
From Temporal Logics to Automata via

Alternation Elimination

Christian Dax

2010





DISS. ETH NO. 19200

From Temporal Logics to Automata via
Alternation Elimination

A dissertation submitted to
ETH ZURICH
for the degree of
Doctor of Sciences

presented by
CHRISTIAN NIKOLAUS DAX

Dipl.-Inf., Ludwig-Maximilians-Universität München
born on December, 9th 1979

citizen of Germany

accepted on the recommendation of
Prof. David Basin, examiner

Prof. Kousha Etessami, co-examiner
Dr. Felix Klaedtke, co-examiner

2010





Acknowledgements

First, I would like to thank my supervisor David Basin for providing me such a
great research environment and for all his scientific advices and moral support.
I also would like to thank my supervisor Felix Klaedtke who guided me

through my PhD. He encouraged me to pursue my own ideas, helped me to
develop them, and taught me how to present them on a high scientific level.
Thank you for all your precious time and invaluable support!
Further, I would like to thank my co-examiner Kousha Etessami for help-

ful comments on my thesis. I also would like to thank Martin Lange who
introduced me to the world of automata and temporal logics. He provided
the key idea of the succinctness result between the logics PSL and PPSL pre-
sented in this thesis. I also like to thank Nir Piterman for the fruitful email
correspondence that helped me to find the topic of my thesis.
I also like to thank all the information and system security group members

for the pleasant and productive working atmosphere. I especially thank my
office mates Matus Harvan and Mario Frank for their good company, Cas
Cremers for all the scientific challenges at and outside of ETH, Alexander
Pretschner for asking for the practical relevance of my work, Stefan Leue,
Christoph Sprenger, Matthias Schmalz, Patrick Schaller, Simon Meier, Lukas
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Abstract

The automata-based approach for automated verification of finite-state sys-
tems and recursive state machines, i.e., finite-state systems with subprograms
that can be called recursively, requires efficient translations from specification
languages like LTL, PSL, and NWTL to nondeterministic automata. Since
formulas of those specification languages can directly be translated into alter-
nating automata, it suffices to solve the problem of removing alternation.
In this thesis, we present a construction scheme that reduces alternation

elimination to the problem of complementing so-called existential automata.
Existential automata are nondeterministic automata that inspect only a single
path in their inputs. The presented alternation-elimination constructions are
instances of our scheme. We obtain these instances by revisiting state-of-the-
art complementation constructions and by providing novel ones for restricted
classes of 1-way and 2-way existential automata. With these instances at hand,
we correct, simplify, improve, and generalize previously proposed translations
from temporal logics to nondeterministic automata. From some instances we
obtain novel translations.
Moreover, we extend various temporal logics with past operators and utilize

our new alternation-elimination constructions to obtain translations to non-
deterministic automata. For instance, we extend the IEEE standard PSL by
past operators. We call this logic PPSL and show that the additional cost
for translating PPSL formulas to nondeterministic automata is rather small
whereas PPSL is exponentially more succinct than PSL.
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Zusammenfassung

Beim automatenbasierten Ansatz für das automatische Verifizieren von end-
lichen Zustandssystemen und von so genannten endlichen rekursiven Zustands-
systemen, was endliche Zustandssysteme mit zusätzlichen rekursiv aufrufbaren
Unterprogramme sind, werden effiziente Übersetzungen von Spezifikationsspra-
chen wie LTL, PSL und NWTL in nichtdeterministische Automaten benötigt.
Da Formeln dieser Spezifikationssprachen direkt in alternierende Automaten
übersetzt werden können, reicht es das Problem der Alternierungselimination
für alternierende Automaten zu lösen.
In dieser Arbeit stellen wir ein Konstruktionsschema vor, dass das Problem

der Alternierungselimination auf das Problem der Komplementierung eines ex-
istentiellen Automaten reduziert. Ein existentieller Automat is ein nichtdeter-
ministischer Automat, der nur einen einzigen Pfad in der Eingabe betrachtet.
Die vorgestellten Konstruktionen zur Alternierungselimination sind Instanzen
des Schemas. Wir erhalten diese Instanzen, indem wir neuste Komplemen-
tierungskonstruktionen untersuchen und zudem neue Komplementierungskon-
struktionen für Unterklassen von 1-wege und 2-wege Automaten einführen.
Mit Hilfe dieser Instanzen korrigieren, vereinfachen, verbessern und general-
isieren wir bereits bekannte Übersetzungen von temporalen Logiken in nicht-
deterministische Automaten. Zudem erhalten wir aus einigen dieser Instanzen
neue Übersetzungen.
Des weiteren erweitern wir verschiedene Logiken mit Vergangenheitsopera-

toren und nutzen die vorgestellten Konstruktionen zur Alternierungselimina-
tion, um Übersetzungen in nichtdeterministische Automaten zu erhalten. Ein
Beispiel ist der IEEE Standard PSL, den wir mit Vergangenheitsoperatoren
erweitern. Für die neue Logik, die wir PPSL nennen, zeigen wir, dass die
zusätzlichen Kosten für die Übersetzung in nichtdeterministische Automaten
relativ klein sind. Im Gegensatz dazu steht, dass PPSL Eigenschaften expo-
nentiell kürzer beschreiben kann als PSL.
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Chapter 1

Introduction

1.1 Scope, Motivation, and Results

Information and communication technology (ICT) systems play an important
part in our daily lives. We use these systems, for instance, as banking applica-
tions, mobile phones, transportation systems, traffic control and alert systems,
or medical applications. Since the significance of ICT systems increase steadily
and we become more and more dependent on them, the reliability of these sys-
tems also becomes increasingly important. System errors may have substantial
financial consequences. A bug in Intel’s Pentium II floating-point division unit
caused a loss of about 475 million US dollars. The opening of Denver’s airport
was delayed for nine months at a loss of about 1.1 million US dollars due to a
software error in the automated baggage handling system. If a failure occurs
in a safety-critical system, the cost can become unacceptably high. In 1996,
the maiden flight of Ariane 5 rocket ended in a firework about forty seconds
after its lift-off because of a malfunction in the control software. Similar bugs
have been found in the Mars Pathfinder and the airplanes of the Airbus family.
Between 1985 and 1987, six cancer patients died after receiving overdoses of
radiation due to miscalculation of the control part of the radiation therapy
machine Therac-25. For more examples, we refer to [BK08].

To ensure that critical ICT systems behave correctly, developers try to find
failures through simulation or testing. However, systems tend to be large and
too complex to be thoroughly tested. Subtle design errors resulting in un-
expected behavior might be missed. In formal verification, we represent the
system and its specification by mathematical models and prove that every
system execution fulfills the given specification. Clarke and Emerson [CE82]
and independently, Queille and Sifakis [QS82] introduced the model-checking
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M AM

S AS

AM×S

Check for emptiness

Figure 1.1: Automata-Theoretic Approach to Model Checking

problem that asks for an algorithm that automatically checks whether a math-
ematical model M of a system fulfills a specification S, see [CGP99]. In the
context of automatic verification, the model M usually represents all possible
system computations that are described by sequences of system configurations,
and the specification S describes the allowed configuration sequences, which we
refer to as good computations. We sayM fulfills S if every system computation
is also a good computation.

In [VW86], Vardi and Wolper introduce an automata-theoretic approach for
solving the model checking problem. This approach assumes that the represen-
tation of the system behavior M and the representation of bad computations
S can both be translated into nondeterministic finite-state automata AM and
AS, respectively. Then, we can solve the model checking problem in two steps.
First, we construct the product automaton AM×S that represents the intersec-
tion of all system computations and all bad computations. Second, we check
whether the set of computations represented by AM×S is empty. This is the
case if and only if M fulfills S. Figure 1.1 illustrates this approach. Since
AM and AS are nondeterministic automata, computing the intersection and
checking for emptiness is efficiently solvable, see [Var07] for more details.

Model checking plays an important role in automatic verification and is
increasingly used in hardware industry. Here, a system behavior is repre-
sented by a labeled transition system M and a specification is described by
a temporal logic formula S. Several different approaches have been intro-
duced to encode a labeled transition system M in a concise and intuitive
way [Hol04,McM92, CGP99, BK08]. Since labeled transition systems can be
viewed as nondeterministic automata, we can directly extract the representa-
tion AM from those encodings. For specifying desired behavior, several tem-
poral logics have been proposed that vary in their expressiveness, succinctness,
and implementability [AFF+02]. A logic is succinct if we can easily read and
write relevant specifications with this logic. For instance, adding past opera-
tors may not make a logic more expressive but may increase its succinctness.

2



1.1. Scope, Motivation, and Results

S

formula

A′
S

automaton
alternating

AS

automaton
nondeterministic

Figure 1.2: Translation from Logics to Automata

With implementability of a logic, we measure the cost for obtaining the non-
deterministic automaton AS from a formula in the logic. The scope of this
thesis is the design of temporal logics and the translations from these logics to
nondeterministic automata. In the following, we expand on this part.

From Logics to Automata When translating temporal logics to nonde-
terministic automata, alternating automata play an essential role. They serve
as a kind of glue between declarative specification languages like the logics
LTL [Pnu77] and PSL [Psl05] and nondeterministic automata. Translations
of declarative specification languages into alternating automata are usually
rather direct and easy to establish due to the rich combinatorial structure
of alternating automata, see for instance [VW07, EJ91, Boz07]. Translating
an alternating automaton into a nondeterministic automaton remains to be a
purely combinatorial problem. Figure 1.2 illustrates this two-step approach.
This two-step approach [Var98] is introduced by Vardi and has the following

advantages over translations that do use alternating automata as intermediate
step: (i) The two-step approach splits a direct translation from a formula into
a nondeterministic automaton in two independent translations. The construc-
tions of these two parts are easier to understand, to establish their correctness,
and to implement than the direct construction. (ii) Alternating automata rep-
resent temporal logic formulas in an abstract and uniform way. Thus, alterna-
tion elimination is a mathematically elegant way to formalize translations from
logics to nondeterministic automata. (iii) Another benefit is the fact that we
can reuse alternation-elimination constructions, their correctness proofs, and
their implementations for different logics. (iv) We can optimize an alternating
automaton before we translate it into a nondeterministic automaton. Sev-
eral automata-based techniques are applicable like simulation-based reduction
techniques [GO01,EWS05,FW05,FW06].
Different classes of alternating automata are used for these kinds of trans-

lations depending on the expressive power of the specification language. For
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Introduction

instance, for temporal logics like LTL, CaRet [AEM04], NWLTL [AAB+08],
or CTL∗ [EH86], restricted classes of alternating automata suffice, namely au-
tomata that are very weak [Roh97,LT00]. For LTL, these restrictions have been
exploited to obtain efficient translators to nondeterministic Büchi automata,
see [GO01, Fri03]. For fragments of the standardized property specification
language PSL [Psl05] or RXPath [CGLV09], one uses alternating Büchi au-
tomata [BFH05]. For logics with explicit fixpoint operators like the linear-time
µ-calculus µLTL [BB89, Var88], µNWTL [Boz07], or the µ-calculus [Koz82],
one uses alternating parity automata. If the temporal specification language
has future and past operators, one uses 2-way alternating automata instead
of 1-way alternating automata, see for instance [Var98,KPV01,GO03,Boz07,
DKL09,CGLV09].

Alternation-Elimination Scheme In this thesis, we present a general con-
struction scheme for translating restricted classes of alternating automata into
language-equivalent nondeterministic automata. In a nutshell, the general
construction scheme shows that the problem of translating an alternating au-
tomaton into a language-equivalent nondeterministic automaton reduces to the
problem of complementing a nondeterministic automaton whose acceptance
condition is negated. We also show that the nondeterministic automaton that
needs to be complemented inherits structural and semantic properties of the
given alternating automaton. Using complementation constructions that ex-
ploit the inherited properties, we directly obtain instances of the scheme for
various automata classes.

Furthermore, we instantiate the construction scheme to different classes of
alternating automata. Some of the constructions that we obtain share similar
technical details with previously proposed constructions such as, e.g., the ones
described in [MH84,KV01,GO01,Boz07]. Some of them even produce the same
nondeterministic Büchi automata modulo minor technical details. However,
recasting these known constructions in such a way that they become instances
of a general construction scheme increases their accessibility. In particular,
correctness proofs become modular and simpler. Another benefit of utilizing
the construction scheme is that differences and similarities between the trans-
lations for the different classes of alternating automata become apparent. We
also present novel alternation-elimination constructions. These constructions
are instances of our construction scheme and utilize new complementation
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constructions for eventually 1-way nondeterministic co-Büchi automata. The
novel technique used in these constructions enables new translations from im-
portant logics with past operators to nondeterministic automata whose worst-
case sizes are surprisingly small. That is, compared to the worst-case sizes of
the nondeterministic automata that we obtain from logics without past op-
erators, their worst-sizes differ only by a small constant in the exponent. In
the following paragraphs, we expand on two applications of these alternation-
elimination constructions in more detail.

Past Operators for PSL One important application of the alternation-
elimination constructions is the translation from PSL [Psl05] with past oper-
ators to nondeterministic Büchi automata (NBA). PSL is an IEEE standard
and it is increasingly used in the hardware industry to formally express, vali-
date, and verify requirements of circuit designs. The linear-time core of PSL1

extends LTL with semi-extended regular expressions (SEREs), which are es-
sentially regular expressions with an additional operator for expressing the
intersection of languages. The prominence of PSL in industry over other spec-
ification languages like LTL [Pnu77], µLTL [BB89], and ETL [Wol83] is based
on the fact that PSL balances well the competing needs of a specification lan-
guage such as expressiveness, succinctness, and implementability [AFF+02]:
PSL can describe all ω-regular properties, specifications are fairly easy to read
and write in PSL in a concise way, and relevant verification problems such as
model checking for PSL are automatically solvable in practice.

Although temporal operators that refer to the past have been found nat-
ural and useful when expressing temporal properties [LPZ85,KPV01,Mar03,
CRS04, CRST06, SL10], the PSL standard supports temporal past operators
only in a restrictive way. We define the logic PPSL as an extension of PSL
with past operators. We also present examples that support the claim that
the new past operators are natural and useful for describing properties that
refers to the past. Moreover, we show that PPSL allows one to describe ω-
regular languages more concisely than PSL. In particular, we define a family
of ω-regular languages and prove that these languages can be described in
PPSL exponentially more succinctly than in PSL. As a byproduct, we obtain
a doubly exponential succinctness gap between PPSL and LTL, for the LTL-

1 For the ease of exposition and similar to [BDBF+05, CRST06, PZ06], we identify PSL
with its core. The core is unclocked and its semantics is only defined over infinite words.
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expressible properties, that is, the ω-regular languages that are star-free (see,
for example, [DG07]).

Taking all these benefits into account, one might ask for the reason why the
PSL standard only supports past operators in a restrictive way. The design
choice has already been made for the predecessor ForSpec [AFF+02] of PSL
and has been justified by the argument that handling “arbitrary mixing of past
and future operators results in nonnegligible implementation cost” [AFF+02].
One reason for this belief is that the best construction for translating PPSL to
NBAs translates a formula of size n into an NBA with at most O(24·2

4n+22n)
states and is based on an alternation-elimination construction for 2-way Büchi
automata, see [KPV01]. In contrast, the standard automata constructions for
PSL translates a formula of size n into an NBA of size O(32

2n

) [BDBF+05,
BFH05].

In this thesis, we argue against this assumed additional implementation
cost. In particular, one of our results shows that a restricted class of 2-way
automata suffices and the additional cost for this class is small. We present a
construction for PPSL that translates a formula of size n with m propositional
variables into an NBA of size O(2m · 32

2n

). The difference between the upper
bounds of the sizes of the resulting automata for PSL and PPSL is surpris-
ingly small. Moreover, in symbolic model checkers like SMV [McM92] and its
successors VIS [BHSV+96], RuleBase [BBDE+97], CadenceSMV [McM99], and
NuSMV [CCG+02], the NBA is represented as labeled transition system. Here,
we can adjust our construction to obtain the bound O(32

2n

), which matches
exactly the bound that we obtain when translating PSL formulas into transi-
tion systems. That means that from a theoretical point of view, there is no
reason for not supporting and using past operators.

We also show similar results for the logics DLTL [HT99] and RLTL [LS07]
that are extensions of PSL. RLTL is of particular interest since every ω-regular
expression can be translated into an RLTL formula of the same size, whereas
the additional cost for the construction to NBAs is only a small factor in the
exponent. We extend these logics with past operators, provide new translations
constructions to NBAs, and show that the additional implementation costs are
again small.

Nested-Word Logics Another application of our alternation-elimination
construction scheme is the translation from the logic NWTL [AAB+08] to non-

6



1.1. Scope, Motivation, and Results

deterministic nested-word automata (NWA). Nested words extend words by
adding nested edges to the linearly ordered sequence of positions in the word.
These nested edges connect call positions with return positions and are not
allowed to cross. The data of many applications can be represented by nested
words. For instance, in natural language processing, a sentence is viewed
as a linear sequence of words while the underlying syntactic categories—the
building blocks of sentences and the units of grammatical analysis—impart a
nesting structure. In software verification, nested words model the control flow
of sequential computations in typical programming languages with nested, and
potentially recursive, invocations of program modules such as procedure calls.
Another example is the representation of hierarchical data like XML docu-
ments as streams, that is, when viewing such a document as a linear sequence
of characters, along with hierarchically nested edges connecting opening and
closing tags.
For describing nested-word languages, Alur and Madhusudan use visibly-

pushdown automata [AM04], a computational model whose access on the stack
is input-driven. That is, a visibly-pushdown automaton or equivalently, nested-
word automaton [AM09], is a finite automaton that accesses its stack only if
the automaton processes a letter at a call or return position. In [AM04,AM09],
Alur and Madhusudan show that this restricted class of pushdown automata
enjoy similar properties as finite-state word automata such as being closed
under union, intersection, and complementation. Furthermore, they provide
efficient algorithms for deciding the membership, emptiness, and language in-
clusion of languages that are represented by nested-word automata. Due to
these closure properties of NWAs, they call the class of languages definable by
NWAs regular.
Apart from representing nested-word languages by computational models

such as nested-word automata, the use of temporal logics to describe nested-
word languages in a declarative way is often more natural. In [AEM04], Alur,
Etessami, and Madhusudan introduce CaRet, a temporal logic over nested
words that extends the well-known PLTL by operators such as abstract next
or abstract until that are not only interpreted along the linear paths of a
nested-word but also along paths that are implied by the additional nesting
structure. The definition of CaRet is motivated by practice, namely, to describe
requirements for recursive state machines. However, the theoretical question
remains open whether CaRet is expressively complete with respect to first-
order logic over nested word structures. Further development on the logic

7
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CaRet led to the variants NWTL, NWTL+, and CaRet+W in [AAB+08]. The
authors show that all three logics are as expressively complete with respect to
first-order logic over nested words. In [Boz07], Bozzelli presents the temporal
logic µNWLTL, an extension of the well-known µLTL. She shows that this
logic can describe all regular properties over nested words, and hence, the
logic is even more expressive than any first-order logic over nested words. In
subsequent papers, she also investigates variants of the logic CaRet [Boz08,
Boz09]. For all of these logics, the authors provide translations to nested-word
automata. So they reduce decision problems such as satisfiability and model
checking to combinatorial problems for nested-word automata. However, the
translations are non-trivial and hardly share any construction ideas.

We follow Vardi’s two-step approach for translating logics over nested words
to nested-word automata. We use alternating automata as an intermediate
step and then apply our alternation-elimination scheme by providing several
novel complementation constructions. Apart from the benefits we gain by using
Vardi’s two-step-approach, we also clarify and simplify many constructions. In
particular, one of our constructions fixes a flaw in the translation from NWTL
to NWAs given in [AAB+08]. Another construction provides an alternative,
more modular translation from µNWLTL to NWAs than Bozelli’s translation
given in [Boz07]. Due to the modularity, our construction is simpler, easier
to prove, and to implement. Moreover, for formulas with a restricted use of
past operators, we can easily exchange the alternation-elimination part and
obtain translations whose resulting NWAs are smaller than those obtained
from Bozzelli’s construction. Finally, we present a novel logic NWPSL that is
more expressive than NWTL and show how to utilize our novel translations
to easily obtain language-equivalent NWAs.

1.2 Contributions

We see our main contributions of this thesis as follows.

First, we improve and generalize Vardi’s approach to eliminating alternation
and formalize it as an alternation-elimination scheme. Our scheme is not
only restricted to tree automata as in Vardi’s case but also applies to graph
automata and, in particular, to nested-word automata. Furthermore, instances
of our scheme produce smaller worst-case results by an exponential factor in
the size of the input.

8



1.3. Overview

Second, we provide new constructions for complementing restricted classes of
2-way automata. Together with the scheme, we obtain alternation-elimination
constructions for several restricted classes of 2-way automata over words and
nested words. The classes in consideration are important in the sense that
they correspond to common temporal logics with past operators known from
the literature and used in practice.

Third, we extend various temporal logics from the literature with past op-
erators and present translations into alternating automata. Furthermore, we
discuss the matter of succinctness that past operators provide. In particular,
we extend the IEEE standardized temporal-logic PSL with past operators and
show that—in contrary to a widely held belief—model checking systems with
respect to this logic remains feasible. We also show that PSL with past op-
erators is exponentially more succinct than PSL. We show similar results for
the logics DLTL and RLTL. Moreover, we provide an alternative, mathemat-
ically clean way to translate NWTL into nested-word automata, correcting
an error in a recently published construction. We also show how to extend
NWTL by regular expressions, obtaining a new, more expressive logic and we
provide constructions to nested-word automata. Furthermore, we present an
alternative translation from µNWTL to nested-word automata. Our construc-
tion improves the state-of-the-art construction by a constant in the exponent.
Furthermore, for formulas without past operators, our construction produces
automata whose worst-case sizes improve upon the best-known construction
by the factor log(n2)/n2 in the exponent, where n is the size of the input.

1.3 Overview

This thesis is organized as follows.

In Chapter 2, we recall basic definitions. In Chapter 3, we present the
alternation-elimination scheme and prove some properties of this scheme.

The next two chapters have a similar structure. In Chapter 4, we first de-
velop complementation constructions for automata over words to obtaining
alternation-elimination instances from our scheme. Then, we present exten-
sions of temporal logics known from literature and present translations to
nondeterministic automata, for these logics. Furthermore, we establish an
exponential gap between certain logics and its extensions by past operators.

In Chapter 5, we first present novel complementation constructions that

9



Introduction

translate nondeterministic automata into nondeterministic visibly-pushdown
automata. Then, we present temporal logics known from literature and present
translations to visibly-pushdown automata for these logics.
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Chapter 2

Preliminaries

In this chapter, we fix notation and define the mathematical objects and the
different automata classes that we use throughout this thesis. We also give
a brief summary over some fundamental complementation constructions of
nondeterministic automata that we use as running examples and as building
blocks in the proofs in this thesis.

2.1 Graphs, Words, and Trees

We write N := {0, 1, 2, . . .} for the set of natural numbers and N1 := N \ {0}
for the set of natural numbers that start with 1. For n ∈ N, we write [n] for
the set {0, 1, . . . , n− 1}.

Graphs Let D be a finite set of directions. A D-graph is an edge-labeled
graph (V,E), where V is a set of nodes and E = (Ed)d∈D is a family of
edges Ed ⊆ V × V with label d ∈ D. We denote the set of directions of
the outgoing edges of a node v ∈ V by Dv, i.e., we write Dv := {d ∈ D |
there is a node v′ with (v, v′) ∈ Ed}. We write ε for the empty graph, i.e., the
graph is of the form (∅, ∅). A graph is finite if the cardinality of the set of its
nodes is finite. Otherwise, we call it infinite. A pointed D-graph (G, vI) is a
D-graph G with an initial node vI ∈ V . A (Σ,D)-graph (V,E, vI , λ) is pointed
D-graph (V,E, vI) with a labeling λ : V → Σ of the nodes by elements from Σ.
For a class of pointed D-graphs G, we write ΣG for the set of all (Σ,D)-graphs
(G, λ) with G ∈ G.

Words A word over Σ is a (Σ, {−1, 0, 1})-graph of the form (V,E, 0, w),
where V ∈ {[n] | n ∈ N} ∪ {N}, E1 = {(i, j) ∈ V × V | j = i + 1}, E−1 =
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{(i, j) ∈ V ×V | j = i−1}, E0 = {(i, i) | i ∈ V }. In the following, we denote a
word over Σ by just giving its labeling function w : V → Σ. We write Σ∗ and
Σω for the set of all finite and infinite words over Σ, respectively. We denote
the union of Σ∗ and Σω by Σ∞. For a word w, we denote the ith letter by
wi := w(i) ∈ Σ, its length by |w| := |V |. We write wi.. for the suffix wiwi+1 . . .
of the word. We write wi..j for the sub-word wiwi+1 . . . wj. For convenience,
wi..j denotes the empty graph ε if j < i. We write vw for the concatenation of
the two words v and w.

Example 2.1 Consider the alphabet Σ := {a, b} and the finite word w :
[5] → Σ with w0w1w2w3w4w5 = ababa. The following figure depicts the graph
structure of this word.

0 1 2 3 4

a b a b a
1 1 1 1

−1−1−1−1

0 0 0 0 0

Nested Words Nested words [AEM04, AM09] are words equipped with a
hierarchical structure. This structure is imposed by letters that denote the
start and the end of block structures. Prominent examples of nested words
are, e.g., XML documents or source code of imperative programming languages
with nested block structures. Formally, for an alphabet Σ, we define Σi := Σ
as the set of internals, Σc := {〈a | a ∈ Σ} as the set of calls, and Σr := {a〉 |
a ∈ Σ} as the set of returns. The tagged alphabet of Σ is Σ̂ := Σi ∪ Σc ∪ Σr.
We call a finite word w ∈ Σ̂∗ well-matched if w is a word that can be build by
the grammar v ::= ε | av | cvrv, where a ∈ Σi, c ∈ Σc, and r ∈ Σr.
A nested word over Σ is a (Σ̂, {−2,−1, 0, 1, 2})-graph of the form (V,E, 0, w),

where

1. (V, (Ed)d∈{−1,0,1}, 0, w) is a word,

2. E2 := {(i, j) | wi ∈ Σc, wj ∈ Σr, wi..j is well-matched, and any prefix
wi..k is not well-matched, for any k with i < k < k′}, and

3. E−2 := {(i, j) | (j, i) ∈ E2}.

For convenience, we denote a nested word (V, , 0, w) by the tuple (w, )
consisting of the word and the family of labeled edges.

12



2.1. Graphs, Words, and Trees

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2.1: Graph structure of a nested word.

We call an element in E−2 ∪ E2 a nested edge. We call a position i < |w|
internal, call, and return, if wi is a letter in Σi, Σc, and Σr, respectively. A
call position i is matched if it has a matching return position j, i.e., there is an
j > i such that (i, j) ∈ E2. Otherwise, the call position is pending. A return
position j is matched if it has a matching call position i, i.e., there is an i < j
such that (i, j) ∈ E2. Otherwise, the return position is pending. We call a
position k sync position if the two sub-words w0..k and w(k+1).. of w are not
connected by some edge in E2. Formally, k ∈ N is a sync position if there is
no (i, j) ∈ E2 such that i ≤ k and j > k. For a position i < |w|, a caller of i
is the greatest matched call position j < i whose matching return position is
after i. Formally, j is a caller for i if j < i is a call and either i is a call and
wj..i−1 is well-matched, or i is not a call and wj..i is well-matched. We write Σ̂∗

and Σ̂ω for the set of all finite and infinite nested words over Σ, respectively.

Example 2.2 Consider the alphabet Σ := {a, b} and the finite nested word
(w, ) with w : [8] → Σ̂, where w0..7 = a〉〈b〈a〈bab〉ab〉. The following figure
depicts the graph structure of this nested word. For readability, we omit the
0-labeled self-loops. Note that position 0 and 1 are pending positions.

0 1 2 3 4 5 6 7

a〉 〈b 〈a 〈b a b〉 a b〉

1 1 1 1 1 1 1

−1−1−1−1−1−1−1

2

2

−1−1−1−1−1−1

Example 2.3 Consider the alphabet Σ := {a} and the nested word (w, ) ∈
Σ̂∗, where w = 〈aa〈aaa〉a〉a〉〈aaa〉〈a〈a〈aaa〉aa〉. Figure 2.1 depicts the graph
structure of w. For readability, we omit self-loops and edges with negative
directions. The positions 1, 3, 8, 13, and 15 are internal positions. The
positions 0, 2, 7, 10, 11, and 12 are call positions and 10 is a pending call.
The positions 4, 5, 6, 9, 14, and 16 are return positions, where position 6 is
pending. Position 11 is the caller position for position 12, 15, and 16. Finally,
the positions 5, 6, 9, 10, and 16 are sync positions. 2
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ε

1 2

11 12 21 22

121 122 222

a

b a

a b b a

a b a

1 2

1 2 1 2

1 2 2

−1 −1

−1 −1 −1 −1

−1 −1 −1

Figure 2.2: The graph structure of a tree.

Trees A tree over Σ is a (Σ,N1 ∪ {0,−1})-graph (T,E, ε, t), where

1. T ⊆ N∗
1 is prefix-closed, i.e., for every x ∈ N∗

1 and d ∈ N1, if xd ∈ T then
x ∈ T ,

2. Ed ⊆ {(x, xd) | x ∈ T and xd ∈ T}, for d ∈ N1,

3. E0 := {(x, x) | x ∈ T}, and

4. E−1 := {(x, y) | there is a d ∈ N with (y, x) ∈ Ed}.

The root of a tree is its initial node ε ∈ T . For an edge (x, y) ∈ Ed, for some
d ∈ N1, the node y is the child of the node x. In the following, we will denote
a tree over Σ by just giving its labeling function t : T → Σ. A path in t is a
sequence of nodes π ∈ T∞ such that π0 = ε and for every i ∈ N, the node πi+1

is a child of πi. We write t(π) for the word t(π0)t(π1) . . . ∈ Σ∞. For a set S,
we denote all prefix-closed subsets of S∗ by S⋆ and write ΣN⋆

1 for the set of all
trees over Σ.

Example 2.4 Consider the alphabet Σ := {a, b} and the prefix-closed set
T := {x ∈ N∗

1 | |x| ≤ 2} ∪ {121, 122, 222}. We define the tree t : T → Σ,
where for every node x ∈ T , the labeling t(x) = a if and only if the sum of
the digits of x is even. Figure 2.2 depicts the graph structure of the tree t.
For readability, we omit the 0-labeled self-loop of each node. The sequence
of nodes π := ε 1 12 122 is a path in t. And the labeling of this path is
t(π) = abbb.
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2.2. Automata

2.2 Automata

Propositional Logic Let P be a finite set of atomic propositions. We denote
the set of Boolean formulas over P by B(P ), i.e., B(P ) consists of all formulas
that are inductively built by the grammar

ϕ ::= tt | ff | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ,

where tt and ff denote the Boolean constants tt and ff and p is a proposition
in P . We write B+(P ) for the set of positive Boolean formulas that do not use
the connective ¬. We write B∨(P ) and B∧(P ) for the set of positive Boolean
formulas that only use the connectives ∨ and ∧, respectively. For a setM ⊆ P
and a formula ϕ ∈ B(P ), we say that M satisfies ϕ and write M |= ϕ if and
only if ϕ evaluates to true when assigning true to the propositions in M and
false to the propositions in P \M . Moreover, we write M |≡ ϕ if and only
if M is a minimal model of ϕ, i.e., M |= ϕ and there is no p ∈ M such that
M \ {p} |= b. For a proposition p ∈ P and a formula ϕ ∈ B+(P ), we say p
occurs in ϕ if the formula ϕ has a minimal model M that contains p. If p
occurs in ϕ, we also write p ∈ ϕ.

Automata In the following, we define D-way alternating automata that op-
erate over (Σ,D)-graphs. Intuitively, the automaton starts by reading the label
of the initial node and then proceeds by moving its read-only head along the
outgoing directions to the nodes whose labels are processed next. Formally, let
D be a finite set of directions in which the read-only head of the automaton
can move. A D-way alternating automaton A is a tuple (Q,Σ, δ, qI , A), where

• Q is a finite set of states,

• Σ is a finite input alphabet,

• δ = (δD)D⊆D is a family of transition functions with δD : Q × Σ →
B+(Q× D), for D ⊆ D,

• qI ∈ Q is an initial state, and

• A ⊆ Qω is an acceptance condition.
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The size |A| of an automaton A is the number of its states.
Let G := (V,E, vI , λ) be a (Σ,D)-graph. We define C := Q × V as the set

of configurations. Intuitively, a configuration (q, h) ∈ C denotes the current
state q and the position h of the read-only head in the input graph. A run of
A on G is a tree r : R→ C such that r(ε) = (qI , vI) and for every node x ∈ R
with r(x) = (p, h), we have M |≡ δDh

(p, λ(h)), where

M :=
{
(q, d) ∈ Q× D | x has a child y, r(y) = (q, h′), and (h, h′) ∈ Ed

}
.

That is, the positive Boolean formula δDh
(p, λ(h)) specifies a constraint that

has to be fulfilled by the successor states of the node denoted by the current
head position h.
A path π ∈ T∞ in a run r with r(π) = (q0, h0)(q1, h1) . . . is accepting if

q0q1 . . . ∈ A. The run r is accepting if every path in r is accepting. The graph,
word, finite-word, and nested word language of A is, respectively, the set

L(A) := {G ∈ ΣG | there is an accepting run of A on G},

Lω(A) := {w ∈ Σω | there is an accepting run of A on w},

L∗(A) := {w ∈ Σ∗ | there is an accepting run of A on w},

Lnw(A) := {(w, ) ∈ Σ̂ω | there is an accepting run of A on (w, )}.

