connectives by operators that are defined over special
kinds of summary paths. A summary-up path is a summary path, where every
call may only be followed by its matched return. Formally, we call a summary
path p € N* a summary-up path if for all i < |p|, if p; is a call then p;
is its matched return. For instance, the path 1,2,4 5,6 in Figure 5.1 is a
summary-up path. A summary-down path is a summary path, where a return
position can only be reached from its matching call position. Formally, we call
a summary path p € N* a summary-down path if for all ¢ < |p|, if p;11 is a
return position then p; is its matching call position. For instance, the path
5,6,10,11,12,14,15 in Figure 5.1 is a summary-down path. For a nested word

109

TRANSLATING LOGICS OVER NESTED WORDS TO AUTOMATA

(w,~) € 3% and a position i € N in w, we define

(w,~,1) @ UMy iff there is a summary-up path Iy .. .1I; such that

lo=1,(w,~,l;) E¢, and Vj < k: (w,~,1;) = ¢,
(w,~,1) = @ U iff there is a summary-down path [y . .. [such that

lo=1,(w,~,l;) E¢, and Vj < k: (w,~,1;) = ¢,
(w,~,1) ¢ S°Ty iff there is a summary-up path Iy ...l such that

Iy =1, (w,~, 1) E ¢, and Vj > 0: (w,~,1;) E ¢,
(w,~,1) = @ S7 iff there is a summary-down path [y . ..[such that

e = i, (w,~,1o) |, and Vj > 02 (w,~, 1)) = .

Note that the equivalences a U 8 = aUT (U 3) and a'S° B = aS°T (a5t 3)
hold. We define the abbreviations a R* f := —=(=a U* =f) and o T* § =
—(—a S* =), for x € {o1,0l}. A normalized NWTL formula is a formula of
the form

p u=DbloAp|eVe|0p|0p|0p|0¢p|0,p|0up|0up|Bup|
pU 0| oR 0| 0S @[T ¢,
where b € B(P U {call,ret}) and * € {oc1,0]}. Note that a translation
of an NWTL formula into an equivalent normalized NWTL formula might
exponentially increase the size of the formula. However, the number of sub-
formulas remains linear in the size of the input formula.

The following theorem states that we can translate every NWTL formula
into a language-equivalent NWA.

Theorem 5.17 FEvery normalized NWTL formula of size n can be translated
into a language-equivalent 2ABA of size O(n) and into a language-equivalent

NWA of size O(2%"n). D

PRrROOF Let ¢ be a normalized NWTL formula. We first start with some

preparatory work. Note that the following equivalences hold for any normalized

NWTL formulas « and 3, see also [AABT08] for more details.
aU"TﬁEB\/(a/\OH
aU™*B=pV(an0O,
aSTB=BV (anO,
aStp=pvV (a/\@u

a U7 B)) V (e A =call A O(a U7T B))
a U™ B)) V (a A -ret AO(a U7 B))
aS7B)) v

)V

aS™ 3

(a A —call A ©(a ST B))
(A —ret A®(a ST B))

110

5.2. FrRoM TEMPORAL LOGICS TO AUTOMATA

aR7TB=BA(aVO,(aRTB)) A (aVcalvO(aRTB))
aR™*B=BA(aVO,(aR™B)) A (aVretVvO(aR™TB))
aTTB=BA(aVO,(aTB)) A (aVcalVvo(aT!a))
aT*B=BA (VO (aT*B))A(aVretVvO(aT3))

)

Let ¢ = 1 be one of the equations from above. We call Unf(y) := ¢ the

unfolding of the formula .

Construction We define the 2ABA A, and show that this automaton is
very weak, eventually 1-way, and language-equivalent to L™ ().

Let A, == (Q, 32,0, ¢, F), where Q := Sub() is the set of sub-formulas of ¢
and ' := {aR* 8 € Sub(p) | x € {ot,0l}} is the set of release sub-formulas of
. The transition function is inductively defined over the formula structure.
Let a € 3 be a letter and D C D. For b € B(P U {call, ret}) N Sub(y), we have

5p(b, a) tt if a satisfies b,
9 a = .
b ff