We say that a graph, word, finite-word, and nested-word automaton A accepts
a language L if its corresponding language L(A), Lω(A), L∗(A), and Lnw(A)
is equal to L, respectively. We call two automata A and B over graphs, words,
finite-words, or nested-words (language-)equivalent if their corresponding lan-
guages are equal, i.e., L(A) = L(B), Lω(A) = Lω(B), L∗(A) = L∗(B), and
Lnw(A) = Lnw(B), respectively.
In the following, we consider several special classes of automata. We start

with the directionality of an automaton. Consider a D-way alternating au-
tomaton A with D ⊆ Z. The automaton A is 1-way if D ⊆ N. For these
kind of automata, we abuse notation and omit writing the D component in the
transitions and the runs. Otherwise, the automaton A is 2-way. The automa-
ton A is locally 1-way if for every state q ∈ Q, letter a, and set D ⊆ D, we
either have δD(q, a) ∈ B+(Q × N) or δD(q, a) ∈ B+(Q × (Z \ N)). That is, in
each processing step, the automaton moves its read-only head only forwards
or only backwards.
Next, we distinguish between different branching modes of an automaton

according to its transition function. We call A existential if δD : Q × Σ →
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B∨(Q × D), for all D ⊆ D. We call it universal if δD : Q × Σ → B∧(Q × D),
for all D ⊆ D, for all D ⊆ D. An automaton is deterministic if it is universal
and existential. For D ⊆ Z, we call an automaton nondeterministic if for
every state p, letter a, set D ⊆ D, and minimal model M of δD(p, a), either
(i) |M | = 1, (ii) for every (q, d), (q′, d′) ∈ M , we have d > 0 and d 6= d′, or
(iii) for every (q, d), (q′, d′) ∈ M , we have d < 0 and d 6= d′. That is, the
transition function cannot be satisfied by two different successor states along
the same direction. Intuitively, a nondeterministic automaton annotates the
nodes of the input by configurations while an existential automaton annotates
only a path in the input by configurations.
Finally, we define the type of an automaton that specifies the acceptance

condition of A in a finite way. Commonly used types of acceptance conditions
are listed in Table 2.1. Here, Inf(π) is the set of states that occur infinitely
often in an infinite path π ∈ T ω. The integer k is called index of A. For
instance, the acceptance condition A of a Büchi automaton (Q,Σ, δ, qI , F, B)
with B ⊆ Q is defined as A = {π ∈ Qω | Inf(π) ∩ B 6= ∅}.

Conventions For readability, we use the following standard abbreviations
and conventions. Each four-letter acronym from the set

{1, 2} × {A, E, U, N, D} × {F, cF, B, C, G, cG, P, cP, R, S} × {A}

refers to one particular automata class. The first letter corresponds to the
directionality (1-way, 2-way), the second letter to the branching mode (alter-
nating, existential, universal, nondeterministic, deterministic), and the third
letter to the acceptance condition (finite, co-finite, Büchi, co-Büchi, generalized
Büchi, generalized co-Büchi, parity, co-parity, Rabin, Streett). The fourth let-
ter A stands for automaton. For instance, a 2URA is a 2-way universal Rabin
automaton.
For existential and universal automata, we use the standard set notation to

denote the disjunction or conjunction of all successors of a state, respectively.
Formally, we write the transition function as δD : Q×Σ → 2Q×D, for allD ⊆ D.
Note that an empty set is regarded as ff for existential automata, whereas for
universal automata, an empty set is regarded as tt. For a direction d ∈ D, we
write δdD(R, a) :=

⋃

r∈R{q | (q, d) ∈ δD(r, a)} for all d-successors of the set R,
where R ⊆ Q, D ⊆ D, and a ∈ Σ. For a transition function δD : Q × Σ →
B+(Q×D), for D ⊆ D, the dual transition function is δD : Q×Σ → B+(Q×D),
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type finite description α, acceptance condition A

α = F ⊆ Q
Finite A := {π ∈ Q∗ | π|π|−1 ∈ F}
co-finite A := {π ∈ Q∗ | π|π|−1 /∈ F}

α = F ⊆ Q
Büchi A := Q∗ ∪ {π ∈ Qω | Inf(π) ∩ F 6= ∅}
co-Büchi A := Q∗ ∪ {π ∈ Qω | Inf(π) ∩ F = ∅}

α = {F0, . . . , Fk} ⊆ 2Q

generalized Büchi A := Q∗ ∪
⋂

i∈[k]{π ∈ Qω | Inf(π) ∩ Fi = ∅}

generalized co-
Büchi

A := Q∗ ∪
⋃

i∈[k]{π ∈ Qω | Inf(π) ∩ Fi 6= ∅}

α = {F0, . . . , F2k−1} ⊆ 2Q, where F0 ⊆ F1 ⊆ · · · ⊆ F2k−1

parity A := Q∗ ∪ {π ∈ Qω | min{i ∈ [2k] | Fi ∩ Inf(π) 6= ∅} is even}
co-parity A := Q∗ ∪ {π ∈ Qω | min{i ∈ [2k] | Fi ∩ Inf(π) 6= ∅} is odd}

α = {(B0, C0), . . . , (Bk−1, Ck−1)} ⊆ 2Q × 2Q

Rabin A := Q∗ ∪
⋃

i∈[k]{π ∈ Qω | Inf(π) ∩Bi 6= ∅ and Inf(π) ∩Ci = ∅}

Streett A := Q∗ ∪
⋂

i∈[k]{π ∈ Qω | Inf(π) ∩Bi = ∅ or Inf(π) ∩ Ci 6= ∅}

α = {M0, . . . ,Mk−1} ⊆ 2Q

Muller A := Q∗ ∪
⋃

i∈[k]{π ∈ Qω | Inf(π) = Mi}

Table 2.1: Types of acceptance conditions.

where each δD(q, a) is obtained from δD(q, a) by swapping all ∨ and ∧ operators
and the Boolean constants tt and ff, for all q ∈ Q, D ⊆ D, and a ∈ Σ.

Restricted Automata Classes We introduce several restrictions on the
definition of alternating automata that will be exploited in the automata con-
structions. Let A = (Q,Σ, δ, qI , A) be a D-way alternating automaton.

Weakness. The notion of weakness has been introduced in [MSS92]. Intu-
itively, weakness means that there is a partition on Q into either accepting or
rejecting subsets Q0, . . . , Qn−1, for some n ∈ N, such that every path of any
run gets trapped in exactly one Qi, for some i ∈ [n], and is accepting if and
only if the partition Qi is accepting.

Formally, we call a set of states P ⊆ Q accepting if Inf(r(π)) ⊆ P implies
r(π) ∈ A, for each run r and path π in r. We call a set P ⊆ Q rejecting if
Inf(r(π)) ⊆ P implies r(π) /∈ A, for each run r and path π in r. The automaton
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A is (inherently) weak if there is a partition on Q into sets Q0, . . . , Qn−1, for
some n ∈ N, such that (a) for every i ∈ [n], the set Qi is either accepting or
rejecting, and (b) for every i, j ∈ [n], p ∈ Qi, q ∈ Qj , a ∈ Σ, D ⊆ D, and
d ∈ D, if (q, d) occurs in δD(p, a) then j ≤ i. The automaton is called very
weak [GO01] (also known as 1-weak or linear) if additionally each Qi, for every
i ∈ [n], is a singleton.
We append the letters W and V to the four-letter acronym of an automa-

ton to characterize the automaton as weak and very weak, respectively. For
instance, a V2ABA is a very weak 2ABA.
Eventually 1-Way. Let D ⊆ Z. Intuitively, being eventually (strictly) 1-way

means that in every infinite path of any run, the automaton will eventually
move its head position only forwards. Formally, the automaton A is eventually
1-way if there is a partition on Q into subsets Q0, Q1, . . . , Qn−1, for some n ∈ N,
such that for every i, j ∈ [n], p ∈ Qi, q ∈ Qj , a ∈ Σ, D ⊆ D, d ∈ D, and (q, d)
occurs in δD(p, a), if (i is even and d ≤ 0) or (i is odd and d ≥ 0) then j < i.
Intuitively, each subset Qi represents states from which the automaton moves
only forwards or only backwards. Since there are only finitely many such Qis,
the automaton may only change its direction finitely often and hence, it will
eventually proceed only forwards.

Nested Word Automata

A nested word automaton (NWA) is a tuple A = (Q, S,Σ, δ, qI , F ), where

• Q is a finite set of states,

• S is a finite set of stack symbols with ⊥ /∈ S,

• Σ is a finite alphabet,

• qI ∈ Q is an initial state,

• δ = (δx)x∈{i,c,r} consists of three nondeterministic transition functions
with

1. δi : Q× Σi → 2Q,

2. δc : Q× Σc → 2Q×S,

3. δr : Q× (S ∪ {⊥})× Σr → 2Q,
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• F ⊆ Q is the set of accepting states.

A run of A on a nested word (w, ) ∈ Σ̂ω is a sequence of configurations
(q0, s0)(q1, s1) . . . ∈ (Q× S)ω such that q0 = qI and for every position i ∈ N in
(w, ),

1. if wi ∈ Σi then qi+1 ∈ δi(qi, wi),

2. if wi ∈ Σc then (qi+1, si+1) ∈ δc(qi, wi),

3. if wi ∈ Σr and i is pending then qi+1 ∈ δr(qi,⊥, wi),

4. if wi ∈ Σr and i has a matching call j then qi+1 ∈ δr(qi, sj+1, wi),

The run is accepting if some state q ∈ F is visited infinitely often, i.e., we have
Inf(q0q1 . . .) ∩ F 6= ∅. We denote the nested word language of the automaton
A by

Lnw(A) := {(w, ) ∈ Σ̂ω | there is an accepting run of A on (w, )}.

Note that the NWA A implicitly uses a stack. Consider a run of the NWA
A. First, the stack is initialized with the bottom stack symbol ⊥. Whenever
A reads a letter in Σc it pushes a symbol s ∈ S on the stack. Whenever A
reads a letter from Σr it pops a symbol from the stack. In case the position
is matched, it pops the top stack symbol that was previously pushed on the
stack at the matching call position. In case the position is pending, it pops
and pushes the bottom stack symbol ⊥.

2.3 Complementation Constructions

In the following, we present complementation constructions from literature
that we will use as basic building blocks throughout this thesis. Let D :=
{−1, 0, 1} be the set of direction.

The first construction is the standard subset construction [RS59,HU79], also
known as powerset construction that complements the finite-word language of
an 1EFA.
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Theorem 2.5 Let A = (Q,Σ, δ, qI , F ) be a 1EFA. Then, the 1DFA B :=
(2Q,Σ, η, {qI}, 2

Q\F ), where

ηD(R, a) := δ1D(R, a)

for R ∈ 2Q, a ∈ Σ, and D ⊆ D, accepts Σ∗ \ L∗(A). 2

Intuitively, the automaton B simulates each run of A simultaneously and ac-
cepts if all runs end in a non-accepting state. Observe that the theorem also
holds if we replace the 1EFA and 1DFA by a 1EcFA and 1DcFA, respectively.
Another construction is the 2-way subset construction [Var89] that com-

plements the finite-word language of a 2-way EFA. In the next theorem, we
present an improved version of Vardi’s construction in terms of the resulting
automata worst-cases sizes. We translate a 2EFA of size n into a 1EFA of size
(2n)2 + 1 rather than (2n)2 + 2n as in Vardi’s construction.

Theorem 2.6 Let A = (Q,Σ, δ, qI , F ) be a 2EFA. Let B := (2Q × 2Q ∪
{qI},Σ, η, qI , G) be a 1EFA, where G := (2Q\F × 2Q) ∪ ({qI} ∩ (Q \ F )),

ηD(qI , a) := {(R0, R1) | qI ∈ R0 and δdD(R0, a) ⊆ Rd, for all d ∈ {0, 1}},

ηD((R−1, R0), a) := {(R0, R1) | δ
d
D(R0, a) ⊆ Rd, for all d ∈ D},

for R−1, R0, R1 ∈ 2Q, a ∈ Σ, and D ⊆ D. Then, B accepts Σ∗ \ L∗(A). 2

Intuitively, the automaton B guesses a sequence R0R1 . . . Rn ∈ (2Q)∗ and
checks that the sequence includes every run of A on the input word. That is, if
the sequence (q0, h0)(q1, h1) . . . (qn, hn) ∈ (Q×N)∗ is a run of A then qi ∈ Rhi ,
for all i ∈ [n + 1]. Obviously, the sequence R0R1 . . . Rn contains every run, if
the following maximality condition holds: for every position i ∈ [n + 1] and
state p ∈ Ri, all d-successors are contained in the adjacent sets Ri+d (if they
exists).
The following construction is the breakpoint construction [BJW05,MH84].

The construction is used to complement the infinite-word language of a 1ECA.

Theorem 2.7 Let A = (Q,Σ, δ, qI , F ) be an 1ECA. Then, the 1DBA B :=
(2Q × 2F ,Σ, η, qI , 2

Q × {∅}), where

ηD((R, ∅), a) := (δD(R, a), δD(R, a) \ F ) and

ηD((R, S), a) := (δD(R, a), δD(S, a)),

for R ∈ 2Q, S ∈ 2F \ {∅}, a ∈ Σ, and D ⊆ D accepts Σω \ Lω(A). 2
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Intuitively, the automaton B simulates each run of A simultaneously with its
R component by using the subset construction. The S component of the state
space is used to check that no run of A accepts by the co-Büchi condition.
Roughly speaking, B stores states in S that owe a visit to F . A configuration
with S = ∅ is a breakpoint. By filling up S with all states from R at breakpoints
and removing F -states from the S component, in every processing step, the
automaton B ensures that all states visit F before the next breakpoint is
reached. Hence, B visits infinitely many breakpoints if and only if all runs of
A visit F infinitely often.
Note that the 1DBA B has only 3n states, where n is the size of the 1ECA A.

The reason is that a state (R, S) of B can be represented by a vector v ∈ 3n,
where every component of v corresponds to a state of A that is (i) contained
in R and S, (ii) contained in R but not in S, or (iii) neither contained in R
nor in S.
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Chapter 3

Alternation-Elimination Scheme

In this chapter, we present a general construction scheme for removing alterna-
tion of D-way alternating automata. The construction scheme is general in the
sense that it can be instantiated for different classes of alternating automata.
We provide such instances in the following chapters.
We proceed as follows. We first give an intuition of the construction scheme.

Then, we show how to encode run trees of alternating automata as labeling
functions of the input graphs of those automata. Afterwards, we present the
construction scheme and some of its properties.

3.1 Overview on Construction Scheme

In this section, we introduce the idea of the alternation-elimination scheme. We
present this from a game-theoretic point of view. Consider a D-way alternating
automaton A, an input graph G, and the two players called Automaton and
Refuter. Player Automaton claims that A accepts G, whereas player Refuter
tries to refute this claim. They compete against each other in the following
game.

1. First, player Automaton suggests a tree and claims that this tree is an
accepting run of A on G. That is, the tree is a run of A on G and every
infinite path in the tree is accepting.

2. Second, player Refuter examines Automaton’s suggested tree and checks
whether the claim is true. In particular, Refuter can refute the claim
in two ways. Either, Refuter shows that the tree is not a run of A on
G, i.e., Refuter picks a reachable node such that the labels of the node’s
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Alternating automaton A = (Q,Σ, δ, qI , A) accepts G

⇔ ∃t : t ∈ runs(A, G) ∧ ∀π ∈ paths(t) : t(π) ∈ A

⇔ ∃t : ¬(t /∈ runs(A, G) ∨ ∃π ∈ paths(t) : t(π) /∈ A)

⇔ ∃t : ¬
(
the existential refuter automaton B accepts (G, t)

)

⇔ ∃t : the nondeterministic automaton C accepts (G, t)

⇔ the nondeterministic automaton D accepts G

Figure 3.1: Overview of the alternation-elimination scheme.

children do not satisfy the transition function of A. Or, Refuter identifies
an infinite path in the tree that is not accepting.

Obviously, A accepts G if and only if player Automaton can win this game.

With this game in mind, we can describe the overall idea of the scheme as
follows. First, we encode player Refuter’s strategy by a existential automa-
ton B. The automaton B reads the input graph G and player Automaton’s
suggested tree t. The tricky part of this step is to represent t in such a way
such that its representation has the same structure as the input graph G. The
objective of the existential automaton B is twofold. It looks for a node in t
that witnesses that t is not a run of A on G. Alternatively, it looks for an
infinite path in t that is rejecting. In a second step, we translate B into a
nondeterministic automaton C that accepts the complement of the language
of B. That is, C accepts a graph G with its suggested t if and only if t is an
accepting run of A on G. Finally, we define D as the projection of C on G,
which is a standard operation on nondeterministic automata. The resulting
nondeterministic automaton D accepts G if and only if there is a tree t that is
an accepting run of A on G. A sketch of this general overview is depicted in
Table 3.1, where runs(A, G) denotes the set of all runs of A on G and paths(t)
denotes the set of all infinite paths in t.

In the following sections, we present this idea formally. Before going into
the details of the construction scheme, we start with some preparatory work.
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3.2 Memoryless Strategies as Input

In this section, we show how to represent a memoryless run of an alternating
automaton in such a way such that the representation has the same structure
as the input graph that is read by the alternating automaton. We need this
kind of representation of a run as a prerequisite for the alternation-elimination
scheme. We remark that the construction of the representation is based on
constructions given in [Var88,Var98,KPV01]. In this thesis, we simplify the
presentation of their representation of a memoryless run. A memoryless run is
essentially a so-called positional strategy of player Automaton and we view the
strategy as a function rather than as a relation. Furthermore, we generalize
their representation to be able to represent memoryless runs on general graph
inputs rather than just word or tree inputs.
We start with the formal definition. Let D be a set of directions, A =

(Q,Σ, δ, qI , A) a D-way alternating automaton, and r : R→ Q× V a run of A
on a (Σ,D)-graph (V,E, vI , λ). The run r is called memoryless1 if all equally
labeled nodes have isomorphic subtrees, i.e., for every x, y ∈ R and z ∈ N

∗
1, if

r(x) = r(y) then

1. xz ∈ R if and only if yz ∈ R, and

2. if xz ∈ R then r(xz) = r(yz).

We define

M(A) := {G ∈ ΣG | there is an accepting memoryless run on G}.

We call A memoryless if L(A) =M(A).
Obviously, we have M(A) ⊆ L(A). For a D-way alternating automaton

A with Büchi, co-Büchi, parity, co-parity, or Rabin acceptance condition, we
also have the converse M(A) ⊇ L(A), see [EJ91,Jut97,Var98,Zie98] for more
details. Note however that the converse does not hold in general.
In the following, we represent a memoryless run by a new labeling of the

input graph. Since children of equally labeled nodes in a memoryless run

1The choice of the term “memoryless” becomes clear when viewing a run of an alternating
automaton as a representation of a strategy of the first player in a two-person infinite
game [MS87]. A memoryless run encodes a memoryless strategy (also known as a po-
sitional strategy) of the first player, i.e., a strategy that does not take the history of a
play into account.
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r : R → Q× V are also equally labeled, we represent the memoryless run r by
a successor function τ : (Q× V ) → 2Q×D, where

τ(q, v) :=
{
(q′, d) ∈ Q× D | there is a node x with a child y in R such that

r(x) = (q, v), r(y) = (q′, v′), and (v, v′) ∈ Ed
}
.

That is, we map a configuration (q, v) to the set of labels of the children
of some node that is labeled by (q, v). By “currying” the function τ , we
obtain the function σ : V → (Q → 2Q×D) that is isomorphic to τ . We call σ
the representation of the memoryless run r. Note that this representation is
unique, i.e., every representation of r is isomorphic to σ.

Example 3.1 We list some representations of memoryless runs for special
cases of input graphs. Note that the representations are labeling functions
of graphs that have exactly the same structure as the input graphs of the
alternating automata.

• If the input of A is a finite word w = w0 . . . wn−1 ∈ Σ∗ then a run is a
tree r : R → Q× [n]. If r is memoryless, we represent the run by a finite
word σ : [n] → (Q → 2Q×D), where D = {−1, 0, 1} and for i ∈ [n], the
labeling σ(i) : Q → 2Q×D is the function that maps a state q to the set
that contains all tuples of the from (q′, d) if and only if in the run r, the
automaton A visits q having head position i and moves to state q′ and
head position i+ d.

• If the input of A is an infinite word w ∈ Σω then a run is a tree r :
R→ Q×N. If r is memoryless, we represent the run by an infinite word
σ : N → (Q→ 2Q×D), where D = {−1, 0, 1}.

• If the input of A is a nested word (w, ) ∈ Σ̂ω then a run is a tree
r : R → Q × N. If r is memoryless, we represent the run by a nested
word (σ, ) with σ : N → (Q→ 2Q×D), where D = {−2,−1, 0, 1, 2}.

• If the input of A is an tree t : T → Σ then a run is a tree r : R → (Q×T ).
If r is memoryless, we represent the run by a tree σ : T → (Q→ 2Q×D),
where D = {−1, 0, . . . , n} and n is the greatest direction that occurs in
the transition function of A. 2
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3.3 Reduction to Complementation

Based on the representation of memoryless runs as input graphs, we formally
introduce the alternation-elimination scheme.

Definition 3.2 Let A = (Q,Σ, δ, qI , A) be a D-way alternating automaton
and Γ := Q → 2Q×D. From A we construct the D-way existential refuter
automaton B of A that is defined as

B := (Q,Σ× Γ, η, qI , Q
∗ ∪ (Qω \ A)).

For q ∈ Q, D ⊆ D, and (a, g) ∈ Σ× Γ, we define the transition function as

ηD
(
q, (a, g)

)
:=

{

g(q) if g(q) |≡ δD(q, a),

tt otherwise.
2

Intuitively, the existential automaton B from Definition 3.2 works as follows. It
reads the input graph G and the run representation of the D-way alternating
automaton A and inspects one single path in the run representation. The
refuter automaton B accepts the input if one of the following holds. (a) The
inspected path is finite and leads to a node in the run that witnesses that the
run is broken. That is, the labels of its children do not satisfy the transition
function of A. (b) The inspected path is infinite and its labeling yields a
rejecting sequence with respect to the acceptance condition of A.
Throughout this section, we fix the D-way alternating automaton A and its

refuter automaton B as defined in Definition 3.2. Moreover, we abbreviate the
function space Q→ 2Q×D by Γ.
The next lemma is at the core of the results of this chapter. It states that

the refuter automaton B rejects an input if and only if the input consists of
a graph G and a representation of an accepting memoryless run of A on G.
We use the following notation. For a graph G ∈ (Σ× Γ)G , we write GΣ ∈ ΣG

and GΓ ∈ ΓG to denote the graphs with the projections of their labeling of the
nodes on Σ and Γ, respectively.

Lemma 3.3 For every graph G ∈ (Σ× Γ)G, we have

G /∈ L(B) iff GΓ is a representation of an accepting run of A on GΣ. 2
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Proof Let G = (V,E, vI , λ) ∈ (Σ× Γ)G be a graph. We write λΣ and λΓ for
the projection of λ on the alphabets Σ and Γ, respectively.
We first prove the if direction. Let t : T → Q × V be an accepting mem-

oryless run of A on GΣ such that GΓ is a representation of t. For the sake of
contradiction, assume there is an accepting run r of B on G. We show that t
contains a rejecting path π, which contradicts the fact that t is accepting. We
consider the following two cases.
Case 1. Suppose that r is infinite. Let r := (q0, v0)(q1, v1) . . . ∈ (Q × V )ω

with q0q1 . . . /∈ A. Moreover, we have (q0, v0) = (qI , vI) and λΓ(vi)(qi) |≡
δDvi

(qi, λΣ(vi)), for all i ∈ N. We recursively construct the rejecting path
π ∈ V ω in T .

• We define π0 := ε. By definition of a run of A on GΣ, we have t(π0) =
(qI , vI) = (q0, v0).

• For i > 0, we define πi as some child of πi−1 that is labeled by t(πi) =
(qi, vi). We show that the child πi exists. Since r is a run of B, we have
(qi, vi) ∈ λΓ(vi−1)(qi−1). Since GΓ is a representation of the memoryless
run t, the set λΓ(vi−1)(qi−1) contains all labels of the children of any node
x ∈ T that is labeled by (qi−1, vi−1). Thus, there is a child πi ∈ T of πi−1

that is labeled by (qi, vi).

Since π is a path in T with t(π) = r and q0q1 . . . /∈ A, the run t is not accepting.
Case 2. Suppose that r is finite. Let r := (q0, v0)(q1, v1) . . . (qn−1, vn−1) ∈

(Q × V )∗. Moreover, we have (q0, v0) = (qI , vI), λΓ(vi)(qi) |≡ δDvi
(qi, λΣ(vi)),

for all i ∈ [n], and λΓ(vn−1)(qn−1) |6≡ δDvn−1
(qn−1, λΣ(vn−1)). We recursively

construct the rejecting path π ∈ V ∗ in T . Using the construction from Case 1,
we obtain a path π = π0π1 . . . πn−1 in T with t(π) = r. Since GΓ is a repre-
sentation of the memoryless run t, the set λΓ(vn−1)(qn−1) contains all labels
of the children of the node πn−1 ∈ T that is labeled by (qn−1, vn−1). Since
λΓ(vn−1)(qn−1) |6≡ δDvn−1

(qn−1, λΣ(vn−1)), the tree t is not a valid run of A on
GΣ.

Now, we prove the only if direction by contraposition. By assumption, GΓ is
not a representation of an accepting run A on GΣ. We make a case distinction.
Case 1. Suppose GΓ is not a representation of a run of A on GΣ. Consider

a tree t : T → Q× V with t(ε) = (qI , vI) such that GΓ is a representation of t.
It is easy to verify that such a tree exists and we omit this proof step. Since
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t is not a run of A on GΣ, there is a node x ∈ T with label t(x) = (q, v), for
some q ∈ Q and v ∈ V , such that the set

{(q′, d) ∈ Q× D | y is a child of x, t(y) = (q′, v′), and (v, v′) ∈ Ed}

is not a minimal model of δDv
(q, λΣ(v)). Let x ∈ T be chosen in that way such

that k := |x| is minimal. Now, we define an accepting run r of B on G. For
i ∈ [k], we define ri := (qi, vi) := t(x0..i). By the minimality of |x|, we have
qi+1 ∈ λΓ(vi)(qi) and λΓ(vi)(qi) |≡ δDvi

(qi, λΣ(vi)), for every i ∈ [k − 1]. Since
λΓ(vk−1)(qk−1) |6≡δDvi−1

(qk−1, λΣ(vk−1)), we conclude that r is an accepting run
of B on G.
Case 2. Suppose GΓ is a representation of a run of A on GΣ. Consider a run

t : T → Q×V ofA on GΣ such that GΓ is a representation of t. By assumption,
the run t is rejecting. Consider a rejecting path π in T . Note that the path π
is infinite. We claim that (q0, v0)(q1, v1) . . . := t(π) is an accepting run of B on
G. Since t(ε) = (qI , vI) and qi+1 ∈ λΓ(vi)(qi) and λΓ(vi)(qi) |≡ δDvi

(qi, λΣ(vi)),
for all i ∈ N, the sequence t(π) is a run of A on GΣ. Since q0q1 . . . /∈ A, the
run t(π) is accepting. �

The next theorem combines the results of this chapter. Whenever G(A) =
M(A), the problem of eliminating the alternation of A (i.e., constructing a
language-equivalent nondeterministic automaton) reduces to the problem of
complementing the existential refuter automaton B.

Theorem 3.4 If L(A) =M(A) then L(A) = {GΣ | G /∈ L(B)}. 2

Proof Consider a graph G ∈ ΣG .

G ∈ L(A)

iff G ∈M(A)

iff
There is a graph H ∈ (Σ × Γ)G such that
HΣ = G andHΓ is the representation of some
memoryless accepting run r of A on HΣ.

iff
There is a graph H ∈ (Σ × Γ)G such that
HΣ = G and H /∈ L(B).

iff G ∈ {HΣ | H /∈ L(B)} �
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Example 3.5 The following examples are simple instances of the scheme.

• Consider an AFA A and a construction τ : EcFA → NFA that comple-
ments the word or tree language of an EcFA. According to the scheme,
we can translate A into a language-equivalent NFA as follows. First,
we construct the refuter EcFA B = (Q,Σ × Γ, η, qI , F ) as described in
Definition 3.2. Then, we project τ(B) on Σ and obtain an NFA that is
language-equivalent to A.

• Consider an ABA A and a construction τ : ECA → NBA that comple-
ments the word or tree language of an ECA. According to the scheme,
we can translate A into a language-equivalent NBA as follows. First,
we construct the refuter NCA B = (Q,Σ × Γ, η, qI , F ) as described in
Definition 3.2. Then, we project τ(B) on Σ and obtain an NBA that is
language-equivalent to A.

• Consider an ABA A and a construction τ : ECA → NWA that comple-
ments the nested word language of an ECA. According to the scheme,
we can translate A into a language-equivalent NWA as follows. First,
we construct the refuter ECA B = (Q,Σ × Γ, η, qI , F ) as described in
Definition 3.2. Then, we project τ(B) on Σ and obtain an NWA that is
language-equivalent to A. 2

3.4 Inherited Properties

In the next lemma, we prove several properties that are inherited by the ex-
istential automaton B from the alternating automaton A. We exploit these
properties in the alternation-elimination construction. Intuitively, the proper-
ties discussed in Lemma 3.6 describe properties that are fulfilled by all runs of
the given alternating automaton A. By construction, a run of the nondeter-
ministic automaton B corresponds to some path of some run of A. So, every
run of B also inherits these properties.

Lemma 3.6 Let A be a D-way alternating automaton and B the D-way non-
deterministic automaton defined in Definition 3.2. Then the following holds.

1. If A is weak then B is weak.
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2. If A is very weak then B is very weak.

3. If A is locally 1-way then B is locally 1-way.

4. If A is eventually 1-way then B is eventually 1-way. 2

Proof Let A := (Q,Σ, δ, qI , A) and B := (Q,Σ× Γ, η, qI , Q
ω \A) be the two

automata defined in Definition 3.2.
We prove that B inherits the weakness and very weakness property from

A. Let Q0, . . . , Qn−1 be a partition of A’s state space such that (a) for every
i ∈ [n], Qi is either accepting or rejecting, and (b) for every i, j ∈ [n], p ∈ Qi,
q ∈ Qj , a ∈ Σ, D ⊆ D, and d ∈ D, if (q, d) occurs in δD(p, a) then j ≤ i.
We claim that Q0, . . . , Qn−1 is a partition of B’s state space such that for
every i, j ∈ [n], p ∈ Qi, q ∈ Qj , (a, g) ∈ Σ × (Q → 2Q×D), D ⊆ D, and
d ∈ D: if (q, d) occurs in ηD(p, (a, g)) then j ≤ i. Let i, j ∈ [n], D ⊆ D, and
(a, g) ∈ Σ×Γ. Consider a tuple (q, d) ∈ Qj×D that occurs in ηD(p, (a, g)), for
some p ∈ Qi. By definition of the transition function of B, we have (q, d) ∈ g(p)
and g(p) |≡ δD(p, a). Thus, (q, d) occurs in δD(p, a). Since Q0, . . . , Qn−1 is a
partition of A’s state space, we obtain j ≤ i. Note that the arguments in this
proof are also valid if the Qis are singletons.

Next, we show that B is locally 1-way if A is locally 1-way. Consider a
transition ηD(p, (a, g)), for some p ∈ Q, D ⊆ D, and (a, g) ∈ Σ × Γ. We
have two cases. (a) If g(p) |6≡ δD(p, a) then ηD(q, a) = tt ∈ B+(Q× N). (b) If
g(p) |≡δD(p, a) then (q, d) ∈ g(p). Thus, (q, d) occurs in δD(p, a). We conclude
that ηD(q, a) is either in B+(Q× N) or in B+(Q× Z \N).

Finally, we prove that B is eventually 1-way if A is eventually 1-way. Let
Q0, Q1, . . . , Qn−1, for some n ∈ N, be a partitioning of the states of A such that
for every i, j ∈ N, p ∈ Qi, q ∈ Qj , a ∈ Σ, D ⊆ D, and d ≤ 0, if (q, d) occurs in
δD(p, a) then j < i. We use the same partitioning to show that B is eventually
1-weak. Let i, j ∈ N, p ∈ Qi, q ∈ Qj , (a, g) ∈ Σ × Γ, D ⊆ D, and d ≤ 0.
Assume (q, d) occurs in ηD(p, (a, g)). Then, (q, d) ∈ g(p) and g(p) |≡ δD(p, a).
Hence, (q, d) occurs in δD(p, a) and we conclude that j < i. �
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Chapter 4

Translating Logics over Words

to Automata

In this chapter, we present translations from various classes of alternating
automata over infinite words to 1-way nondeterministic Büchi automata. We
obtain these translations from our alternation-elimination scheme by providing
complementation constructions for the corresponding classes of nondetermin-
istic automata over infinite words. We utilize these alternation-elimination
constructions for translating various temporal logics over infinite words to 1-
way nondeterministic Büchi automata.
We proceed as follows. First, we present complementation constructions

for different classes of nondeterministic automata over infinite words. Then,
we introduce the linear-time temporal logic PPSL, present a translation from
PPSL to 1NBAs, and provide succinctness results. Finally, we introduce ex-
tensions of PPSL and show how to translate these to 1-way nondeterministic
Büchi automata using our alternation-elimination scheme.

4.1 Complementation Constructions

In this section, we present several novel constructions for complementing the
languages of nondeterministic automata over infinite words. The constructions
translate various classes of nondeterministic automata into 1-way nondetermin-
istic Büchi automata. Table 4.1 depicts the blow-ups of these constructions,
where n is the size of the nondeterministic automaton and k its index. For
instance, in Theorem 4.6, we present a complementation construction that
translates an eventually 1-way very-weak nondeterministic co-Büchi automa-
ton over infinite words into a 1-way nondeterministic Büchi automaton of size

33



Translating Logics over Words to Automata

V2NCA 2NCA 2NPA

1-way O(2nn) O(3n) 2O(nk logn)

Theorem 4.8 Theorem 2.7 Theorem 5.15

eventually and O(|Σ|2nn) O(|Σ|3n) 2O(nk logn)

locally 1-way Theorem 4.7 Theorem 4.3 Theorem 5.15

eventually O(22nn) O(2n3n) 2O(nk logn)

1-way Theorem 4.6 Theorem 4.2 Theorem 5.15

2-way O(23nn) 2O(n2) 2O((nk)2)

Theorem 4.6 Theorem 5.16 Theorem 5.16

Table 4.1: Sizes of 1NBAs obtained by the complementation constructions.

O(22nn). In the following sections, we write D := {−1, 0, 1} for the set of
directions in an infinite word.

4.1.1 Complementing co-Büchi Automata

We start with a construction for complementing the word language of an even-
tually 1-way nondeterministic co-Büchi automaton. The construction can be
seen as a combination of two known constructions. The first one is Vardi’s
2-way subset-construction [Var89] for complementing the language of a 2-way
nondeterministic automaton over finite words. The construction is given in
Theorem 2.6. The second one is Boigelot, Jodogne and Wolpers’ breakpoint
construction [BJW05] for complementing the language of a 1-way nondeter-
ministic co-Büchi automata over infinite words. This construction is given in
Theorem 2.7. As remarked in [BJW05], this construction is one essential part
in the Miyano-Hayashi alternation-elimination construction [MH84,KV01] for
translating 1ABAs into language-equivalent 1NBAs.

Before presenting the construction, we give a characterization of the words
that are rejected by an eventually 1-way 2NCA.

Lemma 4.1 Let A = (Q,Σ, δ, qI , F ) be an eventually 1-way 2NCA and w ∈
Σω. We have w /∈ Lω(A) if and only if there are words R ∈ (2Q)ω and
S ∈ (2Q\F )ω such that the following conditions hold.

(1) qI ∈ R0.
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(2) For all d ∈ D and i ∈ N with i+ d ≥ 0, we have δd
Di
(Ri, wi) ⊆ Ri+d.

(3) For no i ∈ N and q ∈ Ri, we have ∅ |= δDi
(q, wi).

(4) For all i ∈ N, we have δd
Di
(Si, wi) \ F ⊆ Si+1.

(5) For infinitely many i ∈ N, we have Si = ∅ and Si+1 = Ri+1 \ F 2

Proof First, we prove the only if direction. Assume w /∈ Lω(A), i.e., every
run of A on w visits a state in F infinitely often. We need the following
definitions. We call a sequence of configurations (q0, h0) . . . (qn, hn) ∈ (Q×N)∗

a run segment if (qi+1, hi+1−hi) ∈ δDi
(qi, wi), for all i < n. The run segment is

initial if (q0, j0) = (qI , 0). For i ∈ N, we define Ri as the set of states that can
be reached by A when reading w and ending with head position i. Formally,
for i ∈ N, we define

Ri := {qn ∈ Q | (q0, h0) . . . (qn, hn) is some initial run segment with hn = i}.

We show that R fulfills the first two conditions of the lemma. R satisfies (1)
since (qI , 0) is an initial run segment. To show that (2) holds, assume i ∈ N,
p, q ∈ Q, and d ∈ D. If p ∈ Ri, (q, d) ∈ δDi

(p, wi), and i + d ≥ 0 then there
is an initial run segment r0 . . . rn ∈ (Q × N)∗ such that rn = (p, i). Hence,
r0 . . . rn(q, i + d) ∈ (Q × N)∗ is also an initial run segment. Thus, q ∈ Ri+d.
Condition (3) is fulfilled since otherwise, there is an i ∈ N and a state q ∈ Ri

such that there exists an accepting run (q0, h0) . . . (qn, hn) with (qn, hn) = (q, i)
of A on w.
Now, we define S ∈ (2Q\F )ω. In the following, we call a run segment

(q0, h0) . . . (qn, hn) ∈ (Q× N)∗ F -avoiding if qi /∈ F , for all i ≤ n. For defining
S inductively, it is convenient to use the auxiliary set S−1 := ∅.
Let m ∈ N ∪ {−1} such that Sm = ∅. For every m, we define the word

Tm ∈ (Q×N)ω as the set of F -avoiding run segments that start in Rm+1 \ F .
For brevity, we just write T instead of Tm. Formally, for i ≤ m, we define
Ti = ∅ and for i > m, we define

Ti := {qk ∈ Q | there is an F -avoiding run segment (q0, h0) . . . (qk, hk)

with q0 ∈ Rm+1, h0 = m+ 1, and hk = i}.

We show that there is a position n > m such that Tn = ∅. Assume that such a
position n does not exist. By König’s Lemma, it is easy to see that T contains
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an infinite F -avoiding run segment. Thus, there is an accepting infinite run of
A on w. This contradicts the assumption w /∈ Lω(A). For the positions i ∈ N

with m < i ≤ n, we define Si := Ti.
By construction of S, conditions (4) and (5) are fulfilled. This is shown by

a similar argumentation as above, where we show that R fulfills condition (2).

Now, we prove the if direction. Assume there are words R ∈ (2Q)ω and
S ∈ (2Q\F )ω fulfilling the conditions (1)–(5). Consider a run r of A on w that
has the form (q0, h0)(q1, h1) · · · ∈ (Q×N)ω. Due to conditions (1) and (2), we
have qi ∈ Rhi, for all i ∈ N.
We show that r is rejecting. Suppose that r is accepting. Then, there is

a k ∈ N such that qi /∈ F , for all i > k. Due to condition (5), there is a
breakpoint Sm = ∅ with m > hk and Sm+1 = Rm+1 \ F . Since r is eventually
1-way, there is a position n > k such that hn = m + 1. Without loss of
generality, we assume that n is maximal. Since r is eventually 1-way and the
set Q is finite, such an n exists. We have hi > m+ 1, for all i > n.
Since qn ∈ Rhn and qn /∈ F , we have qn ∈ Shn . According to the condition

(4), we infer that qi ∈ Shi, for all i > n. Since r is eventually 1-way, there is
no m′ > m such that Sm′ = ∅. We obtain a contradiction to condition (5). �

The following theorem extends the breakpoint construction to 2-way au-
tomata that are eventually 1-way. We call it the 2-way breakpoint construc-
tion. Roughly speaking, the constructed NBA C guesses a run that satisfies
the conditions of Lemma 4.1 with respect to a given 2NCA.

Theorem 4.2 For every eventually 1-way 2NCA A of size n, there is an
1NBA B that accepts the complement of Lω(A) and has O(2n3n) states. 2

Proof We construct a 1NBA that for an input word w ∈ Σω, guesses the
words R ∈ (2Q)ω and S ∈ (2Q\F )ω from Lemma 4.1. It locally checks the
conditions (1)–(4). Using the breakpoint construction and its Büchi acceptance
condition, it ensures that condition (5) is fulfilled. We first construct the 1NBA
and then prove the correctness of the construction.

Construction Consider an eventually 1-way 2NCA A = (Q,Σ, δ, qI , F ) with
n states. We define the 1NBA B := (P,Σ, η, pI , G) as follows.

• P := (2Q × 2Q\F × 2Q) ∪ {pI}.
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• G := 2Q × {∅} × 2Q.

The transition function η is defined as follows. For the initial state pI , D =
{0, 1}, and a ∈ Σ, we have ηD(pI , a) ∋ (R0, S0, R1) if and only if the following
conditions hold.

1. qI ∈ R0.
2. For all d ∈ D, we have δdD(R0, a) ⊆ Rd.
3. For all p ∈ R0, we have ∅ 6|= δD(p, a).

For the states in P \ {pI}, D = {−1, 0, 1}, and a ∈ Σ, the transition function
ηD

(
(R−1, S−1, R0), a

)
contains (R0, S0, R1) if and only if the following condi-

tions hold.
1. For all d ∈ D, we have δdD(R0, a) ⊆ Rd.
2. For all p ∈ R0, we have ∅ 6|= δD(p, a),
3. For all d ∈ {0, 1}, we have δdD(S−1, a) \ F ⊆ S−1+d,
4. If S−1 = ∅ then S0 = R0 \ F .
Obviously, the size of B is in O(23n). Observe that we can restrict P to the

set of states {(R, S,R′) | (R, S,R′) ∈ P, S ⊆ R} ∪ {pI}. With this optimiza-
tion and the argumentation as in Theorem 2.7, we obtain an automaton with
O(2n3n) states.

Correctness It remains to show that Lω(B) = Σω \Lω(A). Consider a word
w ∈ Σω.
Assume that w ∈ Lω(B). Let r := pI(R0, S0, R

′
0)(R1, S1, R

′
1) . . . be an

accepting run of C on w. It suffices to show that the words R := R0R1 . . . ∈
(2Q)ω and S := S0S1 . . . ∈ (2Q\F )ω satisfy the conditions (1)–(5) of Lemma 4.1.
Since η(pI , w0) ∋ (R0, S0, R

′
0), we have qI ∈ R0. Thus, (1) holds.

By the definition of the transition function, for all d ∈ D and i ∈ N with
i+ d ≥ 0, we have δd

Di
(Ri, wi) ⊆ Ri+d. Thus, (2) holds. Similarly, we can show

that (4) holds.
Condition (3) holds since by the definition of the transition function, we

have tt /∈ δDi
(p, wi), for all i ∈ N and p ∈ Ri.

Since r is accepting, Sm = ∅ for infinitely many m ∈ N. By definition of η,
we also have that Sm+1 = Rm+1 \ F whenever Sm = ∅, for all m ∈ N. Thus,
condition (5) holds.

For the other direction, assume that w /∈ L(A). By Lemma 4.1, there are
words R ∈ (2Q)ω and S ∈ (2Q\F )ω that satisfy the conditions (1)–(5). We
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define r := pI(R0, S0, R1)(R1, S1, R2) . . . and show that r is an accepting run
of B on w.
From the conditions (1)–(5), it follows that η(pI , w0) ∋ (R0, S0, R1) and

η
(
(Ri−1, Si−1, Ri), wi

)
∋ (Ri, Si, Ri+1), for all i > 0.

Since Sm is empty for infinitely many m ∈ N, the run r is accepting. �

Now, consider the case where the eventually 1-way 2NCA whose language
has to be complemented is locally 1-way. In this case, we can modify condi-
tion (2) of Lemma 4.1 since the automaton does not move its read-only head
backwards and forwards at the same time. The following requirement must
hold.

(2 ′) For all d ∈ {0, 1} and i ∈ N, we have δd
Di
(Ri, wi) ⊆ Ri+d and for all

d ∈ {−1, 0} and i ∈ N with i+ d ≥ 0, we have δd
Di
(Ri, wi) ⊆ Ri+d.

From this observation, we directly obtain the following theorem as a special
case of Theorem 4.2.

Theorem 4.3 For every locally and eventually 1-way 2NCA A of size n, there
is an NBA B that accepts the complement of Lω(A) and has O(|Σ| ·3n) states.2

Proof The construction is a special case of the construction given in Theo-
rem 4.2. Consider a locally and eventually 1-way 2NCA A = (Q,Σ, δ, qI , F ).
We define the 1NBA B := (P,Σ, η, pI , G) as follows.

• We define P := (Σ × 2Q × 2Q\F ) ∪ {pI}. The automaton preserves
the following invariant. Whenever A goes to the state (a, R, S) then a
must be equal to the letter that will be read next. This invariant can
be checked at every step when the next letter is actually read. Hence,
if A moves from state (a, R, S) to a state (b, R′, S ′) then it can check
the forward constraints of condition (2′) for R and S and the backward
constraints of condition (2′) for R′ and S ′, locally. Then, one step later,
after reading the next letter, the forward constraints of R′ and S ′ will be
checked.

• We define G := Σ× 2Q × {∅}.

The transition function η is defined as follows. For the initial state pI , D =
{0, 1}, and a ∈ Σ, we have ηD(pI , a) ∋ (b, R1, S1) if and only if the following
conditions hold. There is some set R0 ⊆ Q and some set S0 ⊆ Q \F such that
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1. qI ∈ R0.
2. For all d ∈ {0, 1}, we have δdD(R0, a) ⊆ Rd.
3. For all d ∈ {−1, 0}, we have δd{−1,0,1}(R1, b) ⊆ R1+d.

4. For all p ∈ R0, we have ∅ 6|= δD(p, a).
5. For all d ∈ {0, 1}, we have δdD(S0, a) \ F ⊆ Sd.

For states in P \{pI}, D = {−1, 0, 1}, and a ∈ Σ, we have ηD
(
(a′, R0, S0), a

)
∋

(b, R1, S1) if and only if the following conditions hold.

1. a′ = a.
2. For all d ∈ {0, 1}, we have δdD(R0, a) ⊆ Rd.
3. For all d ∈ {−1, 0}, we have δdD(R1, b) ⊆ R1+d.
4. For all p ∈ R0, we have ∅ 6|= δD(p, a).
5. For all d ∈ {0, 1}, we have δdD(S0, a) \ F ⊆ Sd.
6. If S0 = ∅ then S1 = R1 \ F .
Intuitively, for an input word w, the automaton guesses the words R ∈ (2Q)ω

and S ∈ (2Q\F )ω from Lemma 4.1. In the first component, it guesses the
next letter of the input word. With the second component of P , it checks the
conditions (1)–(3). With the third component, it checks that (4) holds. Finally,
the breakpoint construction and the Büchi acceptance condition ensure that
the condition (5) is fulfilled. It easy to check that B accepts the complement
of Lω(A).
The size of B is in O(|Σ| · 22n). Observe that we can restrict P to the set of

states {(a, R, S) | (a, R, S) ∈ P and S ⊆ R} ∪ {pI}. Hence, the cardinality of
the state space is O(|Σ| · 3n). �

Remark 4.4 Consider the automata A and B from Theorem 4.2 and assume
that the alphabet Σ has the form ∆×Γ. Clearly, the worst-case size of B is in
O(|∆×Σ| · 3n). Consider now the automaton C that represents the projection
of B on ∆. It is straightforward to see that we can restrict the state space of C
on the set ∆× 2Q × 2Q\F ∪ {pI}. This restricted state space suffices since the
first component of a state of C just guesses the letter that will be read next
and checks in the successive step that this guess has been right. So, the overall
worst-case size of the automaton C is in O(|∆| · 3n). 2

For 1-way automata, we further optimize condition (2′) of Lemma 4.1 since
the automaton does not move its read-only head backwards. The following
requirement must hold.
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(2 ′′) For all d ∈ {0, 1} and i ∈ N, we have δd
Di
(Ri, wi) ⊆ Ri+d.

From this observation, we directly obtain Boigelot, Jodogne, and Wolper’s
breakpoint construction given in Theorem 2.7.

4.1.2 Complementing Very-Weak Automata

In this section, we develop constructions for translating very weak 2NCAs into
language-equivalent 1NBAs. The constructions can bee seen as special cases of
the 2-way breakpoint construction presented in Theorem 4.2. In particular, we
exploit the very-weakness property of an eventually 1-way 2NCA to optimize
the construction in Theorem 4.2. The optimization is based on the following
observation. Each infinite run of a very-weak automaton will eventually get
trapped in a state with a self-loop. Thus, the conditions (4) and (5) from
Lemma 4.1 can be simplified accordingly. The simpler conditions allow us to
reduce the state space of the resulting 1NBA. Roughly speaking, instead of
guessing the word S ∈ (2Q\F )ω from Lemma 4.1 and checking that S fulfills
the conditions (4) and (5), the constructed 1NBA only checks that no run of
the V2NCA gets trapped in a non-accepting state.
Additionally, for very-weak automata, we can easily extend the above con-

struction such that it also translates V2NCAs that are not necessarily eventu-
ally 1-way. This extension is based on the observation that there are only two
types of loops. A very-weak automaton loops if (a) it gets trapped in a state
without moving the read-only head any more, or (b) it gets trapped in a state
by alternately moving its the read-only head to the right and then to the left.
Such kind of loops can be detected locally.
Based on these two observations, we simplify Lemma 4.1. The lemma char-

acterizes words that are rejected by a given 2VNCA.

Lemma 4.5 Let A = (Q,Σ, δ, qI , F ) be a V2NBA and w ∈ Σω. We have
w /∈ Lω(A) if and only if there is a word R ∈ (2Q)ω such that the conditions
(1)–(3) of Lemma 4.1 and the following conditions hold.

(5 ′) There is no n ∈ N and q ∈ Rn \ F such that for all i ≥ n, we have
(q, 1) ∈ δDn

(q, wi).

(5 ′′) There is no i ∈ N and q ∈ Ri \ F such that (q, 0) ∈ δDn
(q, wn) or such

that (q, 1) ∈ δDn
(q, wi) and (q,−1) ∈ δDn

(q, wi+1).
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Furthermore, if A is eventually 1-way, condition (5′′) is not required. 2

The optimized automaton construction to complement a very-weak 2NCA
is given in the following theorem.

Theorem 4.6 For every V2NCA A of size n, there is a 1NBA B that accepts
the complement of Lω(A) and has O(23nn) states. Moreover, if A is eventually
1-way then B has O(22nn) states. 2

Proof The proof is similar to the proof for Theorem 4.2. We construct a
1NBA that guesses the word R ∈ (2Q)ω from Lemma 4.5, locally checks that
the conditions (1)–(3) are fulfilled, and uses a focus and its Büchi acceptance
condition to check that condition (5′′) holds. We present the construction of
the 1NBA and then its correctness proof.

Construction Let A = (Q,Σ, δ, qI , F ) be a V2NCA. Let E := (Q\F )∪{∗}.
Furthermore, let < be a total ordering on the set E, where ∗ is the greatest
element. The function next : E → E maps the greatest element ∗ to the
smallest one and each of the other elements to the next greater one. We define
the NBA B := (P,Σ, η, pI , G) as follows.

• P := (2Q × 2Q × 2Q\F ×E) ∪ {pI}. The component in E is called focus.
It is used to find a state in Q \ F that can get trapped in a self-loop.

• G := 2Q × 2Q × 2Q\F × {∗}.

The transition function η is defined as follows. For the initial state pI ,
D = {0, 1}, and a ∈ Σ, we have ηD(pI , a) ∋ (R0, R1, R

′
0, ∗) if and only if the

following conditions hold.
1. qI ∈ R0.
2. For all d ∈ D, we have δdD(R0, a) ⊆ Rd.
3. For all p ∈ R0, we have ∅ 6|= δD(p, a).
4. For all q ∈ R0 \ F , we have (q, 0) /∈ δD(q, a).
5. R′

0 = {q ∈ R0 \ F | (q, 1) ∈ δD(q, a)}.

For the other states in P \ {pI}, D = {−1, 0, 1}, and a ∈ Σ, the transition
ηD

(
(R−1, R0, R

′
−1, s), a

)
contains (R0, R1, R

′
0, s

′) if and only if the following
conditions hold.

1. For all d ∈ D, we have δdD(R0, a) ⊆ Rd.
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2. For all p ∈ R0, we have ∅ 6|= δD(p, a).

3. s′ =

{

s if s ∈ R0 ∩ δ
1
D(s, a),

next(s) otherwise.

4. For all q ∈ R0 \ F , we have (q, 0) /∈ δD(q, a).
5. R′

0 = {q ∈ R0 \ F | (q, 1) ∈ δD(q, a)}.
6. For all q ∈ R′

−1, we have (q,−1) /∈ δD(q, a).

Correctness It remains to show that Lω(B) = Σω \ Lω(A).
Assume that w ∈ Lω(B). Let r = p0p1 . . . ∈ P ω be an accepting run of the

1-way automaton B on w.
It suffices to construct a word R ∈ (2Q)ω that fulfills the conditions (1)–

(3), (5′), and (5′′) of Lemma 4.5. By definition of the transition function,
p0 = pI and for all i > 0, each pi is a tuple of the form (Ai, Bi, si) ∈ P .
Define Ri := Ai+1, for all i ∈ N. By the same the arguments as in the proof
of Theorem 4.2, it follows that R fulfills the conditions (1)–(3). Moreover, R
fulfills condition (5′′) since for every i ∈ N and D = {−1, 0, 1}, there is no state
q in the set {q ∈ Ri \ F | (q, 1) ∈ δD(q, wi)} such that (q,−1) ∈ δD(q, wi+1).
It remains to show thatR fulfills condition (5′). For the sake of contradiction,

assume (5′) does not hold. Then, there is an n ∈ N and a state q ∈ Rn \F such
that (q, 1) ∈ δDi

(q, wi), for all i ≥ n. Therefore, there is a position k > n such
that sk = q. By the definition of the transition function, there is no l > k such
that sl 6= q. Hence, the run r is not accepting since G is not visited infinitely
often.

For the other direction, assume w /∈ Lω(A). Let R ∈ (2Q)ω be a word that
fulfills the conditions (1)–(3), (5′), and (5′′). We construct an accepting run of
B on w. We need the following definitions of the sequences R′ ∈ (2Q\F )ω and
s ∈ Eω. For i ∈ N, let R′

i := {q ∈ Ri \ F | (q, 1) ∈ δDi
(q, wi)}. Furthermore,

let s0 := ∗ and for i ∈ N, we define

si :=

{

si if si = Ri ∩ δ
1
Di
(si, wi),

next(si) otherwise.

We define the sequence r := p0p1 ∈ P ω, where p0 := pI and for i > 0, pi is the
tuple (Ri−1, Ri, R

′
i−1, si−1).

By construction, r is a run of B on w. We show that r is accepting. Assume
the opposite, i.e., G is not visited infinitely often. Then, by definition of the
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run, B gets trapped in a state q ∈ Q \ F with the E component of its states.
Therefore, there is a position n ∈ N such that (q, 1) ∈ δDi

(q, wi), for all i ≥ n.
Thus, condition (5′) holds.
We remark that we need the third component in a state because B forgets

the previously read letter. There is an alternative construction, namely, we
construct an automaton with the state space (2Q × 2Q × Σ× (Q \ F )) ∪ {pI}
that remembers the last letter with its third component of a state.
If A is eventually 1-way, the automaton B does not have to check (5′′).

Hence, we can remove the third component from B’s state space. �

If the eventually 1-way V2NCA whose language has to be complemented is
also locally 1-way, then we can further improve the construction from Theo-
rem 4.6. In particular, we replace condition (2) of Lemma 4.5 by condition (2′)
and then use the same construction technique as presented in Theorem 4.3.
We directly obtain the following theorem.

Theorem 4.7 For every locally and eventually 1-way V2NCA A with n states,
there is an 1NBA B that accepts the complement of Lω(A) and has O(|Σ| ·2nn)
states. 2

Finally, consider the case, where the very-weak nondeterministic co-Büchi
automaton whose language has to be complemented is 1-way. We further sim-
plify the construction from Theorem 4.7. In particular, we replace condition
(2′) of Lemma 4.5 by condition (2′′) and then use the same construction tech-
nique as presented in Theorem 2.7.
We point out that the idea of this construction is implicitly used in the

Gastin and Oddoux’s alternation-elimination construction [GO01, BCPR07]
that translates V1ABAs into NBAs, and in the Lange and Stirling’s focus
approach of the satisfiability checking algorithm for LTL formulas presented
in [LS01,DL05].

Theorem 4.8 For every V1NCA A with n states, there is a 1DBA B that
accepts the complement of Lω(A) and has O(2nn) states. 2

Proof Consider a V1NCA A = (Q,Σ, δ, qI , F ). Let E := (Q \ F ) ∪ {∗} and
let < be a total ordering on the set E, where ∗ is the greatest element. The
function next : E → E maps the greatest element ∗ to the smallest one and
all other elements to the next greater one.
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We define the 1DBA B := (2Q×E,Σ, η, ({qI}, ∗), 2
Q×{∗}

)
, where forR ⊆ Q,

s ∈ E, D ⊆ D, and a ∈ Σ, we have

ηD
(
(R, s), a

)
:=

{(
δ(R, a), s

)
if s ∈ R ∩ δ1D(s, a)

(
δ(R, a), next(s)

)
otherwise.

The V1NCA A accepts a word w if and only if there is a run that gets
trapped in a state q /∈ F . This is equivalent to the fact that the 1DBA B
detects the existence of such a run with its E component and rejects. �

4.1.3 Transition Systems Instead of Automata

In this section, we investigate an alternative model for representing word lan-
guages, namely, transition systems, which are used in state-of-the-art model
checkers that are based on the symbolic model checker SMV, see [McM92].
We show how to optimize the complementation constructions for locally and
eventually 1-way nondeterministic co-Büchi automata when the resulting rep-
resentation is a transition system rather than an automaton.
We start with the definition of a transition system. A transition system is

a quintuple T = (Q,Σ,∆, I, F ), where Q is the set of states, Σ is a finite,
nonempty alphabet, ∆ ⊆ (Q × Σ) × (Q × Σ) is the transition relation, I ⊆
(Q×Σ) are the initial locations, and F ⊆ Q is a Büchi acceptance condition. A
location is a tuple in Q×Σ. A run of a transition system on a word w ∈ Σω is a
sequence of locations (q0, w0)(q1, w1) . . . ∈ (Q×Σ)ω such that for all i ∈ N, we
have ((qi, wi), (qi+1, wi+1)) ∈ ∆. The run is accepting if the word q0q1 . . . ∈ Qω

contains infinitely many states from F . The word language of a transition
system T is Lω(T ) := {w ∈ Σω | there is an accepting run of T on w}. The
size of T is the number of its states |Q|.

Remark 4.9 The definition of the size of a transition system is motivated
from model checking with symbolic model checkers like SMV. Since the transi-
tion system of a (negated) specification S shares the alphabet of the transition
system (without fairness constraints) of its system modelM , the overall search
space is just (QM × ΣM) × QS, where QM is the state set of the system, ΣM
is the system alphabet, and QS is the state set of the specification S. 2

Example 4.10 Consider the set of propositions P := {a, b} and the alphabet
Σ = 2P . Figure 4.1 depicts a Büchi automaton and a transition system that
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b

a, b b

a, b b

Figure 4.1: Eventually always proposition b.

b

a

a b

a b

Figure 4.2: Infinitely often proposition b.

accepts all words over Σ, where eventually always b occurs. We draw states
that belong to the Büchi acceptance set by double lines.
Another example is presented in Figure 4.2. It depicts a Büchi automa-

ton and a transition system that accepts all words over Σ that contain the
proposition b at infinitely many positions.

Lemma 4.11 We can translate every 1NBA into a language-equivalent tran-
sition system of the same size. 2

Proof Let A = (Q,Σ, δ, qI , F ) be a 1NBA. We define the transition system
T = (Q,Σ,∆, QI , F ) with

• QI := {(q, a) | q ∈ δ{0,1}(qI , a), for some q ∈ Q, a ∈ Σ} and

• ∆ := {((q, a), (q′, a′)) | q′ ∈ δ{−1,0,1}(q, a
′), for some q, q′ ∈ Q, a, a′ ∈ Σ}.

We show that Lω(T ) = Lω(A). Let w ∈ Σω be a word. Consider an
accepting run (q0, w0)(q1, w1) . . . of T on w. We show that qIq0q1 . . . is a run
of A on w. Since (q0, w0) ∈ QI , we have q0 ∈ δ{0,1}(qI , a). Now, consider
an arbitrary position i ∈ N. Since ((qi, wi), (qi+1, wi+1)) ∈ ∆, we have qi+1 ∈
δ{−1,0,1}(qi, wi+1). Obviously qIq0q1 . . . is accepting. Hence, w ∈ Lω(A).
We show the other direction. Let q0q1 . . . be an accepting run of A on w.

We show that (q1, w0)(q2, w1) . . . is an accepting run of T on w. Since q1 ∈
δ{0,1}(qI , w0), we have (q1, w0) ∈ QI . Next, consider an arbitrary position i > 0.
Since qi+1 ∈ δ{−1,0,1}(qi, wi), we have ((qi, wi−1), (qi+1, wi)) ∈ ∆. Obviously,
qIq0q1 . . . is accepting. Hence, w ∈ Lω(A). �
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In the remainder of this section, we show that the transition systems ob-
tained from the constructions for complementing the languages of locally and
eventually 1-way 2NCAs have the same worst-case sizes as the transition sys-
tems obtained from the constructions for complementing the languages of
1NCAs. Recall the complementation constructions from Theorem 4.7 and The-
orem 4.3 that translate locally and eventually 1-way 2NCAs into 1NBAs. One
component in the states of these 1NBAs is used to guess the letter that will oc-
cur after the letter that is currently read. When translating those 1NBAs into
transition systems, this component is not needed any more since the transition
systems always see the letter that will occur next in the transition relation.
So, while a 1NBAs has to guess the correct letter in each step and addition-
ally, has to store its guess in its state for checking afterwards that its guess
has been correct, a transition system is able to directly move to the correctly
labeled successor state. Hence, when translating the 1NBAs obtained from
Theorem 4.7 and Theorem 4.3 into transition systems, we may dispose of the
component in the state space that is used for storing the guessed letter. We
state this observation in the next theorem.

Theorem 4.12 For every locally and eventually 1-way 2NCA A of size n,
there is a transition system T that accepts the complement of Lω(A) and has
O(3n) states. If A is very weak then T has just O(2nn) states. 2

State-of-the-art symbolic model checkers like NuSMV use transition systems
for representing the specification. Theorem 4.12 states that the worst-case
blow-ups for complementing 1NCAs and eventually 1-way 2NCAs are both in
O(3n), where n is the size of the input automata. It follows that alternation-
elimination translations from 1ABAs and eventually 1-way ABAs to transition
systems share the same worst-case bound. In the following section, we exploit
this fact when translating logics with past operators to transition systems.

4.2 The Linear-Time Temporal Logic PPSL

In this section, we introduce the linear-time temporal logic PPSL. We first
define the logic and illustrate its use by formalizing some properties in PPSL.
Then, we present a translation from PPSL to nondeterministic Büchi au-
tomata. Finally, we discuss succinctness properties of PPSL with respect to
other logics used in practice.
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4.2.1 The Logic PPSL

PPSL extends the linear-time core of the IEEE standard Property Specification
Language (PSL) [Psl05] by past operators. PSL is an descendant of the pop-
ular linear-time logic LTL [Pnu77] with operators that handle semi-extended
regular expressions (SEREs), which are essentially regular expressions with an
operator to represent the intersection of regular languages. As PSL, the logic
PPSL consists of two layers: a (semi-extended) regular-expression layer and
a logic layer that combines semi-extended regular expressions with temporal
operators. In the following, we define each layer separately.

Semi-Extended Regular Expression Layer Let P be a set of propo-
sitions and Σ := 2P a finite alphabet. A semi-extended regular expression
(SERE) over P is given by the following grammar.

r ::= ε | b | r ∪ r | r ∩ r | r ; r | r : r | r+,

where b ∈ B(P). We call the ∩ the intersection operator, ∪ the union operator,
; the concatenation operator, : the fusion operator, and + the plus operator.
Furthermore, for a SERE r, we define the Kleene star operator r∗ := ε ∪ r+.
A regular expression (RE) is a SERE that does not contain the intersection
operator ∩.
The language of a SERE is inductively defined. Let b ∈ B(P) and r, s are

SEREs.

L∗(ε) := {ε}.

L∗(b) := {w ∈ Σ∗ | |w| = 1 and w0 fulfills b}.

L∗(r ∪ s) := {w ∈ Σ∗ | w ∈ L∗(r) or w ∈ L∗(s)}.

L∗(r ∩ s) := {w ∈ Σ∗ | w ∈ L∗(r) and w ∈ L∗(s)}.

L∗(r ; s) := {vw ∈ Σ∗ | v ∈ L∗(r) and w ∈ L∗(s)}.

L∗(r : s) := {vaw ∈ Σ∗ | a ∈ Σ, va ∈ L∗(r), and aw ∈ L∗(s)}.

L∗(r+) := {w ∈ Σ∗ | ∃n ∈ N : w = v0 . . . vn−1 and ∀j ∈ [n] : vi ∈ L∗(r)}.

The size |r| of a SERE r is its syntactic length.

Logic Layer Now, we define PPSL. The syntax of a PPSL formula over P
is given by the following grammar.

ϕ ::= b | ¬ϕ | ϕ ∨ ϕ | ϕ U ϕ | ϕ S ϕ | r� ϕ | r−−−� ϕ,
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where b ∈ B(P) and r is a SERE. We denote the set of PPSL formulas whose
SEREs are all REs by PPSLre . For a SERE r and formulas ϕ and ψ, we define
the standard syntactic abbreviations ϕ∧ψ := ¬(¬ϕ∨¬ψ), ϕRψ := ¬(¬ϕU¬ψ),
ϕTψ := ¬(¬ϕS¬ψ), r�ϕ := ¬(r�¬ϕ), and r−−−�ϕ := ¬(r−−−�¬ϕ). Using
these abbreviations, we can obviously translate any PPSL formula into positive
normal form, i.e., negations occur only in front of propositional-logic formulas.
Note that such a translation might double the size of the formula. Additionally,
we introduce the following operators as syntactic sugar: Oϕ := tt; tt� ϕ,
Yϕ := tt; tt−−−� ϕ, Zϕ := ¬Ytt ∨ Yϕ, Fϕ := tt U ϕ, and Gϕ := ff R ϕ.
A PSL formula is a PPSL formula that does not use the past operators S

and −−−�. We denote the set of PSL formulas whose SEREs are all REs by
PSLre . Next, we define the well known linear-time temporal logic [Pnu77]. A
PLTL formula is a PPSL formula that contains the operators �, �, −−−�,
and −−−� only in a restricted way. Namely, only the SERE “tt ; tt” is allowed.
An LTL formula is a PLTL formula that has no Y, S and T operator.
We interpret PPSL formulas over infinite word over Σ. For a word w ∈ Σω

and a position i ∈ N, we define the semantics of PPSL as follows.

(w, i) |= b iff wi satisfies b
(w, i) |= ϕ ∨ ψ iff (w, i) |= ϕ or (w, i) |= ψ
(w, i) |= ¬ϕ iff (w, i) 6|= ϕ
(w, i) |= ϕ U ψ iff ∃k ≥ i : (w, k) |= ψ and ∀i ≤ j < k : (w, j) |= ϕ
(w, i) |= ϕ S ψ iff ∃k ≤ i : (w, k) |= ψ and ∀k < j ≤ i : (w, j) |= ϕ
(w, i) |= r� ϕ iff ∃k ≥ i : wi..k ∈ L∗(r) and (w, k) |= ϕ
(w, i) |= r−−−� ϕ iff ∃k ≤ i : wk..i ∈ L∗(r) and (w, k) |= ϕ

The language of a PPSL formula ϕ is Lω(ϕ) := {w ∈ Σω | (w, 0) |= ϕ}. Two
formulas ϕ and ψ are initially equivalent if Lω(ϕ) = Lω(ψ). As for SEREs, the
size |ϕ| of a PPSL formula ϕ is its syntactic length. We write Sub(ϕ) for the
set of sub-formulas of a PPSL formula ϕ.

Remark 4.13 In the PSL standard [Psl05], we also have atomic formulas of
the form ended(r) and prev(r), where r is a SERE. For instance, the word
w ∈ Σω satisfies ended(r) at position i if and only if there is a subword u of
w that ends at i and u ∈ L∗(r). The operators ended and prev can be seen as
restricted variants of the past operator−−−�. For instance, in PPSL, if ε /∈ L∗(r),
ended(r) is syntactic sugar for r−−−�tt, and tt otherwise. Observe that ended and
prev can only be applied to SEREs, and, in contrast to −−−�, it is not possible

48



4.2. The Linear-Time Temporal Logic PPSL

to define the classical past operators Y, H, and O with them. We also remark
that the literature, for example, [BDBF+05, CRST06, Lan07, PZ06] usually
considers the essential core of the PSL standard to which the operators ended
and prev do not belong. We follow this convention, this means, the formulas
in our fragment PSL of PPSL do not contain ended(r) and prev(r). Finally,
we remark that the automata constructions [BDBF+05] for PSL cannot cope
with the operators ended and prev, which are handled by our construction in
Corollary 4.18 for PPSL. 2

Example 4.14 A standard example for showing that the past operators of
PLTL can lead to more intuitive specifications is G(grant → Orequest), this
means, every grant is preceded by a request [LPZ85]. An initially equivalent
LTL formula is requestR(¬grant∨request). Let us now illustrate the beneficial
use of SEREs and past operators. Suppose that a request is not a single event
but a sequence of events, for example, a request consists of a start event that is
later followed by an end event such that no cancel event happens between the
start and the end event. Such sequences are naturally described by the SERE
(start ; tt∗ ;end)∩ (¬cancel)∗. Using this SERE and the new past operator−−−�,
we can easily express the property in PPSL that every grant is preceded by a
request:

G
(
grant →

(
((start ; tt∗ ; end) ∩ (¬cancel)∗) ; tt∗ −−−� tt

))
. (4.1)

Note that according to the semantics of the operator −−−�, the end event has to
happen before or at the same time as the grant event. Alternatively, we can
express the property in PLTL as

G
(
grant → O

(
end ∧ ¬cancel ∧ Y(¬cancel S (start ∧ ¬cancel))

))
. (4.2)

Although debatable, we consider that the PPSL formula (4.1) is easier to
understand than the PLTL formula (4.2). In PSL, we can express the property
as norequest�¬grant , where the SERE norequest describes the complement
of the language L

(
tt∗ ; ((start ; tt∗ ; end) ∩ (¬cancel)∗) ; tt∗

)
, that is, norequest

is the SERE
(
(¬start)∪(start∧cancel)∪(start ;(¬end)∗;cancel)

)∗
;
(
ε∪(start∧end)

)
;(¬end)∗.

Note that in general, complementation of SEREs is difficult and can result in
an exponential blowup with respect to the size of the given SERE. 2
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Example 4.15 Let us give another example to illustrate the usefulness of past
operators, in particular, the operator −−−�. For n ≥ 1 and i ∈ [n], consider the
PPSL formula

ϕn,i := G
(
send i →

(
switchi ∩ (init ; (¬init)∗)−−−� tt

))
,

where switchi counts the number of switch events modulo n, this means,

switchi :=
(
(¬switch)∗ ; switch ; . . . ; (¬switch)∗ ; switch
︸ ︷︷ ︸

n times

)∗
;

(¬switch)∗ ; switch ; . . . ; (¬switch)∗ ; switch
︸ ︷︷ ︸

i times

;(¬switch)∗.

(4.3)
Intuitively, ϕn,i expresses the property that the process i is only allowed to
send a data item if it possesses the token. The process i possesses the token
if and only if k switch events with k ≡ i mod n occurred previously since the
last init event. Note that this property is not expressible in LTL since it is
not star-free (see, for example, [DG07]).
The negation of the PSL formula

(
(¬init)∗� send i

)
∨ F

(
init ∧

(
(tt ; (¬init)∗) ∩ (

⋃

j 6=i switchj)� send i
))

(4.4)
is initially equivalent to ϕn,i. Note that the size of the formula (4.4) is quadratic
in n, whereas the size of the formula (4.3) is only linear in n. In Section 4.2.3,
we prove that PPSL is exponentially more succinct than PSL. 2

4.2.2 From PPSL to Automata

In this section, we translate PPSL formulas into language-equivalent Büchi
automata. We first recall constructions for the regular layer. The following
lemma summarizes standard constructions for translating SEREs and REs into
NFAs and for computing the mirror language of an NFA, see [BDBF+05,HU79].
Themirror language of a word language L ⊆ Σ∗ is defined as the set {wn . . . w0 |
w0 . . . wn ∈ L}.

Lemma 4.16 Let s be a SERE, r a RE, and A a 1NFA of size n each.

1. We can construct an NFA A′ of size 2n with L∗(A′) = L∗(s).
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2. We can construct an NFA A′ of size n with L∗(A′) = L∗(r).

3. We can construct an NFA A′ of size n that accepts the mirror language
of L∗(A). 2

The following theorem shows how we can translate a PPSLre formula into a
language-equivalent locally and eventually 1-way 2ABA.

Theorem 4.17 We can translate every PPSLre formula that is in positive
normal form, and is of size n into a language-equivalent locally and eventually
1-way 2ABA with at most n states. Furthermore, for PSLre formulas the 2ABA
is 1-way and for PLTL formulas the 2ABA is very weak. 2

Proof Let ϕ be a PPSLre formula. We translate this formula into a language-
equivalent locally and eventually 1-way 2ABA.
For every RE r in ϕ, let Ar and A′

r be the corresponding automata con-
structed according to Lemma 4.16 such that L(r) = L(Ar) and A′

r accepts
the mirror language of L(r). We assume that the state sets of these automata
are pairwise disjoint. In the following, we split the proof into several parts:
construction of the 2ABA, correctness of the construction, proof of being even-
tually 1-way, and finally, translation to an 1NBA.

Construction Next, we define the 2ABA A = (Q,Σ, δ, qI , F ). We define
the set of states as Q := Sub(ϕ) ∪ Q̂, where

Q̂ :={s ⋆→ ψ | ⋆→ ∈ {�,�}, r ⋆→ ψ ∈ Sub(ϕ), and s is a state in Ar}∪

{s ⋆→ ψ | ⋆→ ∈ {−−−�,−−−�}, r ⋆→ ψ ∈ Sub(ϕ), and s is a state in A′
r}.

The initial state qI := ϕ. We define the set of accepting states as

F :={γ R ψ | γ R ψ ∈ Sub(ϕ)}∪

{s� ψ | r� ψ ∈ Sub(ϕ) and s is a state in Ar}.

It remains to define the transition function δ. The following definitions
are similar to the standard construction for translating LTL into alternating
automata. Let a ∈ Σ and D ⊆ D.

• For b ∈ B(P), we define

δD(b, a) :=

{

tt if a satisfies b,

ff otherwise.
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• For the Boolean connectives ∧ and ∨, we define

δD(γ ∧ ψ, a) := (γ, 0) ∧ (ψ, 0) and δD(γ ∨ ψ, a) := (γ, 0) ∨ (ψ, 0).

• For the binary temporal operators U, R, S, and T, we define

δD(γ U ψ, a) := (ψ, 0) ∨
(
(γ, 0) ∧ (γ U ψ, 1)

)
,

δD(γ R ψ, a) := (ψ, 0) ∧
(
(γ, 0) ∨ (γ R ψ, 1)

)
,

δD(γ S ψ, a) := (ψ, 0) ∨
(
(γ, 0) ∧ (γ S ψ,−1)

)
, and

δD(γ T ψ, a) :=

{

(ψ, 0) ∧
(
(γ, 0) ∨ (γ T ψ,−1)

)
if −1 ∈ D,

(ψ, 0) otherwise.

Now, we turn to the transitions for the subformulas with an RE. We follow
the construction given in [BDBF+05] for PSL.

• The state r� ψ ∈ Sub(ϕ) is used to start a simulation of the NFA
Ar = (S,Σ, η, sI , E) on the input word. If the simulation reaches a final
state of the NFA, Aϕ may terminate the simulation and proceed with
the state ψ. Formally, we define δD(r� ψ, a) := (sI� ψ, 0) and for
s ∈ S,

δ(s� ψ, a) :=

{∨

t∈η(s,a)(t� ψ, 1) ∨ (ψ, 0) if η(s, a) ∩ E 6= ∅,
∨

t∈η(s,a)(t� ψ, 1) otherwise.

The transitions for a subformula r−−−� ψ ∈ Sub(ϕ) are defined similarly.
Instead of simulating the NFA Ar, Aϕ simulates the NFA A′

r, where it
moves the read-only head to the left instead of to the right.

• If the state is α�ψ ∈ Sub(ϕ), the automaton Aϕ simulates a run of the
NFA Ar = (S,Σ, η, sI , E) viewed as a universal automaton. Whenever
the simulation reaches a final state, Ar has to proceed with the state ψ.
Formally, we define δD(r� ψ, a) := (sI� ψ, 0) and for s ∈ S,

δD(s� ψ, a) :=

{∧

t∈η(s,a)(t� ψ, 1) ∧ (ψ, 0) if η(s, a) ∩ E 6= ∅,
∧

t∈η(s,a)(t� ψ, 1) otherwise.

The transitions for a subformula r−−−� ψ ∈ Sub(ϕ) are similarly defined.
However, if the read-only head is at the beginning of the input word, Ar
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can stop the simulation. Formally, for the NFA A′
r = (S,Σ, η, sI , E) and

s ∈ S, we define δD(r−−−� ψ, a) := (sI −−−� ψ, 0) and for −1 /∈ D, we have

δD(s−−−� ψ, a) :=

{

(ψ, 0) if η(s, a) ∩ E 6= ∅,

tt otherwise.

For −1 ∈ D, we have

δD(s−−−� ψ, a) :=

{∧

t∈η(s,a)(t−−−� ψ,−1) ∧ (ψ, 0) if η(s, a) ∩ E 6= ∅,
∧

t∈η(s,a)(t−−−� ψ,−1) otherwise.

We remark that the ε-transitions in our construction (i.e., the transitions of
Aϕ in which the read-only head does not move) can be easily eliminated by
replacing a proposition (s, 0) that occurs in δ(q, b) by δ(s, b), where q, s ∈ Q
and b ∈ Σ.
Note that from the definition of the state set Q and Lemma 4.16, we directly

obtain |A| ∈ O(n). By inspecting A’s transition function, we also see that A
is locally 1-way.

Correctness In the remainder of the proof, we show the correctness of the
given construction. In particular, we prove that for every word w ∈ Σω,
subformula ψ ∈ Sub(ϕ), and position i ∈ N, the following holds

(w, i) |= ψ if and only if A accepts w from configuration (ψ, i).

This equivalence immediately implies Lω(A) = Lω(ϕ). We prove the equiva-
lence by induction over the formula structure of ψ. Let w ∈ Σω.
Consider the base case ψ = b, for some b ∈ B(P). Let i ∈ N. By definition,

(w, i) |= b is equivalent to “wi satisfies b”. By construction, this is equivalent
to the fact that A accepts w from configuration (b, i).
Consider the case ψ = ψ1∧ψ2. Let i ∈ N. Assume (w, i) |= ψ, i.e, (w, i) |= ψ1

and (w, i) |= ψ2. By the induction hypothesis, this is equivalent to the fact
that A accepts w from configuration (ψ1, i) and from configuration (ψ2, i). By
construction, this is equivalent to the fact that A accepts w from configuration
(ψ1 ∧ ψ2, i). The step case for ψ = ψ1 ∨ ψ2 is analogous.
Consider the case ψ = ψ1 U ψ2. Let i ∈ N. Assume (w, i) |= ψ1 U ψ2,

i.e., there is a k ≥ i such that (w, k) |= ψ2 and for all i ≤ j < k, we have
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(w, j) |= ψ1. By the induction hypothesis, this is equivalent to the fact that
(i) there is a k ≥ i such that A accepts w from configuration (ψ2, k) and A
accepts w from configuration (ψ1, j), for all i ≤ j < k. We claim that this is
equivalent to the fact that (ii) A accepts w from configuration (ψ1 U ψ2, i).
We first show the direction from left to right. Assume that (i) holds. By
the induction hypothesis, A accepts w from configuration (ψ2, k). Thus, by
definition of the transition functions, A also accepts w from configuration (ψ1U

ψ2, k). Furthermore, by assumption and the induction hypothesis, A accepts
w from configuration (ψ1, k − 1). Thus, by the definition of the transition
function, A also accepts w from configuration (ψ1 U ψ2, k − 1). If we iterate
this argumentation, we infer that A accepts wj from configuration (ψ1Uψ2, j),
for all i ≤ j < k. Thus, (ii) holds.
For the other direction, assume that the condition (ii) holds. Let r be an
accepting run of A on w from configuration (ψ1 U ψ2, i). For the sake of
contradiction, we additionally assume that (i) does not hold, i.e., we have
(¬i): there is no k ≥ i such that A accepts w from configuration (ψ2, k) and A
accepts from configuration (ψ1, j), for all i ≤ j < k. From (¬i), it follows that
A does not accept w from configuration (ψ2, i). By assumption, A accepts w
from configuration (ψ1 Uψ2, i). Hence, by construction of A, it also accepts w
from configurations (ψ1, i) and w from configuration (ψ1 U ψ2, i + 1). Again,
since (¬i) holds and A does not accept w from configuration (ψ2, i+1), it must
accept w from configuration (ψ2, i+1) and w from configuration (ψ1Uψ2, i+2).
If we repeat this argumentation, we obtain the following infinite rejecting path
(ψ1 U ψ2, i)(ψ1 U ψ2, i + 1)(ψ1 U ψ2, i + 2) . . . in the run r of A on w from
configuration (ψ1 U ψ2, i). The existence of such a path is a contradiction to
the fact that A accepts w from configuration (ψ1 U ψ2, i) by the run r. The
case for ψ = ψ1 S ψ2 is analogous.
Consider the case ψ = ψ1 R ψ2. Let i ∈ N. Assume (w, i) |= ψ1 R ψ2, i.e.,

for all k ≥ i, either (w, k) |= ψ2 or there is a j with i ≤ j < k such that
(w, j) |= ψ1. By the induction hypothesis, this is equivalent to the fact that
(i) for all k ≥ i, either A accepts w from configuration (ψ2, k) or there is a j
with i ≤ j < k such that A accepts w from configuration (ψ1, j). We claim
that this is equivalent to the fact that (ii) A accepts w from configuration
(ψ1 R ψ2, i).
We first show the direction from left to right. Assume (i) holds. It is easy
to see that (i) is equivalent to the following statement. Either, (a) A accepts
w from configuration (ψ2, k), for all k ≥ i, or (b) there is a k ≥ i such that
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A accepts from (ψ1, k) and for all j with i ≤ j ≤ k, we have A accepts from
(ψ2, j). Assume that the first case holds. We consider the run of A from
configuration (ψ1 Rψ2, k), where A behaves as follows. Whenever A arrives in
a configuration (ψ1Rψ2, l), for l ≥ k, it moves to configuration (ψ2, l) and (ψ1R

ψ2, l + 1) respecting the transition function. By assumption, A accepts from
every configuration (ψ2, l), for l ≥ k. Thus, the run of A from configuration
(ψ1 R ψ2, k) is accepting if the infinite path (ψ1 R ψ2, k)(ψ1 R ψ2, k + 1) . . . is
accepting, as well. This path is accepting since ψ1Rψ2 is an accepting state of
A. So, A accepts w from (ψ1 Rψ2, i). Assume that the second case holds. Let
k ≥ i be a position such that A accepts w from configuration (ψ1, k) and for
all j with i ≤ j ≤ k, A accepts w from configuration (ψ2, j). Since A accepts
from (ψ2, k) and from (ψ1, k), it follows that by the definition of the transition
function, A accepts from (ψ1 R ψ2, k). Again, by assumption and the previous
step, A accepts from (ψ2, k− 1) and from (ψ1 Rψ2, k). Thus, by the definition
of the transition function, A accepts from (ψ1 R ψ2, k − 1). If we iterate this
argumentation, we conclude that for all j with i ≤ j ≤ k, we have A accepts
from (ψ1 R ψ2, j). Thus, A accepts w from configuration (ψ1 R ψ2, i).
Now, we show the other direction by contraposition. Assume that (i) does
not hold. That is, (¬i) there is a k ≥ i such that A does not accept from
(ψ2, k) and for all j with i ≤ j < k we have A does not accept (ψ1, j). Let
k ≥ i be the least number such that the (¬i) holds. In particular, A does not
accept w from (ψ2, k). By the definition of the transition function, A does not
accept w from configuration (ψ1Rψ2, k). By assumption, A does not accept w
from configuration (ψ1, k − 1). Thus, A does not accept w from configuration
(ψ1 R ψ2, k − 1), too. If we repeat this argument, we infer that A does not
accept w from configuration (ψ1 R ψ2, j), for all i ≤ j < k. Thus (ii) does not
hold, and we are done. The step case for ψ = ψ1 T ψ2 is analogous.
Consider the case ψ = r� γ. Let i ∈ N. Assume (w, i) |= ψ, i.e, there

is a position k ≥ i such that wi..k ∈ L(r) and (w, k) |= γ. By the induction
hypothesis, this is equivalent to the fact that there is a k ≥ i such that wi..k ∈
L(α) and A accepts w from configuration (γ, k). That is, A accepts from
configuration (r� γ, i) if and only if there is a position k such that A has
an accepting run on wi..k and A accepts from (γ, k). It is easy to see that by
the definition of the transition function, this is equivalent to the fact that A
accepts w from configuration (r� γ, i). The step case for ψ = α −−−� γ is
analogous.
Consider the case ψ = r� γ. Let i ∈ N. Assume (w, i) |= ψ, i.e, for all
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positions k ≥ i such that wi..k ∈ L(α), we have (w, k) |= γ. By the induction
hypothesis, this is equivalent to the fact that for all positions k ≥ i such that
wi..k ∈ L(α), we have A accepts w from configuration (γ, k). This is equivalent
to the fact that there exists a run of A on w from configuration (r�γ, i) such
that for every path in the run is labeled by (q0, i)(q1, i + 1) . . . the following
holds: for all j ∈ N such that (q0, i) . . . (qj , i+ j) is an accepting run of A on
wi..j, the automaton A accepts w from (qj , i + j). That is equivalent to the
fact that A accepts w from configuration (r�γ, i). The step case ψ = r−−−�γ
is analogous.

Eventually 1-Wayness We show that A is eventually 1-way. For the ease
of exposition, we assume that the ε-moves of A from the states of the form
r⋆α are eliminated, where r is a SERE and ⋆ ∈ {�,−−−�,�,−−−�}. Let Q− :=
{q ∈ Sub(ϕ) | q is of the form αSβ or αTβ} ∪ {q ∈ Q̂ | q is of the form s−−−�
α or s−−−� α} denote the states that are built by past operators.
For defining the partitioning of the state set Q, we need the following func-

tion that assigns weights to states.

weight(q) :=

{

2|Sub(q)|+ 1 if q ∈ Q−,

2|Sub(q)| otherwise.

Let n := 2|Q| + 1. Let (Qi)i≤n be a partitioning of Q, where for i ≤ [n], we
define Qi := {q | weight(q) = i}.
Let p, q ∈ Q, D ⊆ D, d ∈ D, and a ∈ Σ such that (q, d) ∈ δD(p, a). It suffices

to show the following claim: if (weight(p) is even and d ≤ 0) or (weight(p) is
odd and d ≥ 0) then weight(q) < weight(p).
Consider the case p ∈ Q−. We have weight(p) is odd. Assume d ≥ 0. By

the definition of the transition function, d 6= 1. It follows that q ∈ Sub(p) and
hence weight(q) < weight(p).
Consider the case p ∈ Q\Q−. We have weight(p) is odd. Assume d ≤ 0. By

the definition of the transition function, d 6= −1. It follows that q ∈ Sub(p)
and hence weight(q) < weight(p). �

Finally, we translate the locally and eventually 1-way 2ABA A obtained
from the PPSL formula into a language-equivalent 1NBA. Using our scheme
for removing alternation and appropriate complementation constructions from
Section 4.1, we directly obtain the following result.
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PLTL PPSLre PPSL

no past operators O(2nn) O(3n) O(32
n

)
with past operators O(2m · 2nn) O(2m · 3n) O(2m · 32

n

)

Table 4.2: Sizes of 1NBAs obtained from PPSL formulas.

Corollary 4.18 Let ϕ be a PPSL formula in positive normal form that has
m propositions and is of size n. We can translate the formula into a language-
equivalent 1NBA A with

|A| ∈







O(2nn) if ϕ is an LTL formula,

O(2m · 2nn) if ϕ is a PLTL formula,

O(3n) if ϕ is a PSLre formula,

O(2m · 3n) if ϕ is a PPSLre formula,

O(32
n

) if ϕ is a PSL formula,

O(2m · 32
n

) if ϕ is a PPSL formula.
2

Table 4.2 summarizes the worst-case bounds of the 1NBAs for the correspond-
ing formulas with m propositions and of size n that have no past operators,
in the first line, and the bounds for formulas that have past operators, in the
second line.

4.2.3 Succinctness Results

In this section, we examine several succinctness gaps between the logics that we
have introduced in Section 4.2.1. Let L and L′ be two logics from Section 4.2.1.
We call L exponentially more succinct than L′, if there is a family of L formulas
(ϕn)n>0 such that for every i > 0 and every L′ formula ψ that is initially
equivalent to ϕn, the size of ψ is exponential in the size of ϕn. The language
L is double-exponentially more succinct than L′ if ψ is double-exponential in
the size of ϕn. Figure 4.3 summarizes the results of this section. For the sake
of readability, we define 2x0 := x and 2xk := 22

x
k−1, for k > 0.

We proceed as follows. First, we recall a result by Markey to obtain suc-
cinctness gaps between PSL and PSLre and between PPSLre and PSLre. Then,
we present a novel result to obtain succinctness gaps between PPSL and the
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PPSL PSL

PPSLre PSLre

PLTL LTL

exponential

Theorem 4.24

exponential

Lemma 4.20

double exponential
Theorem 4.25

exponential
Lemma 4.20

Figure 4.3: Succinctness gaps.

logics PSL, PSLre, and LTL. The proof technique for our new result has a sim-
ilar flavor to Markey’s proof in [Mar03]. However, our proof is more involved
since we must take SEREs into account.

Gaps Inferred from Markey’s Result In the following, let n > 0, Pn be
the set of propositions {p0, . . . , pn}, and Σn be the alphabet 2Pn . Consider the
following language that states that for any position, p0’s truth value is equal to
its corresponding truth value at the initial position whenever the truth values
of the propositions p1, . . . , pn are equal to the corresponding truth values at
the initial position.

Mn consists of all words w ∈ Σωn such that for every position i ∈ N,
we have wi ∩ {p0} = w0 ∩ {p0} whenever wi \ {p0} = w0 \ {p0}.

The next theorem directly follows from Markey’s proof in [Mar03].

Theorem 4.19 Let L be a logic such that for all n > 0 there is an L formula
of size O(n) that describes Mn. Let L′ be a temporal logic such that

1. L′ has no past operators,

2. L′ has the generally operator G, and

3. every L′ formula of size m can be translated into a language-equivalent
1NBA of size 2O(m).

Then, the logic L is exponentially more succinct than the logic L′. 2

Lemma 4.20 PSL and PPSLre are exponentially more succinct than PSLre

and LTL. 2
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4.2. The Linear-Time Temporal Logic PPSL

Proof Let n > 0 be a natural number. We present a PSL and a PLTL
formula that are linear in n and describe the language Mn. The PSL formula
is r� ff, where r is the SERE

(
(p0 ; tt

∗ ; ¬p0) ∪ (¬p0 ; tt
∗ ; p0)

)
∩

⋂

1≤i≤n

(
(pi ; tt

∗ ; pi) ∪ (¬pi ; tt
∗ ; ¬pi)

)
.

The PLTL formula, which is also a PPSLre formula, is

G
( ∧

1≤i≤n

(pi ↔ OHpi) → (p0 ↔ OHp0)
)

By Theorem 4.19, we obtain the succinctness gaps. �

Novel Construction and Gaps Let us now turn to the succinctness gaps
between PPSL and the logics PSL, PSLre, and LTL. For this, we first introduce
n-counting words, which can be defined in LTL by formulas of size O(n). In
the following, let n > 0, Pn be the set {c0, . . . , cn−1, p, q} of propositions, and
Σn the alphabet 2Pn . The n-value of the letter b ∈ Σn is

valn(b) :=
∑

0≤i<n

2c
′
i with c′i :=

{

1 if ci ∈ b,

0 otherwise.

In other words, the n-value of b is obtained by reading c0, . . . , cn−1 as bits of
a positive integer in binary representation. A word w ∈ Σωn is n-counting if
valn(w0) = 0 and valn(wi+1) ≡ valn(wi) + 1 mod 2n, for all i ∈ N.

Lemma 4.21 For every n > 0, there is an LTL formula countn of size O(n)
such that Lω(countn) ⊆ Σωn is the language of n-counting words. 2

Proof Recall that the temporal operators G and X can easily be defined in
PSL and PSLre by using the operator�.
We define countn as the LTL formula
( ∧

0≤i<n

¬ci
)
∧ G

(
¬Xc0 ↔ c0

)
∧

∧

1≤i<n

G
(
Xci →

(
ci ↔ (ci−1 → Xci−1)

))
.

Note that for i with 1 ≤ i < n, the formula ci ↔ (ci−1 → Xci−1) is equivalent to
the formula

(
ci∧¬carry i−1

)
∨
(
¬ci∧carry i−1

)
, where carryi−1 := ci−1 → Xci−1.

It is easily checked that w ∈ Σωn is a model of countn if and only if w is n-
counting. �
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An n-segment of a word w ∈ Σωn is a subword v = wi . . . wi+2n−1 such that
i ≡ 0 mod 2n, for some i ∈ N. The n-segment v is initial if i = 0. For
a proposition r ∈ {p, q}, the words u, v ∈ Σ∗

n are r-equal if |u| = |v| and
r ∈ ui ⇔ r ∈ vi, for all i ∈ N with i < |v|. In other words, the projection of
two r-equal words onto r yields the same word. Let Ln and L

′
n be the following

two languages:

• Ln consists of the n-counting words w ∈ Σωn such that if an n-segment of
w is p-equal to the initial n-segment of w then they are also q-equal.

• L′
n consists of the n-counting words w ∈ Σωn such that if the n-segments

u and v of w are p-equal then they are also q-equal.

The languages Ln and L′
n have the following properties.

Lemma 4.22 For every n > 0, there is a PPSL formula ϕn of size O(n) such
that Lω(ϕn) = Ln. 2

Proof First, we define the SERE sameposn such that for every subword v ∈
Σ∗
n of an n-counting word w ∈ Σωn , it holds that v ∈ Lω(sameposn) if and only

if v = wi..j, for some i, j ∈ N with i < j and i ≡ j mod 2n. Note that since
v is a finite subword of an n-counting word, one only has to assert that the
n-values of the first and the last letter of v are equal. We define

sameposn :=
⋂

0≤i<n

(
(ci ; tt

∗ ; ci) ∪ (¬ci ; tt
∗ ; ¬ci)

)
.

With the SERE sameposn at hand, we easily define a PPSL formula that
checks whether a position is in the initial n-segment of an n-counting word:

initialn := ¬(sameposn−−−� tt).

For an n-counting word w ∈ Σωn and a position i ∈ N, we have w, i |= initialn
if and only if i < 2n. Moreover, for a PPSL formula ψ, we define

backψn := sameposn−−−� (initialn ∧ ψ).

For an n-counting word w ∈ Σωn and i ∈ N, it holds that w, i |= backψn if and
only if w, i mod 2n |= ψ. Intuitively, backψn goes back in the word w until it
reaches the position in the initial n-segment with same counter values as the
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current position, and there it checks that ψ holds. Next, we define the SERE
withinn := (¬cn−1)

∗ ; (cn−1)
∗. We use it for checking if a larger position than

the current position is still in the same n-segment of an n-counting word. Note
that the highest bit cn−1 of the counter is only allowed to change its value from
0 to 1 once. The formula startn :=

∧

0≤i<n ¬ci checks that a position is the
first one of an n-segment in an n-counting word.
Finally, consider the PPSL formula ϕn := countn ∧ ψn, where

ψn := G
(

startn ∧
(
withinn� (p↔ backpn)

)
→

(
withinn� (q ↔ back qn)

))

.

The formula ψn states that for any n-segment of an n-counting word, if the
Boolean value of p at every position of that n-segment coincides with the
Boolean value of p at the corresponding position of the initial n-segment, then
the same holds for the Boolean values of q. Hence, we have Lω(ϕn) = Ln.
Furthermore, the size of the formula ϕn is in O(n). �

Lemma 4.23 For every n > 0, if A is an NBA with Lω(A) = L′
n then ||A|| ≥

2n3 . 2

Proof Consider a natural number n > 0. Let m be the bound 2n2 . Let
v0, . . . , vm−1 ∈ {∅, {p}}∗ be an enumeration of all pairwise different words of
length 2n. Let Σ be the alphabet Σn ∪{p, q}. We define the language Sn ⊆ Σ∗

such that for every word w ∈ Sn,

1. the projection of w on Σn is n-counting and

2. the projection of w on {∅, {p}} is the word v0v1 . . . vm−1.

Note that Sn contains exactly 2m·2n different words that only differ in the
distribution of the proposition q. Also, for every w ∈ Sn we have wω ∈ L′

n.
Suppose that ||A|| < |Sn|. Then, by the pigeon hole principle, there are words

v, w ∈ Sn with v 6= w such that A visits the same state s when reading the
prefix v of the word vω and when reading the prefix w of the word wω. Hence,
A also accepts the word vwω even though vwω /∈ L′

n. Thus, ||A|| ≥ |Sn| > 2n3 .�

With the above lemmas we obtain our succinctness results.

Theorem 4.24 PPSL is exponentially more succinct than PSL. 2
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Proof Let n > 0 be a natural number and ϕn denote the PPSL formula
from Lemma 4.22. Suppose that ψ is a PSL formula that is initially equivalent
to ϕn. We define ψ′ := countn ∧ G(¬c0 ∧ . . . ∧ ¬cn−1 → ψ). Note that ψ′

describes the language L′
n. By Theorem 4.18, there is an 1NBA A of size

2
O(||ψ′||)
2 and Lω(A) = L(ψ′). By Lemma 4.23, we have ||A|| ≥ 2n3 . It follows
that ||ψ′|| ∈ Ω(2||ϕn||). Since ψ′ is linear in the size of ψ, we conclude that
||ψ|| ∈ Ω(2||ϕn||). �

Note that Ln is a star-free language. This means, there is an LTL formula
ϕn such that Lω(ϕn) = Ln. We can easily adapt the proof of Theorem 4.24
to obtain a double exponential succinctness gap between PPSL and the logics
PSLre and LTL.

Theorem 4.25 PPSL is double-exponentially more succinct than PSLre and
LTL. 2

Proof Let n > 0 be a natural number. Let ϕn be the PPSL formula from
Lemma 4.22. Suppose that ψ is an LTL formula that is initially equiva-
lent to ϕn. Let ψ′ := countn ∧ G(¬c0 ∧ . . . ∧ ¬cn−1 → ψ). Note that ψ′

describes the language L′
n. By Theorem 4.17, there is an 1NBA A of size

2O(||ψ′||) and Lω(A) = L(ψ′). By Lemma 4.23, we have ||A|| ≥ 2n3 . It follows

that ||ψ′|| ∈ Ω(2
||ϕn||
2 ). Since ψ′ is linear in the size of ϕn, we conclude that

||ψ|| ∈ Ω(2
||ϕn||
2 ). In case, ψ is a PSLre formula, we obtain ||ψ|| ∈ Ω(2

||ϕn||
2 ) by the

same argumentation. �

Remark 4.26 We conclude this section by stating some open problems re-
lated to the presented succinctness gaps. First, it is open whether the expo-
nential succinctness gap still holds between PPSL and extensions of PSL with
restricted variants of the past operators like the ones discussed in Remark 4.13.
We succeeded neither in proving such a gap nor in expressing the languages
Ln concisely in such an extension. Second, it is open whether the succinctness
gaps carry over to a fixed and finite proposition set. Note that the proposition
sets Pn over which the PPSL formulas ϕn are defined grow linearly in n. As
shown in [DS02], we can encode any number of propositions by a single propo-
sition. However, the sizes of the adapted formulas for ϕn are no longer linear
in n. In particular, the sizes of the adapted SEREs sameposn in Lemma 4.22
are quadratic in n. It is not obvious how to adapt these SEREs so that their
sizes remain linear in n. Therefore, for a fixed and finite proposition set, we
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only obtain a superpolynomial succinctness gap between PPSL and PSL. Note
that for similar reasons, the adapted proof of the succinctness gap between
PLTL and LTL in [Mar03, LMS02] for a fixed and finite proposition set also
only shows that PLTL is superpolynomially more succinct than LTL. 2

4.3 Translations for Extensions of PSL

The two linear-time temporal logics DLTL [HT99] and RLTL [LS07] extend
the IEEE standard PSL by more general fix-point operators. We first present
a translation from DLTL to 1NBAs that improves over the translation given
in [HT99]. For a formula of size n, we obtain a 1NBA of size O(3n) by our
translation and a 1NBA of size O(3n22n) by the translation in [HT99]. Fur-
thermore, our translation is simpler since it is based on standard automata
constructions. We also extend DLTL by past operators (PDLTL) and utilize
an alternation-elimination construction from this chapter to obtain a transla-
tion from PDLTL to 1NBAs.

Second, we extend RTL by past operators (PRTL) and show that every
PRTL formula can be translated into an alternating co-Büchi automaton.
Utilizing our alternation-elimination scheme and the construction from The-
orem 5.15, we obtain a translation from PRTL into 1NBAs whose worst-case
sizes are the same as the worst-case sizes of the 1NBAs obtained from the
translation from RTL to 1NBAs given in [LS07]. We remark that in [SL10],
Leucker and Sánchez also extends RTL by past operators (pRTL). However,
the linear-time temporal logic µLTL [BB89,Var88] generalizes over their sug-
gested logic since all pRTL formulas can be rewritten as µLTL formulas with
only a linear blow-up when using construction techniques from [Lan07]. Since
the translation from pRTL to 1NBAs does not improve over Vardi’s transla-
tion of µLTL to 1NBAs, we see no advantage of using pRTL over using µLTL.
In contrast, our extension of RTL is as expressive as µLTL and the presented
translation from PRTL to 1NBAs improve over the translation from µLTL to
1NBA.

We fix the set of atomic propositions P and the finite alphabet Σ := 2P .
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4.3.1 Translations for the Logic DLTL

A variant of the logic PSL is Dynamic Linear-Time Logic (DLTL). In [HT99],
Henriksen and Thiagarajan introduce this logic as an extension of LTL by a
modified until operator Ur whose second argument must hold at the end of
some sequence that is described by the regular expression r.

Remark 4.27 In dynamic logics [HKT00,HT99], we distinguish between se-
quences of actions A that describe possible executions of a program, and propo-
sitions P that may or may not hold after some program execution a0a1 . . . ai ∈
A∗, for i ∈ N. Let Σ = A × 2P be a finite alphabet. For a word w ∈ Σω,
we write wA ∈ Aω for the projection of w on A. The logic DLTL describes
languages of the form L ⊆ Σω such that for every two words v, w ∈ L and
i ∈ N, if vA0..i = wA0..i then vi = wi. In this thesis, we identify program actions
and set of propositions. That is, we set A ⊆ 2P and only consider words over
(2P)ω. 2

In the following, we consider the logic PDLTL that is an extension of DLTL
by the past operator Sr. The syntax of a PDLTL formula over P is given by
the grammar

ϕ ::= b | ϕ ∨ ϕ | ¬ϕ | ϕ Ur ϕ | ϕ Sr ϕ,

where b ∈ B(P) and r is a regular expression. The size |ϕ| of a PDLTL formula
ϕ is its syntactic length. We write Sub(ϕ) for the set of all sub-formulas of a
PDLTL formula ϕ.

For a RE r and formulas ϕ and ψ, we define the following syntactic abbre-
viations ϕ∧ψ := ¬(¬ϕ∨¬ψ), ϕRr ψ := ¬(¬ϕUr ¬ψ), ϕTr ψ := ¬(¬ϕSr ¬ψ).
Using these abbreviations, we can obviously translate any PDLTL formula into
positive normal form, i.e., negations occur only in front of propositional logic
formulas. Note that such a translation might double the size of the formula.
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We proceed with defining the semantics of PDLTL. Let Σ denote the set of
propositions 2P . Let w ∈ Σω and i ∈ N be a position in w.

(w, i) |= b iff wi fulfills b.
(w, i) |= ϕ ∨ ψ iff (w, i) |= ϕ or (w, i) |= ψ.
(w, i) |= ¬ϕ iff (w, i) 6|= ϕ.
(w, i) |= ϕ Ur ψ iff there is a k ≥ i such that (w, k) |= ψ,

L∗(r) contains wi..k, and
for all j with i ≤ j < k, we have (w, j) |= ϕ.

(w, i) |= ϕ Sr ψ iff there is a k ≤ i such that (w, k) |= ψ,
L∗(r) contains wi..k, and
for all j with k < j ≤ i, we have (w, j) |= ϕ.

For a PDLTL formula ϕ, we write Lω(ϕ) := {w ∈ Σω | (w, 0) |= ϕ} to denote
its language, |ϕ| for the size of ϕ that is defined as its syntactic length, and
write Sub(ϕ) for the set of its sub-formulas.
In the next theorem, we present a construction to translate a PDLTL formula

into a language-equivalent eventually 1-way 2ABA.

Theorem 4.28 We can translate every PDLTL formula in positive-normal
form of size n into a language-equivalent locally and eventually 1-way 2ABA
of size O(n). For DLTL formulas, the resulting automaton is 1-way. 2

Proof Let ϕ be a PDLTL formula. We translate this formula into a language-
equivalent locally and eventually 1-way 2ABA.
For every RE r in ϕ, let Ar and A′

r be the corresponding automata con-
structed according to Lemma 4.16 such that L∗(r) = L∗(Ar) and A′

r accepts
the mirror language of L∗(r). We assume that the state sets of these automata
are pairwise disjoint. In the following, we (i) present a construction of the
2ABA, (ii) prove the correctness of the construction, and (iii) finally show
that the 2ABA is eventually 1-way.

Construction We define the 2ABA A = (Q,Σ, δ, qI , F ), where the set of
states is Q := Sub(ϕ) ∪ Q̂ with

Q̂ :={α Us β | α Ur β ∈ Sub(ϕ) and s is a state in Ar} ∪

{α Rs β | α Rr β ∈ Sub(ϕ) and s is a state in Ar} ∪

{α Ss β | α Sr β ∈ Sub(ϕ) and s is a state in A′
r} ∪

{α Ts β | α Tr β ∈ Sub(ϕ) and s is a state in A′
r}.
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The initial state qI is ϕ. The set of accepting states

F := Q \ {α Us β | α Ur β ∈ Sub(ϕ) and s is a state in Ar}

contains all states except for the until formulas.
We proceed to define the transition function δ. Let a ∈ Σ and D ⊆ D. First,

we define the transitions from states that are LTL formulas.

• For b ∈ B(P), we define

δD(b, a) :=

{

tt if a satisfies b,

ff otherwise.

• For the Boolean connectives ∧ and ∨, we define

δD(γ ∧ ψ, a) := (γ, 0) ∧ (ψ, 0) and δD(γ ∨ ψ, a) := (γ, 0) ∨ (ψ, 0).

We now turn to the transitions for states that correspond to the temporal
operators with the REs.

• The state α Ur β ∈ Sub(ϕ) is used to start a simulation of the NFA
Ar = (S,Σ, η, sI , E) on the input word. If the simulation reaches a final
state of the NFA, Aϕ may terminate the simulation and proceed with the
state β. Furthermore, the simulation must visit state α at every step until
the final state is reached. Formally, we define δD(αU

rβ, a) := (αUsI β, 0)
and for s ∈ S,

δD(α Us β, a) :=

{

(α, 0) ∧
∨

t∈η(s,a)(α Ut β, 1) if η(s, a) ∩ E = ∅,
(
(α, 0) ∧

∨

t∈η(s,a)(α Ut β, 1)
)
∨ (β, 0) otherwise.

The transitions from the state α Sr β ∈ Sub(ϕ) are defined similarly.
Instead of simulating the NFA Ar, Aϕ simulates the NFA A′

r, where it
moves the read-only head to the left instead of to the right.

• If the state is αRr β ∈ Sub(ϕ), the automaton Aϕ simulates a run of the
NFA Ar = (S,Σ, η, sI , E) viewed as a universal automaton. Whenever
the simulation reaches a final state, Ar has to proceed with the state ψ.
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Alternatively, the simulation may break up and proceed from state α.
Formally, we define δD(α Rr β, a) := (α RsI β, 0) and for s ∈ S,

δD(α Rs β, a) :=

{

(α, 0) ∨
∧

t∈η(s,a)(α Rt β, 1) if η(s, a) ∩ E = ∅,
(
(α, 0) ∨

∧

t∈η(s,a)(α Rt β, 1)
)
∧ (β, 0) otherwise.

The transitions from state α Tr β ∈ Sub(ϕ) are similarly defined. How-
ever, if the read-only head is at the beginning of the input word, Ar may
stop the simulation. Formally, for the NFA A′

r = (S,Σ, η, sI , E) and
s ∈ S, we define δD(α Tr β, a) := (α RsI β, 0) and for −1 /∈ D, we have

δD(α Ts β, a) :=

{

tt if η(s, a) ∩ E = ∅,

(β, 0) otherwise,

and for −1 ∈ D, we have

δD(α Ts β, a) :=
{

(α, 0) ∨
∧

t∈η(s,a)(α Tt β,−1) if η(s, a) ∩ E = ∅,
(
(α, 0) ∨

∧

t∈η(s,a)(α Tt β,−1)
)
∧ (β, 0) otherwise.

We remark that the ε-moves in our construction (i.e., the transitions of A in
which the read-only head does not move) can be easily eliminated by replacing
a proposition (s, 0) that occurs in δ(q, b) by δD(s, b), where q, s ∈ Q and b ∈ Σ.
Note that from the definition of the state set Q and Lemma 4.16, we directly

obtain |A| ∈ O(n). By inspecting A’s transition function, we also see that A
is locally 1-way.

Correctness In the remainder of the proof, we show the correctness of the
given construction. In particular, we prove that for every word w ∈ Σω,
subformula ψ ∈ Sub(ϕ), and position i ∈ N, the following equivalence holds

(w, i) |= ψ if and only if A accepts w from configuration (ψ, i).

This equivalence immediately implies Lω(A) = Lω(ϕ). We prove the equiva-
lence by induction over the formula structure of ψ. Let w ∈ Σω be an infinite
word and i ∈ N a position in w.
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Consider the base case ψ = b, for some b ∈ B(P). By definition, (w, i) |= b
holds if and only if wi fulfills b. By construction, this is equivalent to the fact
that A accepts w from configuration (b, i).

Consider the case ψ = α∧β. Assume (w, i) |= ψ, i.e., (w, i) |= α and (w, i) |=
β. By the induction hypothesis, this is equivalent to the fact that A accepts w
from configuration (α, i) and from configuration (β, i). By construction, this
is equivalent to the fact that A accepts w from configuration (α ∧ β, i). The
step case for ψ = α ∨ β is analogous.

Consider the case ψ = α Ur β. Let Ar = (S,Σ, η, sI , E) be an 1NFA that
accepts L∗(r). Assume (w, i) |= αUr β, i.e., there is a k ≥ i such that (w, k) |=
β, L∗(r) contains wi..k, and for all j with i ≤ j < k, we have (w, j) |= α. By
the induction hypothesis, this is equivalent to the fact that

there is a k ≥ i such that A accepts w from configuration (β, k),
L∗(r) contains wi..k, and A accepts w from configuration (α, j), for
all i ≤ j < k.

(i)

We claim that this is equivalent to the fact that

A accepts w from configuration (α Ur β, i). (ii)

We first show the direction from left to right. Assume that (i) holds. Let
sisi+1 . . . sk+1 ∈ S∗ be an accepting run of Ar on wi..k. By assumption, A
accepts w from configuration (β, k). Thus, by the definition of the transition
functions, A also accepts w from configuration (α Usk β, k). Furthermore, by
assumption, A accepts w from configuration (α, k−1). Thus, by the definition
of the transition function, A also accepts w from configuration (αUsk−1β, k−1).
If we iterate this argumentation, we infer that A accepts wj from configuration
(α Usj β, j), for all i ≤ j < k. Since (α Usi β, i) is reached from (α Ur β, i) by
an ε-moves, we obtain (ii).
For the other direction, assume that the (ii) holds. That is, A accepts w
from configuration (α Ur β, i). In particular, A accepts w from configuration
(αUsI β, i). For the sake of contradiction, we additionally assume that (i) does
not hold, that is, we have

there is no k ≥ i such that A accepts w from configuration (β, k),
L∗(r) contains wi..k, and A accepts from configuration (α, j), for
all i ≤ j < k.

(¬i)
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From (¬i), it follows thatA does not accept w from configuration (β, i). Hence,
A accepts w from configurations (α, i) and there is also a successor s1 of sI
such that A accepts w from configuration (α Us1 β, i + 1). Again, since (¬i)
holds and A does not accept w from configuration (β, i+1), it must accept w
from configuration (α, i+ 1) and there is also a successor s2 of s1 such that A
accepts w from configuration (αUs2 β, i+2). If we repeat this argumentation,
we obtain an infinite sequence of states sIs1s2 . . . ∈ Sω and the following
infinite rejecting path (α UsI β, i)(α Us1 β, i + 1)(α Us2 β, i + 2) . . . in the run
of A on w from configuration (α Ur β, i). The existence of such a path is a
contradiction to the fact that A accepts w from configuration (α Ur β, i). The
case for ψ = α Sr β is analogous.
Consider the case ψ = α Rr β. Let Ar = (S,Σ, η, sI , E) be the NFA that

accepts L∗(r). Assume (w, i) |= αRr β, i.e., for all k ≥ i, if L∗(r) contains wi..k
then either (w, k) |= β or there is a j with i ≤ j < k such that (w, j) |= α. By
the induction hypothesis, this is equivalent to the fact that

for all k ≥ i, if L∗(r) contains wi..k then either A accepts w from
configuration (β, k) or there is a j with i ≤ j < k such that A
accepts w from configuration (α, j).

(iv)

We claim that this is equivalent to the fact that

A accepts w from configuration (α Rr β, i). (v)

We first show the direction from left to right. Assume (iv) holds. It is easy to
see that (iv) is equivalent to the following statement.

Either for all k ≥ i, if L∗(r) contains wi..k then A accepts w from
configuration (β, k), or

(iv′)

there is a k ≥ i such that A accepts w from (α, k) and for all j
with i ≤ j ≤ k, if L∗(r) contains wi..j then A also accepts w from
(β, j).

(iv′′)

Assume that (iv′) holds. In the following, we just consider runs of A from
configuration (α RsI β, i), where A behaves as follows. Whenever A arrives
in a configuration of the form (α Rs β, j), for any j ≥ i, it avoids moving
to configuration (α, j). We show by contradiction that A still accepts from
(α RsI β, i) Suppose that A does not accept from (α RsI β, i). Due to the
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definition of the transition function, there are two cases. If η(sI , wi) ∩ E = ∅
then there must be a state s1 ∈ η(sI , wi) such thatA rejects from (αRs1β, i+1).
Otherwise, if η(sI , wi)∩E 6= ∅ then there must be a state s′ ∈ η(sI , wi) such sIs

′

is an accepting run of Ar on wi..i+1. Thus, A accepts from (β, i+1). Therefore,
as in the first case, there must be a state s1 ∈ η(sI , wi) such that A rejects from
(αRs1β, i+1). If we iterate this argument, the only possible way to reject from
(αRsI β, i) is by the path (αRsI β, i)(αRs1 β, i+1)(αRs2 β, i+2) . . . ∈ (Q×N)ω.
Since this path is accepting, we conclude that A accept from (α RsI β, i).
Assume that (iv′′) holds. Let k ≥ i be the least position such that A accepts
w from configuration (α, k) and for all j with i ≤ j ≤ k, if L∗(r) contains wi..j
then A accepts w from configuration (β, j). In the following, we just consider
runs ofA from configuration (αRsIβ, i), whereA behaves as follows. Whenever
A arrives in a configuration of the form (α Rs β, j), for any j ≥ i, it moves to
configuration (α, k) if j = k and otherwise, it avoids moving to configuration
(α, k). We show by contradiction that A still accepts from (αRsI β, i) Suppose
that A does not accept from (αRsI β, i). Due to the definition of the transition
function, there are two cases. If η(sI , wi) ∩ E = ∅ then there must be a
state s1 ∈ η(sI , wi) such that A rejects from (αRs1β, i + 1). Otherwise, if
η(sI , wi) ∩ E 6= ∅ then there must be a state s′ ∈ η(sI , wi) such sIs

′ is an
accepting run of Ar on wi..i+1. Thus, A accepts from (β, i + 1). Therefore,
as in the first case, there must be a state s1 ∈ η(sI , wi) such that A rejects
from (αRs1β, i + 1). If we iterate this argument, we obtain the only possible
way to reject from (α RsI β, i) is by a the path that starts with the prefix
(α RsI β, i)(α Rs1 β, i+ 1)(α Rs2 β, i+ 2) . . . (α Rsj β, i+ j) ∈ (Q× N)∗, where
i+ j = k. But then, one of the following two cases holds. If η(sj, wi+j)∩E = ∅
then A moves to (α, k) and accepts. Otherwise, if η(si, wi+j) ∩ E 6= ∅ then
there must be a state s′ ∈ η(sj, wi+j) such sIs1 . . . si+js

′ is an accepting run of
Ar on wi..i+j. Thus, A accepts from (β, i+ j). Therefore, as in the first case,
there A moves to (α, k) and accepts. Therefore, there is no rejecting path. We
conclude that A accept from (α RsI β, i).
Now, we show the other direction by contraposition. Assume that (iv) does
not hold. That is,

there is a k ≥ i such that L∗(r) contains wi..r, A does not accept
w from (β, k) and for all j with i ≤ j < k, A does not accept w
from (α, j).

(¬iv)

Let k ≥ i be the least number such that the (¬iv) holds. Furthermore, let
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sisi+1 . . . sk+1 be an accepting run of Ar on wi..k. By assumption, A rejects
w from (β, k). Hence, A rejects w from configuration (α Rsk β, k), too. By
assumption, A rejects w from configuration (α, k− 1). Thus, A also rejects w
from configuration (αRsk−1 β, k− 1), too. If we repeat this argument, we infer
that A does not accept w from configuration (α Rsj β, j), for all i ≤ j < k.
Thus (v) does not hold, and we are done. The step case for ψ = α Tr β is
analogous.

Eventually 1-Wayness We show that A is eventually 1-way. For the ease
of exposition, we assume that the ε-moves of A from the states of the form
α ⋆r β are eliminated, where r is an RE and ⋆ ∈ {U,R, S,T}. Let Q− := {q ∈
Sub(ϕ) | q is of the form αSrβ or αT rβ} denote the states that are built by
past operators.
For defining the partitioning of the state set Q, we need the following func-

tion that assigns weights to states.

weight(q) :=

{

2|Sub(q)|+ 1 if q ∈ Q−,

2|Sub(q)| otherwise.

Let n := 2|Q| + 1. Let (Qi)i≤n be a partitioning of Q, where for i ≤ [n], we
define Qi := {q | weight(q) = i}.
Let p, q ∈ Q, D ⊆ D, d ∈ D, and a ∈ Σ such that (q, d) ∈ δD(p, a). It suffices

to show the following claim: if (weight(p) is even and d ≤ 0) or (weight(p) is
odd and d ≥ 0) then weight(q) < weight(p).
Consider the case p ∈ Q−. We have that weight(p) is odd. Assume d ≥ 0.

By the definition of the transition function, d 6= 1. It follows that q ∈ Sub(p)
and hence weight(q) < weight(p).
Consider the case p ∈ Q\Q−. We have that weight(p) is odd. Assume d ≤ 0.

By the definition of the transition function, d 6= −1. It follows that q ∈ Sub(p)
and hence weight(q) < weight(p). �

Corollary 4.29 We can translate every PDLTL formula in positive normal
form of size n and having m propositions into a language-equivalent 1NBA of
size O(2m · 3n). 2

Corollary 4.30 We can translate every DLTL formula in positive normal
form of size n into a language-equivalent 1NBA of size O(3n). 2
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We remark that the translation in Corollary 4.30 improves over the trans-
lation from DLTL to 1NBAs given in [HT99]. For DLTL formulas in positive
normal form of size n, the worst-case sizes of the 1NBAs obtained from Hen-
riksen and Thiagarajan’s translation is in O(3n22n). Moreover, the constant
hidden in the O notation is four times bigger than the constant in the bound
of our translation.

4.3.2 Translations for the Logic PRLTL

Regular Linear-Time Temporal Logic (RLTL) [LS07] is an extension of a frag-
ment of PSLre by a variant of the until operator Ur that is equipped by a regular
expression r. Leucker and Sánchez present a translation of RLTL formulas of
size n into to 1NBAs of size O(3n). In the follow-up paper [SL10], they extend
RLTL with a negation operator in the regular layer and past operators in the
regular-expression layer. We call this logic pRLTL. In their paper, Leucker and
Sánchez also provide a translation of pRLTL formulas of size n and k nested
negations into 1NBAs of size 2O((nk)2). Although they mention that k can be
bounded by the constant 3. However, no details are given.

In this section, we present an alternative extension of RLTL by the nega-
tion operator and past operators. We call the logic PRLTL. Based on our
alternation-elimination construction in this chapter, we also provide a trans-
lation of PRLTL formulas of size n into 1NBAs of size 2O(n logn).

The syntax of a PRLTL formula over P is defined as follows.

ϕ ::= b | ϕ ∨ ϕ | ¬ϕ | Erϕ | ϕ Ur ϕ | ϕ Sr ϕ,

where b ∈ B(P) and r is a RE over P. For a RE r and formulas ϕ and
ψ, we define the following syntactic abbreviations ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ),
Arϕ := ¬(Er¬ϕ), ϕRr ψ := ¬(¬ϕUr ¬ψ), ϕTr ψ := ¬(¬ϕ Sr ¬ψ). Using these
abbreviations, we can obviously translate any PRLTL formula into positive
normal form, i.e., negations occur only in front of propositional logic formulas.
Note that such a translation might double the size of the formula.
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Let us define the semantics of the operators. Let w ∈ (2P)ω and i ∈ N.

(w, i) |= b iff wi satisfies b.
(w, i) |= ϕ ∨ ψ iff (w, i) |= ϕ or (w, i) |= ψ.
(w, i) |= ¬ϕ iff (w, i) 6|= ϕ.
(w, i) |= Erϕ iff ∃k ∈ N

ω : k0 = i and ∀j ∈ N :
kj+1 > kj, wkj ..kj+1

∈ L∗(r), and (w, kj) |= ϕ.
(w, i) |= ϕ Ur ψ iff ∃n ∈ N, k ∈ Nn+1 : k0 = i, (w, kn) |= ψ, and ∀j ∈ [n] :

kj+1 > kj, wkj ..kj+1
∈ L∗(r), and (w, kj) |= ϕ.

(w, i) |= ϕ Sr ψ iff ∃n ∈ N, k ∈ Nn+1 : k0 = i, (w, kn) |= ψ, and ∀j ∈ [n] :
kj+1 < kj, wkj+1..kj ∈ L∗(r), and (w, kj) |= ϕ.

For a PRLTL formula ϕ, we write Lω(ϕ) := {w ∈ Σω | (w, 0) |= ϕ} to denote
its language, |ϕ| for the size of ϕ that is defined as its syntactic length, and
write Sub(ϕ) for the set of its sub-formulas.

Next, we give a construction to translate PRLTL formulas into locally and
eventually 1-way 2ABAs.

Theorem 4.31 For every PRLTL formula in positive normal form of size n,
there is a language-equivalent locally and eventually 1-way 2APA with three
priorities and of size O(n). If the formula has no past operators then the
2APA is 1-way. 2

Proof Let ϕ be a PRLTL formula in positive normal form. For any regular
expression r that occurs in a subformula of ϕ, let Ar, A

′
r be the NFAs for the

language L∗(r) and the mirror language of L∗(r), respectively. We proceed as
follows. First, we give the construction and prove its correctness. Then, we
show that the constructed automaton is eventually 1-way.

Construction We define the 2APA A := (Q,Σ, δ, qI , {F0, F1, F2}). The set
of states is Q := Sub(ϕ) ∪Q+ ∪Q−, where

Q+ :={s� Erβ | Erβ ∈ Sub(ϕ) and s is a state in Ar} ∪

{s� Arβ | Arβ ∈ Sub(ϕ) and s is a state in Ar} ∪

{s� α Ur β | α Ur β ∈ Sub(ϕ) and s is a state in Ar} ∪

{s� α Rr β | α Rr β ∈ Sub(ϕ) and s is a state in Ar}
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and

Q− :={s−−−� α Sr β | α Sr β ∈ Sub(ϕ) and s is a state in A′
r} ∪

{s−−−� α Tr β | α Tr β ∈ Sub(ϕ) and s is a state in A′
r}.

The initial state qI is the input formula ϕ. The parity acceptance condition is
given by the following three sets.

F0 :={Arβ | Arβ ∈ Sub(ϕ)},

F1 :={α Ur β | α Ur β ∈ Sub(ϕ)} ∪

{s� α Ur β | α Ur β ∈ Sub(ϕ) and s is a state in Ar}, and

F2 :=Q \ (F0 ∪ F1).

We proceed to define the transition function δ. Consider the transition
function δ′ from the 2ABA in the proof of Theorem 4.17. For a state q ∈ Q,
D ⊆ D, and a letter a ∈ Σ, we define

δD(q, a) :=







(β, 0) ∧ δ′D
(
r� Erβ, a

)
if q is of the form Erβ,

(β, 0) ∨ δ′D
(
r� Arβ, a

)
if q is of the form Arβ,

(β, 0) ∨
(
(α, 0) ∧ δ′D(r� α Ur β, a)

)
if q is of the form α Ur β,

(β, 0) ∧
(
(α, 0) ∨ δ′D(r� α Rr β, a)

)
if q is of the form α Rr β,

(β, 0) ∨
(
(α, 0) ∧ δ′D(r−−−� α Sr β, a)

)
if q is of the form α Sr β,

(β, 0) ∧
(
(α, 0) ∨ δ′D(r−−−� α Tr β, a)

)
if q is of the form α Tr β,

δ′D(q, a) otherwise.

Note that by definition, A has at most O(n) states and is locally 1-way.

Correctness We show that Lω(A) = Lω(ϕ). In particular, we prove that for
every word w ∈ Σω, subformula ψ ∈ Sub(ϕ), and position i ∈ N, the following
holds.

w, i |= ψ if and only if A accepts w from configuration (ψ, i).

This equivalence immediately implies Lω(A) = Lω(ϕ). We prove the equiva-
lence by induction over the formula structure of ψ. Let w ∈ Σω and i ∈ N be
a position in w. We only consider the cases that are different from the ones
proven in Theorem 4.17.
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Consider the case ψ = Erβ. Let Ar = (S,Σ, η, sI , E) denote the NFA that
accepts L∗(r). We first show the direction from left to right. We apply the
induction hypothesis on the assumption and obtain

there is an infinite path k ∈ Nω with k0 = i such that 1. L∗(r)
contains wkj ..kj+1

, for all j ∈ N, and 2. A accepts w from (β, kj),
for all j ∈ N.

(i)

Consider a sequence of positions k ∈ Nω that satisfies (i). For the sake of
contradiction, suppose A rejects from (Er, i). By the second condition of (i),
A must reject from (r� Erβ, i). By the first condition of (i), there is an
accepting run sk0 . . . sk1+1 ∈ S∗ of Ar on wk0..k1. Hence, A must reject from
(Er, k1). If we iterate this argumentation, we obtain the infinite sequence
(Er, k0) . . . (E

r, k1) . . . ∈ (Q × N)ω. Furthermore, A can only reject if this
sequence is rejecting. Since this is not the case, we conclude that A accepts
from (Er, i).
Now, we show the direction from right to left. We construct an infinite path
k ∈ Nω that satisfies condition (i). Define k0 := i. By assumption A accepts
from (Er, k0). Since A accepts from (β, k0), we have (w, k0) |= β. Since A also
accepts from (r� Erβ, k0), there is a k1 ∈ N such that L∗(r) contains wk0..k1.
If we iterate this argumentation, we obtain an infinite sequence of positions
k0k1 . . . ∈ Nω that fulfills condition (i). By the induction hypothesis, the left
hand side holds.

Consider the case ψ = Arβ. Let Ar = (S,Σ, η, sI , E) denote the NFA that
accepts L∗(r). We first show the direction from left to right by contraposition.
Let k0 := i. So, assume A rejects w from (Arβ, k0). Then, A rejects from (β, i).
Since, states of the from s�Arβ, where s ∈ S, are accepting, there must be a
position k1 such thatAr accepts wk0..k1 andA rejects from (Ar, k1). If we iterate
this argumentation, we obtain an infinite sequence of positions k0k1 . . . ∈ Nω

such that A rejects (β, ki), for all i ∈ N, and L∗(r) contains wki..ki+1
, for all

i ∈ N. We apply the induction hypothesis and obtain (w, k0) |= Er¬β. Thus,
(w, k0) 6|= Arβ and the left-hand side does not hold, either.
Now, we show the direction from right to left. Let k0 := i. Assume A accepts
w from configuration (Arβ, k0). We show by contradiction that the following
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holds.

For all k ∈ Nω with k0 = i, we either have
1. there is an n ∈ N with (w, kn) |= β and for all j < n, L∗(r)

contains wkj ..kj+1
and (w, kj) |= β, or

2. there is an n ∈ N with L∗(r) does not contain wkn..kn+1
and

for all j < n, L∗(r) contains wkj ..kj+1
and (w, kj) |= β.

(ii)

Assume (ii) does not hold. Then, we easily see that the following fact holds.

There is an infinite path k ∈ Nω with k0 = i such that 1. L∗(r)
contains wkj ..kj+1

, for all j ∈ N, and 2. (w, kj) |= β, for all j ∈ N.
(iii)

Consider the path k from (iii). By assumption, A accepts from (Arβ, k0).
By (iii) and the induction hypothesis, A must also accept from (r� Ar, k0).
By (iii), L∗(r) contains wk0..k1 and so, A must also accept from (Ar, k1). If
we iterate this argumentation, we infer that A only accepts from (Arβ, k0) if
the infinite path (Arβ, k0) . . . (A

rβ, k1) . . . (A
rβ, k2) . . . ∈ (Q×N)ω is accepting.

This is not the case and thus, we infer that (ii) holds. It is easy to see that
this is equivalent to the fact that (w, i) |= Arβ.
Consider the case ψ = α Ur β. We first show the only if direction. Assume

w, i |= αUrβ. By the definition and application of the induction hypothesis, we
can fix a finite sequence k = k0 . . . kn such that A accepts w from configuration
(β, kn), k0 = i, and for each j ∈ [n], A accepts w from configuration (α, kj),
and wkj ..kj+1

∈ L∗(r). From the fact that A accepts w from configuration
(β, kn), we infer that A accepts from (α Ur β, kn). Since wkn−1..kn ∈ L∗(r), we
further infer that A from (r� α Ur β, kn−1). Since A accepts from (α, kn−1),
we conclude that it accepts from (α∧(r�αUrβ), kn−1). Thus, it accepts from
(α Ur β, kn−1), by the definition of the transition function. If we iterate this
argumentation, we conclude that A accepts from (α Ur β, kj), for all j ∈ [n].
Since k0 = i, we are done.
Now, we show the if direction. Assume A accepts w from configuration (αUr

β, i) by the run t. For the sake of contradiction, we assume that w, i 6|=
α Ur β. By the definition and application of the induction hypothesis, this
means the following. We cannot fix a finite sequence k = k0 . . . kn such that A
accepts w from configuration (β, kn), k0 = i, and for each j ∈ [n], A accepts
w from configuration (α, kj), and wkj ..kj+1

∈ L∗(r). In particular, it means
that A does not accept from (β, i). Thus, A must accept from (α, i) and
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from (r� (α Ur β), i), by the definition of the transition function. Define
k0 := i. So, there must be a k1 ≥ i such that wk0..k1 ∈ L∗(r) and A accepts
from (α Ur β, k1), by the definition of the transition function. From that, we
infer that A does not accept from (β, k1). If we iterate the argumentation, we
obtain an infinite path (α Ur β, k0) . . . (α Ur β, k1) . . . ∈ (Q× N)ω in the run t
such that every state in this path is rejecting. This contradicts the assumption
that t is accepting. The case for ψ = α Sr β is similar.
Consider the case ψ = α Rr β. We first show the if direction. Assume

w, i |= α Rr β. By the definition and application of the induction hypothesis,
this means the following. We cannot fix a finite sequence k = k0 . . . kn such
that A accepts w from configuration (β, kn), k0 = i, and for each j ∈ [n], A
accepts w from configuration (α, kj), kj ≤ kj+1, and wkj ..kj+1

∈ L∗(r). This is
equivalent to the following statement: either

(i) there is an infinite sequence k = k0k1 . . . ∈ Nω such that k0 = i, and for
each j ∈ N, A accepts w from configuration (β, kj), and wkj ..kj+1

∈ L∗(r),

(ii) there is a finite sequence k = k0 . . . kn ∈ N∗ such that there is no h ∈ N

with kn ≤ h and wkn..h ∈ L∗(r), k0 = i, A accepts w from configuration
(β, kn), and for each j ∈ [n], A accepts w from configuration (β, kj), and
wkj ..kj+1

∈ L∗(r), or

(iii) there is a finite sequence k = k0 . . . kn ∈ N∗ such that A accepts w from
configuration (α, kn) and from (β, kn), k0 = i, and for each j ∈ [n], A
accepts w from configuration (β, kj), and wkj ..kj+1

∈ L∗(r).

Let k0 := i. We consider the case (i). We construct an accepting run of A on w
from configuration (αRrβ, i). Whenever, A arrives at configuration (αRrβ, ki),
for j ∈ N, it moves to configuration (β, kj) and (r�αRr β, kj) respecting the
transition function. Furthermore, from (r�αRr β, kj), for j ∈ N, it moves to
configuration (α Rr β, ki+1) simulating the transition function of the NFA for
r. By assumption, A accepts from (β, kj), for all j ∈ N. Thus, the constructed
run is accepting if the infinite path (ψ, k0) . . . (ψ, k1) . . . is accepting. This is
the case since every state of a configuration in this path belongs to the set of
accepting states.
We consider the case (ii). In particular, A accepts from (β, kn). Since there is
no h with kn ≤ h and wkn..h ∈ L∗(r), A accepts from (r�ψ, kn), by the defi-
nition of the transition function. Therefore, A accepts from (ψ, kn) respecting
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the transition function. If we iterate this argumentation, we conclude that A
accepts from (ψ, kj), for all j ∈ [n] and we are done.
We consider the case (iii). In particular, A accepts from (β, kn) and from
(α, kn). Thus, A accepts from (ψ, kn) respecting the transition function. If
we iterate this argumentation, we conclude that A accepts from (ψ, kj), for all
j ∈ [n] and we are done. The case for ψ = α Tr β is similar.

Eventually 1-Wayness We show that the automaton A is eventually 1-way.
For a RE r and a state s in Ar or A

′
r, we define Sub

′(s�αUrβ) := Sub(αUrβ).
Similarly, we define Sub′ for the all other states q ∈ Q+ ∪ Q−. Furthermore,
let Q̂ := {q ∈ Sub(ϕ) | q is of the form α Sr β or α Tr β}.
For defining the partitioning of the state set Q, we need the following func-

tion that assigns weights to states.

weight(q) :=







2|Sub(q)| if q ∈ Sub(ϕ) \ Q̂,

2|Sub(q)|+ 1 if q ∈ Sub(ϕ) ∩ Q̂,

2|Sub(α Ur β)| if q ∈ Q+

2|Sub(α Ur β)|+ 1 if q ∈ Q−.

Let n := 2|Q| + 1. Let (Qi)i≤n be a partitioning of Q, where for i ≤ [n], we
define Qi := {q | weight(q) = i}.
Let p, q ∈ Q, D ⊆ D, d ∈ D, and a ∈ Σ such that (q, d) ∈ δD(p, a). It suffices

to show the following claim: if (weight(p) is even and d ≤ 0) or (weight(p) is
odd and d ≥ 0) then weight(q) < weight(p).
Consider the case p ∈ Sub(ϕ) \ Q̂. We have that weight(p) is even. Assume

d ≤ 0. By the definition of the transition function, d 6= −1. It follows that
q ∈ Sub(p) and hence weight(q) < weight(p).
Consider the case p ∈ Sub(ϕ) ∩ Q̂. We have that weight(p) is odd. Assume

d ≥ 0. By the definition of the transition function, d 6= 1. It follows that
q ∈ Sub(p) and hence weight(q) < weight(p).
Consider the case p ∈ Q+. We have that weight(p) is even. Assume d ≤ 0.

By the definition of the transition function, d 6= −1. It follows that q ∈ Sub(p)
and hence weight(q) < weight(p).
Consider the case p ∈ Q−. We have that weight(p) is odd. Assume d ≥ 0.

By the definition of the transition function, d 6= 1. It follows that q ∈ Sub(p)
and hence weight(q) < weight(p). �
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Using our alternation-elimination scheme and the complementation con-
structions from Section 4.1, we obtain the following corollary.

Corollary 4.32 For every PRLTL formula in positive normal form of size n,
there is a language-equivalent 1NBA of size 2O(n logn). 2

We remark that we can translate PRLTL formulas without any E or A opera-
tor, say PRLTL− formulas, into a 2APA with just two parities, or equivalently,
into a 2ABA. So, we obtain the following corollary.

Corollary 4.33 For every PRLTL− formula in positive normal form of size n
and having m propositions, there is a language-equivalent 1NBA of size O(2m ·
3n). If the formula has no past operators then the size is in O(3n). 2
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Chapter 5

Translating Logics over Nested

Words to Automata

In this chapter, we present translations from various classes of alternating
automata over nested words to nested-word automata. We obtain these trans-
lations from our alternation-elimination scheme by providing complementation
constructions for the corresponding classes of existential automata over nested
words. We use these alternation-elimination constructions in turn to translate
various temporal logics over nested words to nested-word automata.
We proceed as follows. In Section 5.1, we present complementation con-

structions for different classes of existential automata over nested words. In
Section 5.2, we present several logics over nested words and show how to trans-
late these logics into nested-word automata using instances of our alternation-
elimination scheme.

5.1 Complementation Constructions

In this section, we present several novel constructions for complementing the
languages of existential automata over nested words. The constructions trans-
late various classes of existential automata into nested-word automata. Ta-
ble 5.1 depicts the blow-ups of these constructions, where n is the size of the
existential automaton and k its index. Furthermore, it references the theorems,
where these constructions are given. For instance, we present a complemen-
tation construction that translates an eventually 1-way very weak existential
co-Büchi automaton over nested words into a nested-word automaton of size
O(22nn). This construction is given in Theorem 5.5. In the following sections,
we write D := {−2,−1, 0, 1, 2} for the set of directions in a nested word.
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V2ECA 2ECA 2EPA

1-way O(2nn) O(3n) 2O(nk logn)

Theorem 5.6 Theorem 5.3 Theorem 5.15

eventually O(22nn) O(2n3n) 2O(nk logn)

1-way Theorem 5.5 Theorem 5.2 Theorem 5.15

2-way 2O(n2) 2O(n2) 2O((nk)2)

Theorem 5.16 Theorem 5.16 Theorem 5.16

Table 5.1: Sizes of NWAs obtained by the complementation constructions.

5.1.1 Complementing co-Büchi Automata

In this section, we translate an eventually 1-way existential co-Büchi automa-
tonA into a nested-word automaton B that accepts the complement of Lnw(A).
We start this construction with a characterization of nested words that are not
accepted by a given eventually 1-way 2ECA.

Lemma 5.1 Let A = (Q, Σ̂, δ, qI , F ) be an eventually 1-way 2ECA and (w, )
a nested word in Σ̂ω. We have (w, ) /∈ Lnw(A) if and only if there are words
R ∈ (2Q)ω and S ∈ (2Q\F )ω such that the following conditions hold.

(1) qI ∈ R0.

(2) For all d ∈ D and (i, j) ∈ d, δ
d
Di
(Ri, wi) ⊆ Rj.

(3) There is no i ∈ N and q ∈ Ri such that ∅ |= δDi
(q, wi).

(4) For all d ∈ {1, 2} and (i, j) ∈ d, δ
d
Di
(Si, wi) \ F ⊆ Sj.

(5) For infinitely many sync positions k ∈ N, Sk = ∅ and Sk+1 = Rk+1 \ F . 2

Before presenting the proof, we give an intuition for the constraints of the
lemma. The conditions (1) and (2) ensure that the word R represents all runs
(q0, h0)(q1, h1) . . . of the existential automaton A on the given input (w, ),
i.e., Rhi contains qi, for all i ∈ N. The conditions (3) to (5) on the words
R and S ensure that all the runs are rejecting. Recall that a nested word is
rejected if it is not accepted by a finite run and every infinite run visits a state
in F infinitely often. Condition (3) ensures that there is no finite accepting
run. All the infinite runs are rejecting if the word R can be split into infinitely
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many nonempty segments such that each run of the existential automaton that
starts at the beginning of a segment will visit a state in F before reaching the
end of the segment. The conditions (4) and (5) on the word S ensure the
existence of such a splitting. In particular, the ks from condition (5) mark the
end positions of the segments in the splitting.

Proof We first prove the only if direction. Assume (w, ) /∈ Lnw(A), i.e.,
every run of A on (w, ) visits a state in F infinitely often.
For the constructions in this proof, we use the following definitions. A word

(q0, h0) . . . (qn, hn) ∈ (Q×N)∗ is a run segment if for all i ∈ [n], there is a d ∈ D

such that (hi, hi+1) ∈ d and (qi+1, d) ∈ δDi
(qi, wi). The run segment is initial

if (q0, h0) = (qI , 0). The run segment is F -avoiding if qi /∈ F , for all i ≤ n.
We construct a word R ∈ (2Q)ω that satisfies the conditions (1) and (2). For

i ∈ N, we define Ri as

{qn ∈ Q | there is an initial run segment (q0, h0) . . . (qn, hn) with hn = i}.

That is, Ri contains all states that can be reached by an initial run segment
of A on (w, ) that ends with its read-only head at position i. By definition,
R satisfies the conditions (1) and (2).
Condition (3) is also fulfilled since otherwise there is an initial run segment

(q0, h0) . . . (qn, hn), where tt occurs in δDi
(qn, whn). However, this means that

A accepts (w, ), which contradicts the assumption (w, ) /∈ Lnw(A).
Now, we define a word S ∈ (2Q\F )ω that satisfies the conditions (4)–(5). Let

b ∈ {0, 1}ω be an infinite word such the bit bk = 0 if and only if k ∈ N is a
sync position. In the following, we define S inductively. For convenience, let
S−1 := ∅ and b−1 = 0. Let m ∈ N ∪ {−1} such that Sm = ∅ and bm = 0.
For every m, we define the word Tm ∈ (Q× N)ω as the set of F -avoiding run
segments that start in Rm+1 \ F . For brevity, we just write T instead of Tm.
Formally, for i ≤ m, we define Ti := ∅ and for i > m, we define

Ti := {qk ∈ Q | there is an F -avoiding run segment (q0, h0) . . . (qk, hk)

with q0 ∈ Rm+1, h0 = m+ 1, and hk = i}.

Next, we show that there is a position n > m such that Tn = ∅ and bn = 0.
Intuitively, every run segment that starts in Rm+1 \F and visits positions after
n, (a) visits position n because of condition bn = 0, and (b) visits an F -state
before it reaches position n because of condition Tn = ∅. Let n be the smallest
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position after m such that Tn = ∅ and bn = 0. We argue that the position n
exists. For the sake of contradiction, assume that this n does not exist.

We first show that the b sequence has value 0 at infinitely many positions.
Formally, for every position i > m, there is a position j ≥ i such that bj = 0.
Consider a position i > m. If bi = 0, we are done. Otherwise, let h be the
least matched call position such that its matching return position k is greater
than i. Since edges in  2 do not cross, we have bk = 0.

Now, we consider the following graph. The vertices are elements of {(q, i) ∈
Q × N | i ∈ N, q ∈ Ti, and bi = 0}. This set is infinite since by assumption,
there are infinitely many positions i ∈ N, where bi = 0 and Ti 6= ∅. There is
an edge from (q, h) to (q′, h′) if the automaton A can move from configuration
(q, h) to (q′, h′), i.e., there is a direction d ∈ D such that (h, h′) ∈  d and
(q′, d) ∈ δDh

(q, wh). Note that each node has only finitely many successors.
Furthermore, every node is reachable by some node in the finite set {(q,m+1) |
q ∈ Tm+1}. By König’s Lemma, the graph contains an infinite path. Note
that for each tuple (q, h) in that path, we have q /∈ F . Thus, there is an
accepting infinite run of A on (w, ). This contradicts the assumption that
(w, ) /∈ Lnw(A).

For the positions i ∈ N with m < i ≤ n, we define Si := Ti.

By the definition of S, condition (5) is fulfilled. The sequence S also fulfills
condition (4). This proof is similar to the proof from above that shows that R
fulfills condition (2).

Now, we prove the if direction. Assume that there are words R ∈ (2Q)ω and
S ∈ (2Q\F )ω that satisfy conditions (1)–(5).

For the sake of contradiction, assume there is an accepting run r of A on
(w, ). We make a case distinction. Suppose that r is finite and has the
form (q0, h0)(q1, h1) . . . (qn, hn) ∈ (Q × N)∗, for some n ∈ N. Note that the
conditions (1) and (2) ensure that qi ∈ Rhi, for all i ≤ n. Since r ends in
the configuration (qn, hn), the constant tt occurs in δDhn

(qn, whn). We obtain
a contradiction to condition (3).

Suppose that r := (q0, h0)(q1, h1) . . . ∈ (Q × N)ω is infinite. Note that the
conditions (1) and (2) ensure that qi ∈ Rhi, for all i ∈ N. Since A is eventually
1-way and r is accepting, there is an index k ∈ N such that for all i ≥ k, we
have qi /∈ F and (hi, hi+1) ∈  d with d ∈ {1, 2}. By condition (5), there is a
breakpoint at position m > hk with Sm = ∅ and Sm+1 = Rm+1 \ F . Moreover,
there is no (i, j) ∈ 2 such that i ≤ m and j > m. It follows that r must visit
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this breakpoint, i.e., there is an index l such that hl = m and thus, ql ∈ Rm.
By condition (5), the position m is not a matched call. Hence, hl+1 = hl + 1.
It follows that ql+1 ∈ Sm+1.

Now, we show that there cannot be a further breakpoint after position m,
which contradicts condition (5). Assume there is a breakpoint at position
n > m with Sn = ∅ and Sn+1 = Rn+1 \ F . By condition (4), the fact that
ql+1 ∈ Sm+1, and the fact that there is no (i, j) ∈  2 such that i ≤ n and
j > n, the run r must visit Sn, i.e., there is an index l′ such that hl′ = n and
ql′ ∈ Sn. However, this contradicts the fact that Sn is empty. �

Theorem 5.2 For every eventually 1-way 2ECA A with n states, there is
an NWA B with O(2n3n) states and O(2n3n) stack symbols that accepts the
complement of Lnw(A). 2

Before presenting the proof, we give an overview on the construction of the
automaton B. Let A = (Q, Σ̂, δ, qI , F ) be an eventually 1-way 2ECA. The
automaton B guesses the words R ∈ (2Q)ω and S ∈ (2Q\F )ω from Lemma 5.1
and locally checks that the conditions (1)–(4) hold. The construction is similar
to the 2-way subset construction in Theorem 2.6. Besides, the automaton B
additionally uses its stack to check the conditions for non-local moves of A.

Let us elaborate on the construction for checking condition (5). The con-
struction extends the 2-way breakpoint construction presented in Theorem 4.2.
The automaton B guesses a sequence b ∈ {0, 1}ω and checks that for every
k ∈ N, the bit bk is 0 if and only if k is a sync position. For the check, the
automaton B uses a bit in its states and a bit in its stack symbols. Initially,
the bit in the state is assigned to 0. For every call position, B guesses whether
the call is matched or not. In case the call is not matched, B pushes the special
symbol pending on the stack. The automaton is not allowed to pop the symbol
pending later on. In case the call is matched, the bit in the current state is
stored on the stack and then assigned to 1. If the matched return is reached
the bit in the state is restored from the stack. By using the bit sequence b and
the breakpoint construction, B ensures that condition (5) holds.

Proof Let A = (Q, Σ̂, δ, qI , F ) be an eventually 1-way 2ECA. The proof is
structured as follows. We first formally define the NWA B. Then, we prove
the correctness of the construction.

85



Translating Logics over Nested Words to Automata

Construction We define the NWA B as (P,O,Σ, η, pI, G), where P , O, and
G are defined as follows.

• P := O := (2Q × 2Q\F × 2Q × {0, 1}) ∪ {pI}. A state can be a tuple
or the initial state pI . Consider the case where the automaton is in
state (X, Y,X ′, z) and processes the ith input letter of (w, ). Then, X
and Y correspond to the guessed sets Ri and Si of the words R and S,
respectively. The component X ′ corresponds to the guessed sets Ri+1 of
the word R. The component z corresponds to the bit bi of the guessed
word b.

• G := 2Q × {∅} × 2Q × {0}. That is, at infinitely many positions i ∈ N,
bi = 0 and Si = ∅.

For brevity, we use pattern matching in the definition of the transition func-
tion. For instance, we write η((R−1, S−1, R0, b), a) ∋ (R0, S0, R1, 1) meaning
η((R−1, S−1, R0, b), a) ∋ (R′

0, S
′
0, R1, b

′), where the following three conditions
hold: R′

0 = R0 and b
′ = 1. For clarity, we write pending to denote the state pI .

First, we define the transitions from the initial state pI . Let a ∈ Σ̂.

• For an internal position, we have ηi(pI , a) ∋ (R0, R0 \ F,R1, 0) iff the
following conditions hold. Let D := {0, 1}.

1. We have qI ∈ R0.
2. For all d ∈ D, we have δdD(R0, a) ⊆ Rd.
3. For all p ∈ R0, we have ∅ 6|= δD(p, a).

• For a call position, we have ηc(pI , a) ∋ ((R0, R0 \ F,R1, 1), (R0, R0 \
F,R2, 0)) iff the following conditions hold. Let D := {0, 1, 2}.

1. We have qI ∈ R0.
2. For all d ∈ D, we have δdD(R0, a) ⊆ Rd.
3. For all p ∈ R0, we have ∅ 6|= δD(p, a).

Furthermore, ηc(pI , a) ∋ ((x, 0), pending) iff ηi(pI , a) ∋ (x, b), for some
b ∈ {0, 1} and x ∈ (2Q × 2Q\F )2.

• For a return position, we have ηr(pI , o, a) contains (R0, S0, R1, 0) iff we
have ηi(pI , a) ∋ (R0, S0, R1, 0), where o ∈ O∪{⊥} is some stack symbol.

Now, we define the transitions from states in P \ {pI}. Let a ∈ Σ̂.
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• For an internal position, the transition function ηi((R−1, S−1, R0, b), a)
contains (R0, S0, R1, S1, b) iff the following conditions hold. Let D :=
{−1, 0, 1}.

1. For all d ∈ D, we have δdD(R0, a) ⊆ Rd.
2. For all p ∈ R0, we have ∅ 6|= δD(p, a).
3. For all d ∈ {0, 1}, we have δdD(S−1, a) \ F ⊆ S−1+d.
4. If S−1 = ∅ and b = 0 then S0 = R0 \ F .

• For a call position, the transition function ηc((R−1, S−1, R0, b), a) con-
tains ((R0, S0, R1, 1), (R0, S0, R2, b)) iff the following conditions hold. Let
D := {−1, 0, 1, 2}.

1. For all d ∈ D, we have δdD(R0, a) ⊆ Rd.
2. For all p ∈ R0, we have ∅ 6|= δD(p, a).
3. For all d ∈ {0, 1, 2}, we have δdD(S−1, a) \ F ⊆ S−1+d.
4. If S−1 = ∅ and b = 0 then S0 = R0 \ F .

Furthermore, ηc(p, a) ∋ ((x, 0), pending) iff ηi(p, a) ∋ (x, b), for some
b ∈ {0, 1}.

• For a return position, we have

ηr((R−1, S−1, R0, b), (R−2, S−2, R0, c), a) ∋ (R0, S0, R1, c)

iff the following conditions hold. Let D be the set {−2,−1, 0, 1}.

1. For all d ∈ D, we have δdD(R0, a) ⊆ Rd.
2. For all p ∈ R0, we have ∅ 6|= δD(p, a).
3. For all d ∈ {0, 1}, we have δdD(S−1, a) \ F ⊆ S−1+d.
4. If S−1 = ∅ and b = 0 then S0 = R0 \ F .

Furthermore, we have ηr(p,⊥, a) = ηi(p, a), for p ∈ P . Note that there
is no transition if the symbol pending is on the stack.

Correctness It remains to show that Lnw(B) = Σ̂ω \ Lnw(A).
First, we prove Lnw(B) ⊆ Σ̂ω \ Lnw(A). Assume that B accepts (w, ) by

the run r := (p0, o0)(p1, o1) . . . ∈ (P × O)ω. We show that there are words
R ∈ (2Q)ω and S ∈ (2Q\F )ω that fulfill the conditions (1)–(5) of Lemma 5.1.
We construct the words R and S. By the definition of the transition function,

p0 = pI and for all i > 0, each pi is a tuple of the from (Ai, Bi, Ci, bi) ∈
(2Q × 2Q\F × 2Q × {0, 1}). Define Ri := Ai+1 and Si := Bi+1, for all i ∈ N.
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We show that the words R and S satisfy the conditions (1)–(5). By defini-
tion, conditions (1) and (3) are fulfilled. We show that condition (2) is fulfilled.
Let d ∈ D with (i, j) ∈ d. We make a case distinction.

(a) Consider the case, where i = 0. Let D := Di. If i is an internal,
a return or a pending call position then we have ηi(pI , w0) ∋ p1. We have
δ0D(A1, w0) ⊆ A1 and hence, δ0D(R0, w0) ⊆ R0. We also have δ1D(A1, w0) ⊆
A2 since C1 = A2. So, δ1D(R0, w0) ⊆ R1. If i is a matched call position
then we have ηc(pI , w0) ∋ (p1, o1). By the same arguments as above, we
infer that δdD(R0, w0) ⊆ Rd, for d ∈ {0, 1}. We have δ0D(A1, w0) ⊆ A1 and
hence, δ0D(R0, w0) ⊆ R0. Let (A′

1, B
′
1, C

′
1, b

′
1) denote the tuple o1. We have

δ2D(A1, w0) ⊆ Aj+1 since j is the matching return position of i and C ′
1 = Aj+1.

So, δ2D(R0, w0) ⊆ Rj .

(b) The proof for the case, where i > 0 is similar.

The proof that condition (4) is fulfilled is analogous.

We show that condition (5) is fulfilled. Since G occurs infinitely often, there
are infinitely many i > 0 such that Bi = ∅ and bi = 0. Note that bk+1 = 0 if
and only if for all (i, j) ∈ 2, if i ≤ k then j ≤ k. Since r is a run, Bi = ∅ and
bi = 0 implies that Bi+1 = Ri+1 \ F , for every i > 0. It follows that (5) holds.

Now, we prove Lnw(B) ⊇ Σ̂ω \ Lnw(A). Assume (w, ) /∈ Lnw(A). Then,
there are words R ∈ (2Q)ω and S ∈ (2Q\F )ω that fulfill the conditions (1)–(5)
of Lemma 5.1. For convenience, we define the word b ∈ {0, 1}ω, where bk = 0
if and only if k ∈ N is a sync position. Without lost of generality, we assume
that there is no position i ∈ N such that Si = Si+1 = ∅ and bi = 0. In other
words, every Si is filled up as soon as every non-pending call with position
j ≤ i is matched before or at position i. For more details, see the construction
of S in the proof of Lemma 5.1.

We construct an accepting run r := (p0, o0)(p1, o1) . . . ∈ (P × O)ω of B on
(w, ). Let p0 := pI and for all i > 0, we define pi := (Ri−1, Si−1, Ri, bi−1).
Next, we define the symbols that are pushed on the stack at call positions. For
every pending call position i, we define oi+1 := pending. For every (i, j) ∈ 2,
we define oi+1 := (Ri, Si, Rj, bi).

In the following, we show that r is an accepting run. We show that for all
i ∈ N, there is a transition in B from ri to ri+1 when reading the letter wi. First,
there is a transition from r0 to r1 when reading the letter w0. Consider the case,
where 0 is an internal or return position. By definition of r0, the automaton
is in state pI , reads w0 and goes to state (R0, S0, R1, 0). By definition of R
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and S, all conditions for this transition are fulfilled. Consider the case, where
(0, j) ∈ 2, for some j ∈ N. By definition of r0, the automaton is in state pI ,
reads w0 and goes to state p1 = (R0, S0, R1, 1) and pushes o1 = (R0, S0, Rj, 0)
on the stack. By definition of R and S, all conditions for this transition are
fulfilled. Finally, consider the case, where 0 is a pending call position. By
definition of r0, the automaton is in state pI , reads w0 and goes to state
(R0, S0, R1, 1) and pushes pending on the stack. By definition of R and S, all
conditions for this transition are fulfilled. The proof that there is a transition
from ri to ri+1 when reading the letter wi, for any i > 0, is analogous.
By condition (5) and the remark at the beginning of the proof, states in G

occur infinitely often. So, B accepts (w, ). �

Now, consider the case where the existential co-Büchi automaton whose
language has to be complemented is 1-way. In this case, we can simplify
condition (2) of Lemma 5.1 since the automaton does not move its read-only
head backwards. The following requirement must hold.

(2 ′) For all (i, j) ∈ d with d ≥ 0, we have δd
Di
(Ri, wi) ⊆ Rj.

From this observation, we directly obtain the following theorem as a special
case of Theorem 5.2.

Theorem 5.3 For every 1ECA A with n states, there is an NWA B with
O(3n) states and O(3n) stack symbols that accepts the complement of Lnw(A).2

Proof Let A = (Q, Σ̂, δ, qI , F ) be an 1ECA. In a nutshell, the construction
from Theorem 5.2 consists of three parts: a 2-way subset construction, a con-
struction for guessing the sync positions, and a construction to check that all
runs of A fulfill the co-Büchi acceptance condition. The construction of the
NWA B follows the same line except for one part. The 2-way subset construc-
tion is replaced by the standard 1-way subset construction.
We formally define the NWA A as (P,O,Σ, η, pI, G), where P , O, pI , and

G are defined as follows.

• P := O := (2Q×2Q×{0, 1})∪{pI} is the set of states and stack symbols,
where pI denotes a pending state.

• pI := ({qI}, ∅, 0) is the initial state.

• G := 2Q × ∅ × {0} is the set of accepting states.

89



Translating Logics over Nested Words to Automata

Next, we define the transition function. Let R0, R1 ∈ 2Q, S0, S1 ∈ 2Q \ F ,
b ∈ {0, 1}, and a ∈ Σ̂.

• For an internal position, we have ηi(R0, S0, b), a) ∋ (R1, S1, b) iff the
following conditions hold. Let D := {0, 1}

1. For all d ∈ D, we have δdD(R0, a) ⊆ Rd.
2. For all p ∈ R0, we have ∅ 6|= δD(p, a).
3. For all d ∈ {0, 1}, we have δdD(S0, a) \ F ⊆ Sd.
4. If S0 = ∅ and b = 0 then S1 = R1 \ F .

• For a call position, we have ηc((R0, S0, b), a) ∋ ((R1, S1, 1), (R2, S2, b)) iff
the following conditions hold. Let D := {0, 1, 2}

1. For all d ∈ D, we have δdD(R0, a) ⊆ Rd.
2. For all p ∈ R0, we have ∅ 6|= δD(p, a).
3. For all d ∈ {0, 1, 2}, we have δdD(S0, a) \ F ⊆ Sd.
4. If S0 = ∅ and b = 0 then S1 = R1 \ F .

Furthermore, ηc(p, a) ∋ ((x, 0), pending) iff ηi(p, a) ∋ (x, b), for some
b ∈ {0, 1}.

• For a return position, we have ηr((R0, S0, 1), (R0, S0, b), a) ∋ (R1, S1, b)
iff the following conditions hold. Let D := {0, 1}

1. For all d ∈ D, we have δdD(R0, a) ⊆ Rd.
2. For all p ∈ R0, we have ∅ 6|= δD(p, a).
3. For all d ∈ {0, 1}, we have δdD(S0, a) \ F ⊆ Sd.
4. If S0 = ∅ and b = 0 then S1 = R1 \ F .

Furthermore, we have ηr(p,⊥, a) = ηi(p, a), for p ∈ P . Note that there
is no transition if the symbol pending is on the stack.

The proof for Lnw(A) = Σ̂ω \ Lnw(B) is along the lines as the proof of
Theorem 5.2. We omit it. �

5.1.2 Complementing Very-Weak Automata

In the following, we optimize our complementation construction for restricted
classes of eventually 1-way 2ECAs. When A is very weak, we can characterize
the language of nested words that is not accepted by A by similar conditions
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as those given in Lemma 5.1. The existence of the S sequence together with
condition (4) is not required anymore and condition (5) is replaced by the
requirement that no run of the existential automaton gets trapped in some non-
accepting state. We make this observation explicit, in the following lemma.

Lemma 5.4 Let A := (Q, Σ̂, δ, qI , F ) be an eventually 1-way very weak 2ECA
and (w, ) ∈ Σ̂ω. We have (w, ) /∈ Lnw(A) if and only if there is a word
R ∈ (2Q)ω such that the conditions (1)–(3) of Lemma 5.1 and the following
condition hold.

(5 ′) There is no state q ∈ Q \ F and no sequence of positions h ∈ Nω such
that q ∈ Rh0 and for all i ∈ N, there is a direction d > 0 such that
(hi, hi+1) ∈ d and q ∈ δd

Dhi
(q, whi). 2

Proof We first prove the only if direction. Assume (w, ) /∈ Lnw(A). As
shown in Lemma 5.1, we construct the sequence R ∈ (2Q)ω that satisfies the
conditions (1)–(3).
It remains to show that R fulfills condition (5′). Let q ∈ Q \ F and h ∈

Nω such that q ∈ Rh0 and for all i ∈ N, there is a direction d ∈ {1, 2}
such that (hi, hi+1) ∈  d and q ∈ δd

Dhi
(q, whi). Since q ∈ Rh0 , there is an

initial run segment (q0, k0) . . . (qn, kn) with (qn, kn) = (q, h0). It follows that
(q0, k0) . . . (qn, kn)(q, h1)(q, h2) . . . is an accepting run ofA on (w, ). However,
this contradicts the assumption (w, ) /∈ Lnw(A).

In the remainder of the proof, we show the if direction. Assume there is an
R ∈ (2Q)ω such that the conditions (1)–(3) and (5′) hold. We show that any
run of A on (w, ) is rejecting. As shown in Lemma 5.1, we infer from the
conditions (1)–(3) that every finite run must be rejecting.
Now, consider an infinite run r := (q0, h0)(q1, h1) . . . ∈ (Q × N)ω. For the

sake of contradiction, assume r is accepting. First, note that the conditions (1)
and (2) ensure that qi ∈ Rhi, for all i ∈ N. Second, note that there is an index
m ∈ N and a state q ∈ Q \ F such that qi = q, for all i ≥ m since A is very
weak. Third, note that there is an index n ≥ m such that for all i ≥ n, we have
hi < hi+1 since A is eventually 1-way. However, the existence of the infinite
sequence (qn, hn)(qn+1, hn+1) . . . contradicts condition (5′). �
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Theorem 5.5 For every eventually 1-way V2ECA A with n states, there is
an NWA B with O(22nn) states and O(22nn) stack symbols that accepts the
complement of Lnw(A). 2

Proof Let A = (Q,Σ, δ, qI , F ) be an eventually 1-way V2ECA. We define
E := (Q \ F ) ∪ {∗}.
The proof is similar to the proof for Theorem 5.2. We construct an NWA

B that guesses the word R ∈ (2Q)ω from Lemma 5.4 and locally checks the
conditions (1)–(3) and condition (5′) with its acceptance condition.

Construction We formally define the NWA B := (P, S,Σ, η, pI, G) as fol-
lows.

• P := S := (2Q × 2Q ×E × {0, 1}) ∪ {pI}. The component in E is called
focus. It is used to find a state in Q\F that can get trapped in a self-loop.

• G := 2Q × 2Q × {∗} × {0}.

As in the proof of Theorem 5.2, we use pattern matching in the definition
of the transition function. Let < be a total ordering on the set E, where ∗ is
the greatest element. Furthermore, let next : E → E be a function that maps
the greatest element ∗ to the smallest one and each of the other elements to
the next greater one. We also use the synonym pending := pI .
First, we define the transitions from the initial state pI . Let a ∈ Σ̂.

• For an internal position, we have ηi(pI , a) ∋ (R0, R1, ∗, 0) iff the following
conditions hold. Let D := {0, 1}.

1. We have qI ∈ R0.
2. For all d ∈ D, we have δdD(R0, a) ⊆ Rd.
3. For all p ∈ R0, we have ∅ 6|= δD(p, a).

• For a call position, we have ηc(pI , a) ∋ ((R0, R1, ∗, 1), (R0, R2, ∗, 0)), iff
the following conditions hold. Let D := {0, 1, 2}.

1. We have qI ∈ R0.
2. For all d ∈ D, we have δdD(R0, a) ⊆ Rd.
3. For all p ∈ R0, we have ∅ 6|= δD(p, a).

Further, ηc(pI , a) ∋ ((R0, R1, ∗, 0), pending) iff ηi(pI , a) ∋ (R0, R1, ∗, 0).

92



5.1. Complementation Constructions

• For a return position, we have ηr(pI , s, a) ∋ (R0, R1, 0) iff ηi(pI , a) ∋
(R0, R1, 0), where s ∈ S ∪ {⊥} is some stack symbol.

Second, we define the transitions from states in P \ {pI}. Let a ∈ Σ̂.

• For an internal position, we have ηi((R−1, R0, s0, b), a) ∋ (R0, R1, s1, b) iff
the following conditions hold. Let D := {−1, 0, 1}.

1. For all d ∈ D, we have δdD(R0, a) ⊆ Rd.
2. For all p ∈ R0, we have ∅ 6|= δD(p, a).

3. s1 =

{

s0 if s0 ∈ R0 ∩ δ
1
D(s0, a) or (s0 = ∗ and b = 1),

next(s0) otherwise.

• For a call position, the transition function ηc((R−1, R0, s0, b), a) contains
((R0, R1, s1, 1), (R0, R2, s2, b)) iff the following conditions hold. Let D :=
{−1, 0, 1, 2}.

1. For all d ∈ D, we have δdD(R0, a) ⊆ Rd.
2. For all p ∈ R0, we have ∅ 6|= δD(p, a).
3. For all d ∈ {1, 2}, we have

sd =

{

s0 if s0 ∈ R0 ∩ δ
d
D(s0, a) or (s0 = ∗ and b = 1),

next(s0) otherwise.

Furthermore, ηc(p, a) ∋ ((x, 0), pending) iff ηi(p, a) ∋ (x, b), for some
b ∈ {0, 1}.

• For a return position, we have ηr((R−1, R0, s0, 1), (R−2, R0, s
′
0, b), a) ∋

(R0, R1, s1, b) iff the following conditions hold. Let D := {−2,−1, 0, 1}.

1. For all d ∈ D, we have δdD(R0, a) ⊆ Rd.
2. For all p ∈ R0, we have ∅ 6|= δD(p, a).
3. For s := min(s0, s

′
0), we have

s1 =

{

s if s ∈ R0 ∩ δ
1
D(s, a) or (s = ∗ and b = 1),

next(s) otherwise.

For a pending return position, we have ηr(p,⊥, a) := ηi(p, a), for p ∈ P .
Note that there is no transition if the symbol pending is on the stack.
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Correctness The correctness proof of the construction is along the same
lines as the correctness proof given in Theorem 5.2. We first prove that
Lnw(B) ⊆ Σ̂ω \ Lnw(A). Let (w, ) ∈ Lnw(B). Let r := (p0, s0)(p1, s1) . . . ∈
(P × S)ω be an accepting run of B of (w, ).

It suffices to construct a word R ∈ (2Q)ω that fulfills the conditions (1)–(3)
and (5′) of Lemma 5.4. By definition of the transition function, p0 = pI and for
all i > 0, each pi is a tuple of the form (Ai, Bi, si, bi) ∈ P . Define Ri := Ai+1,
for all i ∈ N. By the same arguments as in the proof of Theorem 5.2, it follows
that R fulfills the conditions (1)–(3).

It remains to show that R satisfies condition (5′). For the sake of contra-
diction, assume there is a state q ∈ Q \ F and a sequence of positions h ∈ N

ω

such that q ∈ Rh0 and for all i ∈ N, there is a direction d > 0 such that
(hi, hi+1) ∈ d and q ∈ δd

Dhi
(q, whi).

We show that the automaton B will eventually recognize this sequence of
repeating qs with its third component of its states. We make this intuition
formal. Let m > h0 be a sync position with sm = ∗. Let n > m be the first
sync position after m with sn = ∗. Note that bm = bn = 0. The positions
m and n exist since r is an accepting run. By the definition of the transition
function, it follows that for any position i ∈ N with m < i < n and si < q,
there is a position j ∈ N with i < j < n such that sj = q. Note that sm+1 is
the smallest element in E, by definition of the transition function. Therefore,
there is a k ∈ N with m < k < n such that sk = q. Let k be the largest
position such that m < k < n and sk = q.

We show that such a k does not exist. We make a case distinction.

(a) There is some i ∈ N such that hi = k. Since qi = q, we have q ∈ Rk.
(i) If hi is an internal, a pending call, or return position then hi+1 = hi+1 and
q ∈ Rij+1. By definition of the transition function, we have sk+1 = q. That
contradicts the maximality of k.

(ii) If hi is a non-pending call position. Then hi+1 is the matching return posi-
tion. By definition of the transition function, we have shi+1

= q. Furthermore,
we have bj = 1, for all hi < j ≤ hi+1. It follows that hi+1 < m since bm = 0.
However, the fact that hi+1 > k contradicts the maximality of k.

(b) There is no i ∈ N such that hi = k. Let j ∈ N such that hj < k and
hj+1 > k. It follows that hj is a call with matching return hj+1. Moreover both
positions hj and hj+1 are between m and n. (i) If shj = q then by definition
of the transition function, we have shj+1

= q. This contradicts the maximality

94



5.1. Complementation Constructions

of k.
(ii) If shj > q then sk > q, by definition of the transition function.
(iii) If shj < q then by definition of the transition function, there is an index
l ≥ j + 1 such that shl = q and hl < n. This contradicts the maximality of k.

Now, we show that Lnw(B) ⊇ Σ̂ω \ Lnw(A). Assume (w, ) /∈ Lnw(A). Let
R ∈ (2Q)ω be a word that fulfills the conditions (1)–(3) and (5′). We construct
an accepting run of B on (w, ). The run r := (p0, s0)(p1, s1) . . . ∈ (P × S)ω

is defined as follows.
For defining the components of the run r, we need the following definitions.

Let b ∈ {0, 1}ω be a word such that for every i ∈ N, we have bi = 0 if and
only if i is a sync position. Furthermore, we define the sequences u, v ∈ Eω

recursively. Let u0 := ∗ and v0 := ∗. For i ∈ N, we define ui+1 and vi+1 as
follows. Let D := Di.
(a) If i is an internal, call, or pending-return position then

ui+1 :=

{

ui if ui ∈ Ri ∩ δ
1
D(ui, wi) or (ui = ∗ and bi = 1),

next(ui) otherwise.

and

vi+1 :=

{

ui if ui ∈ Ri ∩ δ
2
D(ui, wi) or (ui = ∗ and bi = 1),

next(ui) otherwise.

(b) If i is a non-pending return position with (j, i) ∈  2. Let m be the
minimum of ui and vj+1.

ui+1 := vi+1 :=

{

m if m ∈ Ri ∩ δ
1
D(m,wi) or (m = ∗ and bi = 1),

next(m) otherwise.

We define p0 := pI and for i > 0, we define pi := (Ri−1, Ri, ui−1, bi−1). Next,
we define the symbols that are pushed on the stack at call positions. For every
pending call i ∈ N, we define si+1 := pending. For every non-pending call
i ∈ N with (i, j) ∈ 2, we define si+1 := (Ri, Rj , vj, bi).
By construction, r is a run. In the following, we show that r is accepting.

Assume the opposite, i.e., G is not visited infinitely often. Note that each
nested word has infinitely many sync positions. Therefore, the automaton B
does not visit states of the form (R,R′, ∗, 1) with R,R′ ∈ 2Q. It follows that
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the automaton B gets trapped in a non-F -state with its third component of its
states. That is, there is a state q ∈ Q \ F and a sequence of positions h ∈ N

ω

such that q ∈ Rh0 and for all i ∈ N, there is a d > 0 such that (hi, hi+1) ∈ d

and q ∈ δd
Dhi

(q, whi). Thus, condition (5′) is violated. �

Now, consider the case where the existential very-weak co-Büchi automaton
whose language has to be complemented is 1-way. In this case, we can simplify
condition (2) of Lemma 5.4 by condition (2′) from Section 5.1.1 since the
automaton does not move its read-only head backwards. We directly obtain
the following theorem as a special case of Theorem 5.5.

Theorem 5.6 For every V1ECA A with n states, there is an NWA B with
O(2nn) states, O(2nn) stack symbols with Lnw(B) = Σ̂ω \ Lnw(A). 2

Proof Let A = (Q, Σ̂, δ, qI , F ) be a V1ECA. In a nutshell, the construction
from Theorem 5.5 consists of three parts: a 2-way subset construction, a con-
struction for guessing the sync positions, and a construction to check that
every run of A does not get trapped in an non-F -state. The construction
of the NWA B follows the same line except for one part. The 2-way subset
construction is replaced by the standard 1-way subset construction.
Formally, let E := (Q \F )∪ {∗}. Furthermore, consider a total ordering on

the set E and a function next : E → E that maps the greatest element ∗ to
the smallest one and each of the other elements to the next greater one. We
define the NWA B := (P, S,Σ, η, pI, G) as follows.

• P := S := 2Q × E × {0, 1} ∪ {pending}.

• pI := ({qI}, ∗, 0) is the initial state.

• G := 2Q × {∗} × {0}.

Now, we define the transition function. Let a ∈ Σ̂.

• For an internal position, let D := {0, 1}. We have ηi((R0, s0, b), a) ∋
(R1, s1, b) iff the following conditions hold.

1. For all d ∈ D, we have Rd = δdD(R0, a).
2. For all p ∈ R0, we have tt /∈ δD(p, a).

3. s1 =

{

s0 if s0 ∈ R ∩ δ1D(s0, a) or (s0 = ∗ and b = 1)

next(s0) otherwise.

96



5.1. Complementation Constructions

• For a call position, let D := {0, 1, 2}. We have ηi((R0, s0, b), a) contains
((R1, s1, 1), (R2, s2, b)) iff the following conditions hold.

1. For all d ∈ D, we have Rd = δdD(R0, a).
2. For all p ∈ R0, we have tt /∈ δD(p, a).
3. For all d ∈ {1, 2}, we have

sd =

{

s0 if s0 ∈ R0 ∩ δ
d
D(s0, a) or (s0 = ∗ and b = 1)

next(s0) otherwise.

Furthermore, ηc(p, a) ∋ ((x, 0), pending) iff ηi(p, a) ∋ (x, b), for some
b ∈ {0, 1}.

• For a return position, letD := {0, 1}. We have ηr((R0, s0, 1), (R0, s
′
0, b), a)

contains (R1, s1, b) iff the following conditions hold.

1. For all d ∈ D, we have Rd = δdD(R0, a).
2. For all p ∈ R0, we have tt /∈ δD(p, a).
3. For s := min(s0, s

′
0), we have

s1 =

{

s if s ∈ R0 ∩ δ
1
D(s, a) or (s = ∗ and b = 1)

next(s) otherwise.

For a pending return position, we have ηr(p,⊥, a) := ηi(p, a), for p ∈ P .
Note that there is no transition if the symbol pending is on the stack.

The proof for Lnw(B) = Σ̂ω \ Lnw(A) is a special case of the proof given in
Theorem 5.5. �

5.1.3 Complementing Parity Automata

In this section, we present a construction to complement the nested-word lan-
guages of eventually 1-way 2EPAs. It is a generalization of Kupferman and
Vardi’s construction from [KV05]: (a) The given automaton operates over
nested words instead of just words. (b) The given automaton is not a 1-way
automaton but a 2-way automaton that is eventually 1-way.

Theorem 5.7 For an eventually 1-way 2EPA A with n states and index k,
there is an NWA B with 2O(nk logn) states, 2O(nk logn) stack symbols, and Lnw(B)
equals Σ̂ω \ Lnw(A). 2
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In the remainder of this section, we prove this theorem. For translating the
eventually 1-way 2EPA A into an NWA B with Lnw(B) = Σ̂ω \ Lnw(A), we
start with the following preparatory steps.

(a) We increase the EPA’s parities by one to obtain a language-equivalent
eventually 1-way 2EcPA.

(b) We translate the eventually 1-way 2EcPA into its dual automaton, i.e.,
we exchange the Boolean connectives ∧ and ∨ and the Boolean constants
tt and ff in the transition functions of the 2EcPA. Furthermore, we in-
terpret the acceptance condition again as a parity acceptance condition.
In [MS87], Muller and Schupp show that the dual automaton accepts the
complement of the language of the original automaton.1 That is, the dual
automaton is an eventually 1-way 2UPA. Note that every universal au-
tomaton is memoryless.

(c) Finally, we view the eventually 1-way 2UPA as an eventually 1-way alter-
nating 2ASA. Note that a parity acceptance condition is a special case of
a Streett acceptance condition and a universal automaton is a special case
of an alternating automaton.

In summary, the resulting 2ASA is memoryless, eventually 1-way, and accepts
the complement of Lnw(A). Furthermore, the size and the index of the 2ASA
are constant in the size and index of the 2EPA.

In the remainder of the proof, we show how to translate an eventually 1-way
2ASA that accepts by memoryless runs into a language-equivalent NWA. The
outline of this translation is as follows. In step 1, we translate the eventually
1-way 2ASA into a language-equivalent eventually 1-way 2AGA that accepts
by memoryless and consistent runs (see definition below). For this translation,
we first show that an eventually 1-way 2ASA accepts a nested word if and only
if it has a so-called accepting Streett ranking (see definition below). Then, we
construct an eventually 1-way 2AGA that accepts a nested word if and only if
the given 2ASA has an accepting Streett ranking. In step 2, we translate the
2AGA into a language-equivalent NWA. We remark that both steps are along
the lines as Kupferman and Vardi’s construction in [KV05].

1The result is proven for tree automata but canonically generalizes to automata over graphs.
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Step 1: Streett Ranking In the following, let (w, ) ∈ Σ̂ω be a nested
word and A = (Q, Σ̂, δ, qI , F ) be an eventually 1-way 2ASA, where its accep-
tance condition F has the form {(C0, B0), . . . , (Ck−1, Bk−1)}. Furthermore, we
require that A is memoryless, i.e., Lω(A) =Mω(A).
Consider a memoryless run r : R → Q × N of A on (w, ). We define a

directed graph G := (V,E) that represents this run with

V := {v ∈ Q× N | v = r(x), for some x ∈ R} and

E := {e ∈ V × V | e = (r(x), r(xi)), for some x, xi ∈ R and i ∈ N}.

For P ⊆ Q, we call (q, h) ∈ V a P -vertex if q ∈ P . The integer h is called
the head position of v. Obviously, if r is accepting then every infinite path
(q0, h0)(q1, h1) . . . in G with (q0, h0) = (qI , 0) fulfills the Streett acceptance
condition F , i.e., for all i ∈ [k], either Inf(q0q1 . . . ) ∩ Ci = ∅ or Inf(q0q1 . . . ) ∩
Bi 6= ∅.
Consider a function f : V → [2n]k. For i ∈ [k], we denote the projection of

f on the ith component by fi : V → [2n] and call it i-rank. The function f is
an Streett ranking for G if the following two conditions hold.

(i) For all v ∈ V and i ∈ [k], if fi(v) is odd then v is not a Ci-vertex.

(ii) For all (v, v′) ∈ E and i ∈ [k], either fi(v) ≥ fi(v
′) or v is a Bi-vertex.

For i ∈ [k], we say that the i-rank fi is accepting if every infinite path in
G either visits Bi-vertices infinitely often or gets trapped in an odd rank.
Formally, fi is accepting if for every infinite path (q0, h0)(q1, h1) . . . in G, either
Inf(q0q1 . . . ) ∩ Bi 6= ∅ or there is an n ∈ N such that fi(qn, hn) is odd and
fi(qj , hj) = fi(qn, hn), for all j ≥ n. The Streett ranking f is accepting if each
i-rank fi is accepting, for every i ∈ [k].

Lemma 5.8 Every infinite path in G fulfills the Streett acceptance condition
F if and only if there is an accepting Streett ranking for G. 2

In the following, we prove this lemma. It suffices to only consider the case,
where k = 1. Obviously, by the definition of a Streett ranking, the lemma’s
statement generalizes then to any k ≥ 1. To increase readability, we assume
that F is the singleton {(C,B)}.
The if direction is easy to see. Assume that there is an accepting Streett

ranking f for G. That is, every infinite path in G visits B-vertices infinitely
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often or gets trapped in an odd rank. By definition, this means, every infinite
path visits B-vertices infinitely often or eventually avoids visiting C-vertices.
Hence, every infinite path in G fulfills the Streett acceptance condition F .
For proving the only if direction, assume that every infinite path in G ful-

fills the Streett acceptance condition, i.e., every infinite path visits B-vertices
infinitely often or eventually avoids visiting C-vertices. In the following, we
construct a Streett ranking for G and show that it is accepting.
Consider a subgraph G′ of G. We call a vertex v ∈ V finite in G′ if only

finitely many vertices are reachable from v in G′. We call it C-free in G′ if no
C-vertex is reachable from v in G′. We define an infinite sequence of subgraphs
G0, G1, G2, . . . of G, where the vertices Vi and the edges Ei of a graph Gi are
inductively defined as follows:

V0 := V and E0 := E \ {(v, v′) ∈ E | v is a B-vertex}

and for i ∈ N, we define

V2i+1 := V2i \ {v | v is finite in G2i},

E2i+1 := E2i ∩ V2i+1 × V2i+1,

and

V2i+2 := V2i+1 \ {v | v is C-free in G2i},

E2i+2 := E2i+1 ∩ V2i+2 × V2i+2.

Note that by removing edges from B-vertices in G, we obtain the graph G0,
where every infinite path avoids B-vertices and eventually avoids visiting C-
vertices.

Lemma 5.9 For every i ∈ N, the graph G2i+1 is empty or has a C-free vertex
from which an infinite path of C-free vertices starts. 2

Proof Let i ∈ N. Consider the graph G2i. We make a case distinction. If G2i

is finite then G2i+1 is empty and we are done. Otherwise, if G2i is infinite then
G2i+1 is infinite. For the sake of contradiction, assume that there is no C-free
vertex in G2i+1. Note that every vertex in G2i+1 has at least one successor.
Consider some vertex v1 in G2i+1. Let v

′
1 be a successor of v1. Since v

′
1 is not

C-free, there is a C-vertex v2 reachable from v′1. Let v′2 be a successor of v2.
Since v′2 is not C-free, there is a C-vertex v3 reachable from v′2. Let v′3 be a
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successor of v3. If we continue this way, we can construct an infinite path that
does not visit any B-vertex but visits C-vertices infinitely often. This path
corresponds to a rejecting path in G, which contradicts the assumption that
every infinite path in G fulfills the Streett acceptance condition. �

In the next lemma, we show that we obtain an empty graph from G in 2n
steps by alternately removing infinite paths according to Lemma 5.9 and finite
vertices from G. Let H ⊆ N be the set of head position h such that h is not
strictly between a call position and its matching return position, i.e.,

H := {h ∈ N | there are no i, j ∈ N such that i < h < j and (i, j) ∈ 2}.

Lemma 5.10 For every i ∈ N, either G2i+1 is empty or there is a position
n ∈ N such that for every h ∈ H with h ≥ n, we have |{(q, h) | (q, h) ∈
V2i+2}| < |{(q, h) | (q, h) ∈ V2i+1}|. 2

Proof If G2i+1 is empty, we are done. Otherwise, consider an infinite path
π = (q0, h0)(q1, h1) . . . in G2i+1 that consists of only C-free vertices. This path
exists by Lemma 5.9. It suffices to show that for each h ∈ H with h > h0,
there is a vertex (q, h) occurring in π. This is obvious since A is eventually
1-way and cannot jump over the positions in H on infinite paths of its run. �

Corollary 5.11 G2n is finite and G2n+1 is empty. 2

Proof First, observe that H is infinite. Second, note that G2n does not
contain any vertex (q, h) with h ∈ H , since G contains at most n vertices with
head position h and from Lemma 5.10, it follows that for each i ∈ [n], at least
one vertex in G2i+1 with head position h gets removed.
Assume (q, j) is a vertex of G2n with j 6∈ H . Since H is infinite, there is a

head position h ∈ H with h > j. Since A cannot jump over h, the vertex (q, j)
can only have finitely many successors in G2n. Therefore, it is not a vertex of
G2n+1. �

We define the Streett ranking f : V → [2n] as follows and show that it is
accepting.

f(v) :=

{

2i if v is finite in G2i,

2i+ 1 if v is C-free in G2i+1.
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Obviously, f fulfills condition (i) of the definition of a Streett ranking. Con-
dition (ii) follows from the next lemma.

Lemma 5.12 For all vertices v, v′ ∈ V , we have f(v′) ≤ f(v) if v′ is reachable
from v without visiting a B-vertex. 2

Proof By the definition of f , we have the following fact. A vertex is not in
Gi anymore if it has been removed from Gj before and hence, has rank j, for
i, j ∈ [2n] with j < i. Formally, for every v̂ ∈ V and i ∈ [2n], if v̂ /∈ Gi then
f(v̂) < i.
Assume that f(v) = i. We distinguish between three cases. (a) If v′ /∈ Vi

then f(v′) < f(v) by the fact from above. (b) Assume v′ ∈ Vi and i is
even. Since v′ is reachable from v in G without visiting a B-vertex, it follows
that v′ is reachable from v in Vi. Since v is finite, v′ is also finite. Hence,
f(v′) ≤ f(v). (c) If v′ ∈ Vi and i is odd then v and v′ are C-free in Vi, and
hence, f(v′) ≤ f(v). �

Finally, we show that the Streett ranking f is accepting.

Lemma 5.13 Every infinite path in G that does not visit B-vertices infinitely
often gets trapped in an odd rank. 2

Proof Let π = v0v1 . . . be an infinite path in G that avoids visiting B-vertices
infinitely often. According to Lemma 5.12, there must be a position k ∈ N in
π such that f(vm) = f(vk), for all m ≥ k. We show that f(vk) is odd. By
the sake of contradiction, assume that f(vk) is even. Then, every vertex v in
the path that is reachable from vk is finite in Gf(vk). The path is infinite, and
therefore, vk cannot be finite in Gf(vk). �

Step 2: Alternation Elimination We construct an eventually 1-way 2AGA
B and show that the automaton is language-equivalent to the eventually 1-
way 2ASA A. Furthermore, we show that B accepts by runs having a special
structure. This structure can be exploited in the alternation-elimination con-
struction to avoid an overall double-exponential blow-up when translating B
into a language-equivalent NWA.
We note that this special structure of runs of the 2ABA is observed by

Kupferman and Vardi in [KV05] when the authors remove alternation from
automata over words. Here, we make this property explicit and show that
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it also holds for automata over nested words. Let Q be a set of states and
k ∈ N an index. We call a set P ⊆ Q × [2n]k consistent if and only if for
every two states (q, r), (q′, r′) ∈ P , if q = q′ then r = r′. We call a tree
t : T → (Q× [2n]k)× N consistent if for every head position h ∈ N, the set

{
(q, r) | there is a node x ∈ T with t(x) = ((q, r), h)

}

is consistent. For a node x ∈ T , we call the last component of t(x) head
position.

Theorem 5.14 For a memoryless eventually 1-way 2ASA A with n states and
index k, there is an eventually 1-way 2AGA B with O(nk) states and Lnw(B) =
Lnw(A). Furthermore, B accepts by memoryless and consistent runs. 2

Proof Let A =
(
Q, Σ̂, δ, qI , {(C0, B0), . . . , (Ck−1, Bk−1)}

)
be an eventually 1-

way 2ASA. Intuitively, the eventually 1-way 2AGA B that we construct from
A works as follows. For a nested word (w, ) ∈ Σ̂ω, it simulates a run of A
on (w, ) and annotates the run by a guessed Streett ranking. That is, each
configuration of the run is annotated by a rank in [2n]k. Then, the automaton
B checks that the guessed Streett ranking fulfills the conditions (i) and (ii).
We need the following definition for constructing the check of condition (ii).

For a state q ∈ Q and two ranks r, r′ ∈ Nk, we write r′ ≤q r if and only if for
every i ∈ [k], we either have r′i ≤ ri or q ∈ Bi. Intuitively, the automaton may
move to all possible successor states whose rank is lower. For a given formula
ϕ ∈ B+(Q×D), a state q ∈ Q and a rank r ∈ [2n]k, we define relq(ϕ, r) as the
positive Boolean formula that we obtain by replacing each proposition (p, d)
in ϕ by the disjunction

∨

r′≤qr
((p, r′), d).

Now, we formally define B := (Q× [2n]k, Σ̂, η, pI , {F0, . . . , Fk−1}).

• The initial state is pI := (qI , 2n, . . . , 2n).

• For q ∈ Q, r ∈ [2n]k, D ⊆ D, and a ∈ Σ̂, we define

ηD((q, r), a) :=

{

relq(δD(q, a), r) if q /∈ Ci or ri is even, for all i ∈ [k],

ff otherwise,

That is, B checks condition (i) and then moves to states with lower ranks.
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• For i ∈ [k], the acceptance set Fi contains the state (q, r) if and only if
q ∈ Bi or ri is odd. That is, every path in a run either visits Bi infinitely
often or its ith’s component gets trapped in an odd rank.

It remains to prove that B accepts the same nested-word language as A.
We first show that Lnw(B) ⊆ Lnw(A). Let (w, ) ∈ Lnw(B) and let t′ :
T → (Q × [2n]k) × N be an accepting run of B on (w, ). Consider the tree
t : T → Q× N with t(x) := (q, h), for every x ∈ T with t′(x) = (q, i, h). That
is, t is the projection of t′ on Q and N. The tree t is a run of A on (w, ) since
the transitions of B just annotate the transitions of A by ranks. We show that
t is accepting. Since t′ is accepting, every path in t′ visits some (q, r), where
for every component ri of r, for i ∈ [k], we either have q ∈ Bi or ri is odd.
Let i ∈ [k]. Consider an infinite path in t′ that does not visit any state from
Bi. By definition of the acceptance condition, the path gets trapped in the set
{(q, r) ∈ Q× [2n]k | i ∈ [k] and ri is odd}. Thus, by definition of η, the path
eventually avoids visiting states from Ci. Consequently, the projection of the
path on Q is an accepting path in r. Hence, r is accepting.
Now, we prove that Lnw(B) ⊆ Lnw(A). Let (w, ) ∈ Lnw(A) and t : T →

Q× N be an accepting memoryless run of A on the nested word (w, ). Let
G = (V,E) be the directed graph obtained from t. Furthermore, let f : V →
[2n]k be an accepting Streett ranking for G. We define a tree t′ : T → (Q ×
[2n]k)×N and show that it is an accepting run of B on (w, ). Let t′(ε) := pI
and for a node x ∈ T \{ε} with t(x) = (q, h), we define t′(x) := ((q, f(q, h)), h).
We show that t′ is a run. By definition of t′, we have t′(ε) = pI . Consider a node
x ∈ T with t′(x) = ((q, r), h). By conditions (i) and (ii) of the Streett ranking
f , the set of labels of the successors of node x fulfill the transition function
ηD((q, r), wh), for D ⊆ D. Finally, by Lemma 5.13, every infinite path in G
that does not visit Bi-vertices infinitely often, gets trapped in an odd i-rank,
for every i ∈ [k]. Hence, by definition of the generalized Büchi acceptance
condition {F0, . . . , Fk−1}, every infinite path in t′ is accepting. Furthermore,
note that t is a memoryless run and for every two configurations (q, h) and
(q′, h′) in t with (q, h) = (q′, h′), we have f(q, h) = f(q′, h′). By definition of
t′, it follows that t′ is also memoryless. Hence, B accepts by memoryless runs.
It remains to show that the run t′ is consistent. By definition of t′, for every

x ∈ T with t′(x) = ((q, r), h), r is the rank of vertex (q, h) in G. Since every
vertex in G has a unique rank, t′ is consistent. �
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Theorem 5.15 For a memoryless eventually 1-way 2ESA A with n states and
index k, there is an NWA B with 2O(nk logn) states and 2O(nk logn) stack symbols,
and Lnw(B) = Lnw(A). 2

Proof First, we use Theorem 5.14 for translating the eventually 1-way 2ASA
A := (Q, Σ̂, δ, qI , F ) into a language-equivalent eventually 1-way 2AGA B of
size nk that accepts by memoryless and consistent runs. Next, we use our
alternation-elimination scheme to translate B into a language-equivalent NWA
C. That is, we have to complement an eventually 1-way 2EcGA of size nk.
Recall Theorem 5.2 for complementing eventually 1-way 2ECAs. We adapt

this construction for complementing an eventually 1-way 2EcGA R as follows.
Let {F0, . . . , Fk−1} be the acceptance condition of R. We add a counter i ∈ [k]
to each state of the resulting NWA C. The NWA C sequentially checks that
there is no run of R that gets trapped in some Fi. Along the lines of the
construction of Theorem 5.2, the NWA C guesses infinitely many sync positions
i0, i1, . . . ∈ N of the given input word (w, ) such that for every such sync
position ij , for j ∈ N, and every run of R that starts in a state that can be
reached by reading the prefix w0..ij+1, visits the set Q\F(j mod k) before reaching
position ij+1 in the input word. This is accomplished by changing the transition
function from non-initial states in the construction of Theorem 5.2. Namely,
condition (4) is changed to: whenever S0 = ∅ and b = 0 then S1 = R1 \ Fi
and i′ = (i+ 1) mod k, where i is the current counter value and i′ is the next
counter value.
Note that the NWA C has size O(k24n

k

). We now show how to restrict the
state space of the NWA C. Let R be the refuter automaton for B according to
our scheme. Consider a nested word (w, ) ∈ Σ̂ω and a memoryless consistent
run t : T → (Q × [2n]k) × N of B on (w, ). We can represent this run by
a nested word (s, ) ∈ Γ̂ω, where Γ := Q → 2(Q×[2n]k)×D. Now, consider the
nested word (w×s, ), where w×s ∈ (Σ̂× Γ̂)ω with (w×s)(i) := (w(i), s(i)),
for all i ∈ N, and a tree t′ : T ′ → (Q × [2n]k) × N that represents all runs of
the refuter automaton R on (w × s, ), i.e., each path of the tree represents
a run of the existential automaton R. We show that this tree is consistent.
Intuitively, the refuter automaton follows a path in the run given by (s, ).
So, the tree that represents all runs of the refuter automaton is only a sub-tree
of the run t. Pick an arbitrary head position h ∈ N. We have to show that the
set

S ′ := {t′(x) | t′(x) has head position h, for some node x ∈ T ′}
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is consistent. We show that S ′ is a subset of the set

S := {t(x) | t(x) has head position h, for some node x ∈ T ′},

which is consistent by assumption. Let (q, h) ∈ S ′. Then there is a prefix
(q0, h0)(q1, h1) . . . (qn, hn) ∈ ((Q × [2n]k) × N)∗ of a run of R on a prefix of
(w, ) such that (qn, hn) = (q, h). Since, qi+1 ∈ si(qi), for all i ∈ [n], there is
a node in r that is labeled by (q, h). Hence, (q, h) ∈ S.
Since t′ is consistent, we can optimize the construction of the NWA C that

complements the language of the automaton R. Recall that the state space
and space of the stack alphabet of C is P = (2(Q×[2n]k)×2(Q×[2n]k)×2(Q×[2n]k)×
2(Q×[2n]k) × {0, 1} × [k]) ∪ {qI}. Consider a state (R, S,R′, S ′, b, i) ∈ P . The
R and R′ component correspond to labels in the tree t′ having the same head
position h and h + 1, for some h ∈ N, respectively. Hence, both sets are
consistent. Since S ⊆ R and S ′ ⊆ R′, we can restrict tuples in P to tuples
whose components are consistent. That is, instead of using P , we can restrict
the states space and the space of the stack alphabet to

P ′ := {qI} ∪ {(R, S,R′, S ′, b, i) | S ⊆ R, S ′ ⊆ R′, b ∈ {0, 1}, i ∈ [k]

and R, S,R′, S ′ are consistent}.

An upper bound on the cardinality of P ′ is as follows. Consider a state
(R, S,R′, S ′, b, i) ∈ P ′. We can represent (R, S,R′, S ′) by a quadruple of func-
tions in Q→ [2n]k. Therefore, the size of P ′ is O(k(([2n]k)4)n) = 2O(nk logn).�

Complementing 2-way Existential Streett Automata By combining
constructions—along the same lines as in [Var88, Var98]—we can generalize
the above construction to 2EPAs. The first ingredient is Shepherdson’s trans-
lation [She59,Var89] of a 2-way nondeterministic finite word automaton into a
deterministic one, which generalizes to automata over nested words with only
minor modifications. The second ingredient is a complementation construction
for nondeterministic 1-way automata. Intuitively, the first construction elimi-
nates the bi-directionality of runs of any 2-way word automaton. The second
construction is then used to complement the resulting 1-way automaton. In
our setting, we combine the generalized version of Shepherdson’s translation
with the complementation construction in Theorem 5.7. This combination
results in the following theorem.
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Theorem 5.16 For a 1EPA A with n states and index k, there is an NWA
B with 2O((nk)2) states, 2O((nk)2) stack symbols, and Lnw(B) = Σ̂ω \ Lnw(A). 2

5.2 From Temporal Logics to Automata

In this section, we discuss an application of our alternation-elimination scheme.
We show how to translate temporal logics over nested words into nondetermin-
istic nested-word automata. In particular, we identify a flaw in a translation
from the logic NWTL to NWAs given in [AAB+08] and provide a correct trans-
lation that is based on our automata constructions. Then, we introduce the
new logic NWPSL based on the IEEE standard PSL. We show that NWPSL
is more expressive than NWTL whereas the worst-case sizes of the NWAs ob-
tained from the translations from the logics NWPSL and NWTL differ only
by a small constant in the exponent. Finally, we present a new translation
from the logic µNWTL [Boz07] to NWAs. For a relevant subclass of µNWTL
that contains formulas without past operators, our construction improves over
Bozelli’s translation: the worst-case sizes of the resulting NWAs are bound
by 2O(nk logn) instead of 2O((nk)2), where n is the size of the formula and k the
alternation depth of the fix-point quantifiers.
For the remainder of this section, let P denote a finite, non-empty set of

propositions and let Σ := 2P denote the finite alphabet over P. Furthermore,
for a Boolean formula ϕ ∈ B(P ∪ {call, ret}) and a set M ⊆ Σ̂, we say that M
satisfies the formula ϕ if and only if either (a) M ∈ Σc and M ∪ {call} |= ϕ,
(b) M ∈ Σr and M ∪ {ret} |= ϕ, or (c) M ∈ Σi and M |= ϕ.

5.2.1 Nested Word Temporal Logic

Nested Word Temporal Logic (NWTL) [AAB+08] is an extension of the well-
known linear-time temporal logic (LTL) that is used for describing properties
over nested words. In [AAB+08], the authors show that NWTL has the same
expressive power as first-order logic over nested words. Furthermore, they give
a translation of NWTL formulas into NWAs to obtain decision procedures
for this logic. We remark that this translation has a flaw. Consider the for-
mula F σff that is equivalent to the formula ff. The NWA constructed from
F σff accepts the nested word ((〈∅ ∅ ∅〉)ω, ), where  := {(i, i + 2) ∈ N

2 |
3 divides i}. We present an alternative translation from NWTL to NWA
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 5.1: Paths in a nested word

based on our alternation-elimination scheme and the novel complementation
construction from the Section 5.1.
In the following, we define the logic NWTL. The syntax of an NWTL formula

over P is given by the following grammar.

ϕ ::= b | ¬ϕ | ϕ ∨ ϕ | Oϕ | Θϕ | Oµϕ | Θµϕ | ϕ Uσ ϕ | ϕ Sσ ϕ

where b ∈ B(P ∪ {call, ret}). We use the syntactic abbreviation int := ¬call ∧
¬ret.
We interpret NWTL formulas over nested words over Σ. For the definition

of the fix-point operators, we need the following notion. A summary path
is the shortest path between two positions. Formally, a summary path in a
nested word (w, ) is a finite sequence i0 . . . ik ∈ N∗ of positions such that for
all j ≤ k, we have

ij+1 =

{

r if (ij , r) ∈ 2 and r ≤ ik,

ij + 1 otherwise.

For instance, the path 1, 2, 4, 5, 6, 10, 11, 12, 14, 15 in Figure 5.1 is a summary
path.
For a nested word (w, ) ∈ Σ̂ω and a position i ∈ N in w, we define the

semantics of NWTL as follows.

(w, , i) |= b iff wi satisfies b
(w, , i) |= ¬ϕ iff (w, , i) 6|= ϕ
(w, , i) |= ϕ ∨ ψ iff (w, , i) |= ϕ or (w, , i) |= ψ
(w, , i) |= Oϕ iff (w, , i+ 1) |= ϕ
(w, , i) |= Θϕ iff i > 0 and (w, , i− 1) |= ϕ
(w, , i) |= Oµϕ iff (i, j) ∈ 2 and (w, , j) |= ϕ, for some j ∈ N

(w, , i) |= Θµϕ iff (j, i) ∈ 2 and (w, , j) |= ϕ, for some j ∈ N

(w, , i) |= ϕ Uσ ψ iff there is a summary path l0 . . . lk such that
l0 = i, (w, , lk) |= ψ, and ∀j < k : (w, , lj) |= ϕ

(w, , i) |= ϕ Sσ ψ iff there is a summary path l0 . . . lk such that
lk = i, (w, , l0) |= ψ, and ∀j > 0 : (w, , lj) |= ϕ,
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where b ∈ B(P ∪ {call, ret}). We denote the language of an NWTL formula ϕ
by Lnw(ϕ) := {(w, ) ∈ Σ̂ω | (w, , 0) |= ϕ}.

We use the following abbreviations to translate any NWTL formula into
positive normal form, i.e., negations occur only in front of propositional-logic
formulas. For the two NWTL formulas ϕ and ψ, we define the following
operators.

• Θϕ := ¬Θ¬ϕ. That is, Θϕ is equivalent to ¬Θtt∨Θϕ, which intuitively
means that either there is no previous position, or ϕ holds at the previous
position.

• Oµϕ := ¬Oµ¬ϕ. That is, Oµϕ is equivalent to ¬Oµtt ∨ Oµϕ, which
intuitively means that either the current position is not a call with a
matching return position, or at the matching return position ϕ holds.

• ϕ Rσ ψ := ¬ϕ Uσ ¬ψ. The operator Rσ corresponds to the release oper-
ator R known from LTL. While R is interpreted over linear paths, Rσ is
interpreted over summary paths.

• ϕ Tσ ψ := ¬ϕ Sσ ¬ψ. The operator Tσ corresponds to the past operator
T known from LTL.

For the translation of NWTL formulas into automata, we additionally need
to substitute the fix-point connectives by operators that are defined over special
kinds of summary paths. A summary-up path is a summary path, where every
call may only be followed by its matched return. Formally, we call a summary
path p ∈ N∗ a summary-up path if for all i < |p|, if pi is a call then pi+1

is its matched return. For instance, the path 1, 2, 4, 5, 6 in Figure 5.1 is a
summary-up path. A summary-down path is a summary path, where a return
position can only be reached from its matching call position. Formally, we call
a summary path p ∈ N∗ a summary-down path if for all i < |p|, if pi+1 is a
return position then pi is its matching call position. For instance, the path
5, 6, 10, 11, 12, 14, 15 in Figure 5.1 is a summary-down path. For a nested word
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(w, ) ∈ Σ̂ω and a position i ∈ N in w, we define

(w, , i) |= ϕ Uσ↑ψ iff there is a summary-up path l0 . . . lk such that
l0 = i, (w, , lk) |= ψ, and ∀j < k : (w, , lj) |= ϕ,

(w, , i) |= ϕ Uσ↓ψ iff there is a summary-down path l0 . . . lk such that
l0 = i, (w, , lk) |= ψ, and ∀j < k : (w, , lj) |= ϕ,

(w, , i) |= ϕ Sσ↑ψ iff there is a summary-up path l0 . . . lk such that
lk = i, (w, , l0) |= ψ, and ∀j > 0 : (w, , lj) |= ϕ,

(w, , i) |= ϕ Sσ↓ψ iff there is a summary-down path l0 . . . lk such that
lk = i, (w, , l0) |= ψ, and ∀j > 0 : (w, , lj) |= ϕ.

Note that the equivalences αUσ β ≡ αUσ↑ (αUσ↓ β) and αSσ β ≡ αSσ↑ (αSσ↓β)
hold. We define the abbreviations α R∗ β := ¬(¬α U∗ ¬β) and α T∗ β :=
¬(¬α S∗ ¬β), for ∗ ∈ {σ↑, σ↓}. A normalized NWTL formula is a formula of
the form

ϕ ::= b | ϕ ∧ ϕ | ϕ ∨ ϕ | Oϕ | Oϕ | Θϕ | Θϕ | Oµϕ | Oµϕ | Θµϕ | Θµϕ |

ϕ U∗ ϕ | ϕ R∗ ϕ | ϕ S∗ ϕ | ϕ T∗ ϕ,

where b ∈ B(P ∪ {call, ret}) and ∗ ∈ {σ ↑, σ ↓}. Note that a translation
of an NWTL formula into an equivalent normalized NWTL formula might
exponentially increase the size of the formula. However, the number of sub-
formulas remains linear in the size of the input formula.
The following theorem states that we can translate every NWTL formula

into a language-equivalent NWA.

Theorem 5.17 Every normalized NWTL formula of size n can be translated
into a language-equivalent 2ABA of size O(n) and into a language-equivalent
NWA of size O(22nn). 2

Proof Let ϕ be a normalized NWTL formula. We first start with some
preparatory work. Note that the following equivalences hold for any normalized
NWTL formulas α and β, see also [AAB+08] for more details.

α Uσ↑ β ≡ β ∨
(
α ∧ Oµ(α Uσ↑ β)

)
∨
(
α ∧ ¬call ∧ O(α Uσ↑ β)

)

α Uσ↓ β ≡ β ∨
(
α ∧ Oµ(α Uσ↓ β)

)
∨
(
α ∧ ¬ret ∧ O(α Uσ↑ β)

)

α Sσ↑ β ≡ β ∨
(
α ∧Θµ(α Sσ↑ β)

)
∨
(
α ∧ ¬call ∧Θ(α Sσ↑ β)

)

α Sσ↓ β ≡ β ∨
(
α ∧Θµ(α Sσ↓ β)

)
∨
(
α ∧ ¬ret ∧Θ(α Sσ↑ β)

)
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α Rσ↑ β ≡ β ∧
(
α ∨ Oµ(α Rσ↑ β)

)
∧
(
α ∨ call ∨ O(α Rσ↑ β)

)

α Rσ↓ β ≡ β ∧
(
α ∨ Oµ(α Rσ↓ β)

)
∧
(
α ∨ ret ∨ O(α Rσ↑ β)

)

α Tσ↑ β ≡ β ∧
(
α ∨Θµ(α Tσ↑ β)

)
∧
(
α ∨ call ∨Θ(α Tσ↑ β)

)

α Tσ↓ β ≡ β ∧
(
α ∨Θµ(α Tσ↓ β)

)
∧
(
α ∨ ret ∨Θ(α Tσ↑ β)

)

Let ϕ ≡ ψ be one of the equations from above. We call Unf(ϕ) := ψ the
unfolding of the formula ϕ.

Construction We define the 2ABA Aϕ and show that this automaton is
very weak, eventually 1-way, and language-equivalent to Lnw(ϕ).
Let Aϕ := (Q, Σ̂, δ, ϕ, F ), where Q := Sub(ϕ) is the set of sub-formulas of ϕ

and F := {αR∗ β ∈ Sub(ϕ) | ∗ ∈ {σ↑, σ↓}} is the set of release sub-formulas of
ϕ. The transition function is inductively defined over the formula structure.
Let a ∈ Σ̂ be a letter and D ⊆ D. For b ∈ B(P ∪ {call, ret})∩ Sub(ϕ), we have

δD(b, a) :=

{

tt if a satisfies b,

ff otherwise.

For α, β ∈ B+(Sub(ϕ)), we have

δD(α ∨ β, a) :=δ(α, a) ∨ δ(β, a),

δD(α ∧ β, a) :=δ(α, a) ∧ δ(β, a).

For α ∈ Sub(ϕ), we have

δD(Oα, a) :=(α, 1),

δD(Θα, a) :=(α,−1),

δD(Θα, a) :=

{

tt if −1 /∈ D,

(α,−1) otherwise,

δD(Oµα, a) :=(α, 2),

δD(Oµα, a) :=

{

tt if 2 /∈ D,

(α, 2) otherwise,

δD(Θµα, a) :=(α,−2),

δD(Θµα, a) :=

{

tt if −2 /∈ D

(α,−2) otherwise.
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And finally, for a fix-point formula ψ ∈ Sub(ϕ) of the form α ◦∗ β with ◦ ∈
{U, S,R,T} and ∗ ∈ {σ↑, σ↓}, we have

δD(ψ, a) := δD(Unf(ψ), a).

We show that Aϕ is very weak. Consider a partitioning q0, q1, . . . , qn ∈ Q
of the state set such that for all i, j ∈ [n], if qj ∈ Sub(qi) then j ≤ i. By the
definition of the transition function, for all i, j ∈ [n] and letters a, D ⊆ D, and
directions d, if (qj , d) occurs in δD(qi, a) then j ≤ i.

Correctness In the remainder of the proof, we show the correctness of our
construction. Let Aψ,i, for ψ ∈ Sub(ϕ) and i ∈ N, denote the automaton
Aψ that starts in configuration (ψ, i) instead of (ψ, 0). By induction on the

structure of ϕ, we show that for all (w, ) ∈ Σ̂ω, ψ ∈ Sub(ϕ) and i ∈ N the
following holds.

Aψ,i accepts (w, ) if and only if (w, , i) |= ψ.

This equivalence immediately implies Lnw(Aϕ) = Lnw(ϕ), for any normalized

NWTL formula ϕ Let (w, ) ∈ Σ̂ω be a nested word, i ∈ N, and ϕ, α, and β
normalized NWTL formulas.
Consider the case ϕ = b, for some b ∈ B(P ∪ {call, ret}). Then Aϕ,i accepts

(w, ) iff wi satisfies ϕ iff (w, , i) |= ϕ.
Consider the case ϕ = α ∨ β. Then, Aϕ,i accepts (w, ) iff Aα,i accepts

(w, ) or Aβ,i accepts (w, ), by the definition of the transition function.
By the induction hypothesis, either (w, , i) |= α or (w, , i) |= β. This is
equivalent to (w, , i) |= α ∨ β. The case for ϕ = α ∧ β is similar.
Consider the case ϕ = Oα. Then, Aϕ,i accepts (w, ) iff Aα,i+1 accepts

(w, ), by the definition of the transition function. By the induction hypoth-
esis, (w, , i+ 1) |= α. This is equivalent to (w, , i) |= Oα.
Consider the case ϕ = Θα. Then, Aϕ,i accepts (w, ) iff i > 0 and Aα,i−1

accepts (w, ), by the definition of the transition function. By the induction
hypothesis, i > 0 and (w, , i− 1) |= α. This is equivalent to (w, , i) |= Θα.
Consider the case ϕ = Θα. Then, Aϕ,i accepts (w, ) iff either i = 0 (there

is no −1-direction edge from the initial position 0) or Aα,i−1 accepts (w, ), by
the definition of the transition function. By the induction hypothesis, either
i = 0 or (w, , i− 1) |= α. This is equivalent to (w, , i) |= Θα.
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Consider the case ϕ = Oµα. Then, Aϕ,i accepts (w, ) iff i is a call with
matching return j and Aα,j accepts (w, ), by the definition of the transition
function. Applying the induction hypothesis, we obtain (w, , i) |= ϕ.

Consider the case ϕ = Oµα. Then, Aϕ,i accepts (w, ) iff either i has no
matching return (there is no 2-direction edge from position i), or i is a call with
matching return j and Aα,j accepts (w, ), by the definition of the transition
function. Applying the induction hypothesis, we obtain (w, , i) |= ϕ.

Consider the case ϕ = Θµα. Then, Aϕ,i accepts (w, ) iff i is a return with
matching call j and Aα,j accepts (w, ), by the definition of the transition
function. Applying the induction hypothesis, we obtain (w, , i) |= ϕ.

Consider the case ϕ = Θµα. Then, Aϕ,i accepts (w, ) iff either i has no
matching call (there is no −2-direction edge from position i), or i is a return
with matching call j andAα,j accepts (w, ), by the definition of the transition
function. Applying the induction hypothesis, we obtain (w, , i) |= ϕ.

Consider the case ϕ = αUσ↑ β. We first show the only if direction. Assume
Aϕ,i accepts (w, ). For the sake of contradiction, suppose (w, nwto, i) 6|= ϕ.
That is,

there is no summary-up path l0 . . . lk such that lk = i, (w, , l0) |=
β, and ∀j < k : (w, , lj) |= α.

(∗)

From (∗), it follows that Aβ,i does not accept (w, ). Thus, either Aα,i accepts
(w, ), i is a call with matching return j, and AαUσ↑,j accepts (w, ), or we
have Aα,i accepts (w, ), i is not a call, and AαUσ↑,i+1 accepts (w, ), by the
definition of the transition function. Consider the first case. By the induction
hypothesis and (∗), we infer that Aβ,j does not accepts (w, ). Now, consider
the second case. By the induction hypothesis and (∗), we infer that Aβ,i+1

does not accepts (w, ). If we repeat our argumentation, we obtain an infinite
summary-up path l0l1 . . . ∈ N

ω with l0 = i and an infinite path (ϕ, l0)(ϕ, l1) . . .
in the run of Aϕ,i on (w, ). This contradict the fact that all paths in the run
of Aϕ,i are accepting.

For the other direction, assume that (w, , i) |= ϕ. That is, there is a
summary-up path l0 . . . lk such that lk = i, (w, , l0) |= β, and ∀j < k :
(w, , lj) |= α. By the induction hypothesis, Aβ,lk accepts (w, ) and for
every j < k, we have Aα,lj accepts (w, ). By the definition of the transition
function, we infer that for every j < k, we have Aϕ,lj accepts (w, ). Hence,
Aϕ,i accepts (w, ).
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The cases where ϕ is of the form α Uσ↓ β, α Sσ↑ β, or α Sσ↓ β are similarly
proven.
Consider the case ϕ = α Rσ↑ β. Assume (w, , i) |= ϕ. By the definition of

the semantics of ϕ and the induction hypothesis, we have

for all summary-up paths of the form l0 . . . lk such that l0 = i, we
either have Aβ,lk accepts (w, ), or there is some j < k such that
Aα,lj accepts (w, ).

(i)

We show that (i) is equivalent to the fact (ii), namely, Aϕ,i accepts (w, ).
We show that (i) implies (ii). First note that for every k ∈ N, there is a

unique summary-up path l0 . . . lk ∈ N∗ since there is exactly one shortest path
between two positions. From this observation, we obtain the property

either for all summary-up paths of the form l0 . . . lk such that l0 = i,
we have Aβ,lk accepts (w, ), or there is a summary-up path of
the form l0 . . . lk such that l0 = i, Aα,lk accepts (w, ), and for all
j with i ≤ j ≤ k, we have Aβ,lj accepts (w, )

(i′)

that is equivalent to (i). Assume that the first case holds. Then there is an
infinite sequence l0l1 . . . ∈ Nω of positions such that for every i ∈ N, we have
lj+1 is the matched return of lj if lj is a call and otherwise, if lj is not a call
then lj+1 is lj + 1. Consider the following run of Aϕ,k. Whenever Aϕ,k arrives
in a configuration (ϕ, lj), for j ∈ N, it moves to the configuration (β, lj) and
(ϕ, lj+1), respecting the transition function. Since Aβ,lj accepts (w, ), for
all j ∈ N, we have Aϕ,i accepts (w, ) if the infinite path (ϕ, l0)(ϕ, l1) . . . is
accepting, which is indeed the case. Thus, Aϕ,i accepts (w, ). Assume that
the second case holds. Let l0 . . . lk be a summary-up path such that l0 = i, Aα,lk

accepts (w, ), and for all j with i ≤ j ≤ k, we have Aβ,lj accepts (w, ).
Since Aβ,lk accepts (w, ) and Aα,lk−1

accepts (w, ), it follows that by the
definition of the transition function, Aϕ,lk−1

accepts (w, ). If we iterate this
argumentation, we conclude that for all j with j ≤ k, we have Aϕ,lj accepts
(w, ). Thus, Aϕ,i accepts (w, ).
It remains to show that (ii) implies (i). We show this implication by con-

traposition. Assume (i) does not hold, i.e.,

there is a summary-up path of the form l0 . . . lk with l0 = i such
that Aβ,lk rejects (w, ) and for all j < k, we have Aα,lj rejects
(w, ).

(¬i)
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Let k be the smallest number such that (¬i) holds. So, Aβ,lk rejects (w, ).
By the definition of the transition function, Aϕ,lk rejects (w, ). By (¬i),
Aα,lk−1

rejects (w, ). Thus, Aϕ,lk−1
rejects (w, ), as well. If we repeat this

argument, we infer that Aϕ,lj rejects (w, ), for every i ≤ j < k. Therefore,
(ii) does not hold.
The cases where ϕ is of the form α Rσ↓ β, α Tσ↑ β, or α Tσ↓ β are similarly

proven.

Eventually 1-Wayness We show that A is eventually 1-way. For defining
the partitioning of the state set Q, we need the following function that assigns
weights to states.

weight(q) :=

{

2|Sub(q)| if q is a future formula ,

2|Sub(q)|+ 1 otherwise.

Let n := 2|Q| + 1. Let (Qi)i≤n be a partitioning of Q, where for i ≤ [n], we
define Qi := {q | weight(q) = i}.
Let p, q ∈ Q, D ⊆ D, d ∈ D, and a ∈ Σ such that (q, d) ∈ δD(p, a). It suffices

to show the following claim: if (weight(p) is even and d ≤ 0) or (weight(p) is
odd and d ≥ 0) then weight(q) < weight(p).
Consider the case, where p is a future formula. We have weight(p) is even.

By the definition of the transition function, d ≥ 0.
Consider the case p is not a future formula. We have weight(p) is odd. By

the definition of the transition function, d ≤ 0.
Finally, we translate the eventually 1-way V2ABA into an NWA using the

alternation-elimination scheme from Chapter 3 with the complementation con-
struction given in Theorem 5.5. �

5.2.2 Extensions of Nested Word Temporal Logic

In this section, we introduce the new logic NWPSL that extends NWTL by
a regular expression layer. We show that NWPSL is more expressive than
NWTL and present a translation to nested-word automata.
In [AAB+08], the authors show that NWTL has the same expressive power

as first-order logic over nested words. Hence, not all regular properties over
nested words can be expressed in NWTL. For instance, counting is not possible
in NWTL. That is, specifications that require that exactly at each nth step, for
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n > 1, some property should hold, cannot be expressed in NWTL. We make
the intuition explicit in the next theorem that is based on Wolper’s result for
LTL in [Wol83].

Theorem 5.18 For an atomic proposition p, the property “p holds at every
even position” is not expressible in NWTL. 2

Proof We first show that NWTL over words without nesting edges is as
expressive as LTL. Formally, let Σ := 2P be an alphabet, where P denote
the set of atomic propositions. For convenience, we write [ϕ] := {(w, i) | w ∈
Σω, i ∈ N, and (w, , i) |= ϕ} for the set of word models without nested edges
of a NWTL formula ϕ. Note that an LTL formula is a special kind of a NWTL
formula. We define the translation τ that translates an NWTL formula ϕ into
an LTL formula τ(ϕ) such that [τ(ϕ)] = [ϕ].

The proof proceeds by induction on the structure of ϕ.

• ϕ is a propositional formula. We define τ(ϕ) as the formula obtained from
ϕ by replacing the constants call and ret by ff. Obviously, [τ(ϕ)] = [ϕ].

• ϕ is of the form α ∨ β. We define τ(ϕ) := τ(α) ∨ τ(β). By induction
hypothesis, we obtain [τ(ϕ)] = [ϕ]. The case for α∧β and ¬α is similar.

• ϕ is of the form Oα. We define τ(ϕ) := Oτ(α). By induction hypothesis,
we obtain [τ(ϕ)] = [Oτ(α)] = {(w, i) | w, i + 1 |= τ(α)} = {(w, i) |
w, i+ 1 |= α} = [Oα]. The case for Θα is similar.

• ϕ is of the form Oµα. We define τ(ϕ) := ff. By definition of the nested
next operator, we have [ϕ] = ∅ = [τ(ϕ)]. The case for Θµα is similar.

• ϕ is of the form α U β. We define τ(ϕ) := τ(α) U τ(β). By definition of
the until operator and induction hypothesis, we have [τ(ϕ)] = {(w, i) |
w, i |= τ(ϕ)} = {(w, i) | ∃k ≥ i : w, k |= τ(β) and ∀0 ≤ j < k : w, j |=
τ(α)} = {(w, i) | w, i |= α U β} = [ϕ]. The case for α S β is similar.

• ϕ is of the form α Uσ β. Note that for words without nesting edges,
[α Uσ β] = [α U β], for any NWTL formula α and β. Hence, the case for
α Uσ β reduces to the case for α U β. The case for α S β is similar.
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In [Wol83], Wolper shows that LTL cannot express the property “p is true
at every even position” in a word. Assume that there is a NWTL formula ϕ
such that for every nested word (w, ), we have (w, ) ∈ Lnw(ϕ) if and only
if “p is true at every even position”. Since each model of ϕ has no nested
edges, we have [ϕ] = [τ(ϕ)]. Note that τ(ϕ) is an LTL formula and describes
all the words, where p holds at every even position. This contradicts Wolper’s
result. �

In the following, we present the new logic NWPSL that adds a regular layer
to the logic NWTL. The syntax of an NWPSL formula over P is given by the
following grammar.

ϕ ::= b | ⋄ ϕ | ϕ ◦ ϕ | r� ϕ | r−−−� ϕ | r�σ ϕ | r−−−�σ ϕ

where b ∈ B(P∪{call, ret}), ⋄ is a unary NWTL operator, ◦ is a binary NWTL
operator, and r is a regular expression (RE) as defined in Section 4.2.1.
For a nested word (w, ) ∈ Σ̂ω and a position i ∈ N in w, we define the

semantics of the new operators as follows.

(w, , i) |= r� ϕ iff ∃k : wi..k |= r and (w, , k) |= ϕ
(w, , i) |= r−−−� ϕ iff ∃k : wk..i |= r and (w, , k) |= ϕ
(w, , i) |= r�σ ψ iff there is a summary path l0 . . . lk such that

l0 = i, wl0 . . . wlk |= r, and (w, , lk) |= ϕ
(w, , i) |= r−−−�σ ψ iff there is a summary path l0 . . . lk such that

lk = i, wl0 . . . wlk |= r, and (w, , l0) |= ϕ

Note that we can express the property “p holds on every even position” by
the NWPSL formula p∧ (p� (p; tt; p� tt)). So, NWPSL is more expressive
than NWTL.
Next, we define new operators such that each NWPSL formula can be trans-

lated into positive normal form. For the two NWPSL formulas ϕ and ψ, we
define the following operators.

• r� ϕ := ¬(r� ¬ϕ). Intuitively, the regular expression triggers the
formula ϕ. That is, whenever the pattern r matches then the formula ϕ
must hold.

• r−−−� ϕ := ¬(r−−−� ¬ϕ).
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• r�σ ϕ := ¬(r�σ ¬ϕ).

• r−−−�σ ϕ := ¬(r−−−�σ ¬ϕ).

For the translation of an NWPSL formula into an NWA, we transform an
NWPSL formula into a normalized NWPSL formula, i.e., the NWPSL formula
is in positive normal form and every fix-point operator over summary paths
is replaced by the corresponding fix-point operators over summary-up and
summary-down paths as described in Section 5.2.1.
We use our alternation-elimination scheme with a novel complementation

construction from Section 5.1 to translate a normalized NWPSL formula into
a nested-word automaton.

Theorem 5.19 Every normalized NWPSL formula of size n can be translated
into a language-equivalent 2ABA of size O(2n) and into a language-equivalent
NWA of size O(28n). 2

Proof Let ϕ be a NWPSL formula of size n. First, we translate this for-
mula into a language-equivalent 2ABA. The construction combines the con-
struction from normalized NWTL formulas to alternating automata given in
Theorem 5.17 and the construction for the new operators �, −−−�, �, and
−−−�.

In this proof, we describe the construction for the new operators�σ, −−−�σ,
�

σ, and −−−�σ. The construction is along the lines as in the proof for The-
orem 4.17. In the following, we describe the construction of the automaton
that is obtained from a formula of the form r�σ ψ ∈ Sub(ϕ). It suffices to
construct an NFA Âr that accepts a finite nested word if the regular expression
r matches the labels along the unique summary path between the first and the
last position of the word. The NFA Âr is built from two NFAs, B and Ar.
First, we start with a construction of the NFA B that follows only summary

paths in an input word. Let B := ({p, q}, Σ̂, η, p, {p, q}) , where η is defined as
depicted in Fig 5.2. Formally, for every D ⊆ Q and a ∈ Σ̂, we have

ηD(p, a) :=

{

(p, 2) ∨ (q, 2) ∨ (q, 0) if 2 ∈ D,

(p, 1) ∨ (q, 1) ∨ (q, 0) otherwise,

ηD(q, a) := {(q, 2) | 2 ∈ D} ∪ {(q, 1) | −2 /∈ D}.

Intuitively, B stays in state p as long as it follows a summary-up path. When
it changes to state q, it follows a summary-down path.
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p q
(call, 2), (¬call, 1)

(tt, 0)

(call, 2), (¬call, 1) (call, 2), (¬ret, 1)

Figure 5.2: NFA that only follows summary paths.

Second, we construct an NFA Ar = (Q,Σ, δ, qI , F ) such that L∗(Ar) =
L∗(r). Then, we add new transitions along the 2-direction, for each transi-
tion along the 1-direction. Formally, we define A′

r := (Q, Σ̂, δ′, qI , F ), where
δ′(p, a) := δ′(p, a) ∪ {(q, 2) | (q, 1) ∈ δ′(p, a)}. That is, A′

r may use any path
in the input word to obtain an accepting run. Finally, we define Âr as the
intersection of A′

r and the NFA B that only follows summary paths in the
input word. Observe that the size of the automaton Âr might be twice as big
as the size of the regular expression r. The constructions for the operators
−−−�σ,�σ, and −−−�σ are analogous.

Overall, we obtain a 2ABA Aϕ with at most 2n states that is language-
equivalent to the normalized NWPSL formula ϕ. Furthermore, the 2ABA Aϕ

is eventually 1-way. This is shown the same way as is it shown for the 2ABA
that is constructed in Theorem 4.17. Using our alternation-elimination scheme
from Chapter 3 with the complementation construction from Theorem 5.2, we
translate the 2ABA Aϕ into a language-equivalent NWA with O(28n) states.�

5.2.3 Linear-Time µ-Calculus

In this section we present new translations from the linear-time µ-calculus
(µNWTL) over nested words to nested-word automata. The translations are
based on our alternation-elimination constructions and are more modular than
the constructions known from literature. Further, if the formula do not contain
past operators or only in a restricted way, our translations yield smaller nested
word automata. The logic µNWTL is introduced by Bozzelli in [Boz07] and—
roughly speaking—extends the logic NWTL by a least and greatest fix-point
operator. We can use this logic to specify any ω-regular property over nested
words since any nested-word automaton can be translated into a language-
equivalent µNWTL formula [Boz07].

We define the logic µNWTL. Let V = {X, Y, . . .} be a set of monadic second-
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order variables. The syntax of a µNWTL formula over the set of propositions
P is given by the following grammar.

ϕ ::= b | X | ϕ ∨ ϕ | ϕ ∧ ϕ | Odϕ | ¬Odtt | µX.ϕ | νX.ϕ,

where b ∈ B(P∪{call, ret}), X ∈ V, and d ∈ {−1, 1, c, µ} denote the directions
of the O operator, namely, the previous position, next position, previous caller
position, next matched position, respectively. In the following, we assume that
in every µNWTL formula, every fixpoint quantifier binds a different variable.
For a µNWTL formula ϕ, we write Sub(ϕ) for the set of sub-formulas of ϕ.
For a variable X ∈ Sub(ϕ), we denote the fixpoint formula that defines X
by fp(X). The alternation depth of a formula ϕ is the length of the longest
sequence of variables X0X1 . . .Xn ∈ (Sub(ϕ) ∩ V)∗ such that for all i < n, we
have (a) Xi+1 occurs free in fp(Xi), and (b) fp(Xi+1) and fp(Xi) have different
fixpoint types.
To define the semantics of a µNWTL formula, we need the following defini-

tion. We call the function ν : V → 2N that maps a variable to a set of positions
a valuation. For X ∈ V and N ⊆ N, we write ν[X 7→ N ] for the valuation that
maps X to the set N and behaves like ν on all other variables.
The semantics of a µNWTL formula is interpreted with respect to a nested

word (w, ) ∈ Σ̂ω, a valuation ν, and a position i ∈ N.

[[b]]
(w, )
ν := {i ∈ N | wi satisfies b}

[[X ]]
(w, )
ν := ν(X)

[[ϕ ∨ ψ]](w, )
ν := [[ϕ]]

(w, )
ν ∪ [[ψ]]

(w, )
ν

[[ϕ ∧ ψ]]
(w, )
ν := [[ϕ]]

(w, )
ν ∩ [[ψ]]

(w, )
ν

[[O1ϕ]]
(w, )
ν := {i ∈ N | i+ 1 ∈ [[ϕ]]

(w, )
ν }

[[O−1ϕ]]
(w, )
ν := {i ∈ N | i > 0 and i− 1 ∈ [[ϕ]]

(w, )
ν }

[[Ocϕ]]
(w, )
ν := {i ∈ N | j is the caller of i and j ∈ [[ϕ]]

(w, )
ν }

[[Oµϕ]]
(w, )
ν := {i ∈ N | (i, j) ∈ 2 and j ∈ [[ϕ]]

(w, )
ν , for some j ∈ N}

[[¬O1tt]]
(w, )
ν := N

[[¬O−1tt]]
(w, )
ν := N \ {0}

[[¬Octt]]
(w, )
ν := {i ∈ N | there is no caller of i}

[[¬Oµtt]]
(w, )
ν := {i ∈ N | there is no j ∈ N with (i, j) ∈ 2}

[[µX.ϕ]]
(w, )
ν :=

⋂
{M ⊆ N | [[ϕ]]

(w, )
ν[X 7→M ] ⊆ M}

[[νX.ϕ]]
(w, )
ν :=

⋃
{M ⊆ N | [[ϕ]]

(w, )
ν[X 7→M ] ⊇ M}
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If ϕ is closed, i.e., every variable is bound then [[ϕ]]
(w, )
ν does not depend on the

valuation ν. In that case, we just write [[ϕ]](w, ). The nested-word language of
a closed µNWTL formula over P is Lnw(ϕ) := {(w, ) ∈ Σ̂ω | 0 ∈ [[ϕ]](w, )}.
Next, we will show how to translate a µNWTL formula into a nested word

automaton. We need the following definition. An extended nested word is a
nested word with an explicit relation for the caller edges. Formally, an extended
nested word (w, ( d)d∈(D∪{c})) is a tuple such that (w, ( d)d∈D) ∈ Σ̂ω is a

nested word and  c = {(i, j) ∈ N2 | i is a caller of j}. We write Σ̃ω for the
set of all extended nested words. For an automaton A, we write

Lxnw(A) := {(w, ) ∈ Σ̃ω | there is an accepting run of A on (w, )}.

As shown in [Boz07], every µNWTL formula can be translated into a 2APA
over extended nested words that accepts the language that is described by the
formula.

Theorem 5.20 Every µNWTL formula ϕ of size n and alternation depth k
can be translated into a 2APA of size O(n) and index k and {(w, ( d)d∈D) |
(w, ) ∈ Lxnw(A)} = Lnw(ϕ). If ϕ contains no past operators, the automaton
is 1-way. 2

It is straight-forward to simulate the behavior of a 2APA A over extended
nested words by a 2APA B over nested words such that {(w, ( d)d∈D) |
(w, ) ∈ Lxnw(A)} = Lnw(B). Consider a transition δD(p, a) ∈ B+(Q ×
{c,−2,−1, 0, 1, 2}) of an 2APA A that contains the tuple (q, c), for D ⊆
D ∪ {c}) and a ∈ Σ̂. That is, if the automaton A is in state p and goes
to state q, it moves its read-only head back to the caller position of the current
position. According to the definition of caller positions, we can simulate this
move in B by using one extra states q′ for every tuple (q, c) that occurs in
some transition of A. Instead of directly moving to state q, the automaton
moves to state q′ and changes its read-only head position depending on the
current read letter. If the current letter is a call, it decreases its head position
by one. Otherwise, it remains at the same head position. Being in state q′,
the automaton B moves back along a well-matched sub-word until it reaches
the caller position. The simulation is depicted in Figure 5.3. To sum up, we
obtain the following theorem.

Theorem 5.21 Every µNWTL formula ϕ of size n and fix-point depth k can
be translated into a language-equivalent 2APA of size O(n) and index k. If ϕ
contains no past operators, the automaton is 1-way. 2
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p q′ q
(call,−1)

(¬call, 0)

(int,−1), (ret,−2)

(call, 0)

Figure 5.3: Simulation of the direct back-to-caller move

Consider a 2APA Aϕ that represents the nested-word language of a µNWTL
formula ϕ. Our alternation-elimination scheme with the complementation con-
structions from Section 5.1.3 provides three novel constructions to translateAϕ

into a language-equivalent NWA depending on whether Aϕ is 1-way, eventually
1-way, or none of both.

Theorem 5.22 Every µNWTL formula ϕ of size n and alternation depth k
can be translated into a language-equivalent NWA of size 2O((nk)2). If the au-
tomaton Aϕ from Theorem 5.21 is eventually 1-way then the NWA is of size
2O(nk logn). 2

Note that the construction in Theorem 5.22 improves over the state-of-the-
art construction given in [Boz07] to translate µNWTL formulas to NWAs.
Consider a µNWTL formula ϕ. If the formula ϕ has no past operators at
all, the automaton Aϕ from Theorem 5.21 is 1-way and thus, the size of the
resulting NWA is bound by 2O(nk logn) instead of 2O((nk)2) when using Bozzelli’s
construction. If the formula ϕ has only restricted past operators like those
known from NWTL or NWPSL, the automaton Aϕ from Theorem 5.21 is
eventually 1-way and thus, the size of the resulting NWA is also bound by
2O(nk logn). To check whether Aϕ = (Q, Σ̂, δ, qI , F ) is eventually 1-way, we can
check that no component in the strongly-connected component graph of the
graph

(Q, {(p, d, q) | (q, d) occurs in δD(p, a), for some D ⊆ D, and a ∈ Σ̂})

has not both, a negatively and a positively labeled edge. Finally, if Aϕ is
not eventually 1-way, we obtain the same bound as in Bozzelli’s construction.
However, our construction is more modular and hence, easier to understand,
to implement, and to optimize.
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Chapter 6

Conclusion

We have presented an alternation-elimination scheme that reduces the prob-
lem of removing the alternation of an alternating automaton to the problem
of complementing an existential automaton. We point out that the existential
automaton inspects just a single path in the input graph and its construction
is remarkably simple. We have also provided instances of this construction
scheme by presenting complementation constructions for various classes of ex-
istential automata. Some of these instances clarify, simplify, or improve ex-
isting ones; some of these instances are novel. We observe that our presented
complementation constructions consist of two main building blocks and the
constructions are composed by canonically combining the appropriate con-
structions for each building block. In the first building block, we use the
well-known (1-way or 2-way) subset construction to represent all runs of the
input automaton. For the second one, we use a simple (focus, breakpoint, or
ranking) construction to recognize a run of the input automaton that does
not fulfill its acceptance condition. From this perspective, translations for 2-
way alternating automata, which are considered to be difficult to understand,
become as simple as common, standard constructions.

Moreover, we have extended various temporal logics by adding past opera-
tors to their corresponding future counterparts and have shown how to trans-
late these logics into nondeterministic automata using novel instances of our
alternation-elimination scheme. Our translations show that the additional cost
for handling the past operators is surprisingly small. For common symbolic
model checkers like NuSMV, the resulting nondeterministic automata are en-
coded as transition systems and in that case, there is no additional cost at
all.

Let us conclude with an outlook on future work that is based on the results
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in this thesis. It remains an open question to which extent our scheme gen-
eralizes to automata that process more general graph structures. Since our
automata models are restricted to a finite alphabet and a finite set of discreet
transitions, they are only used for representing properties over graphs whose
nodes are labeled by a finite alphabet and whose set of edges between two
nodes are finite. These kind of properties might not suffice to represent speci-
fications of more general systems. For instance, continuous behavior of timed
systems [Dil89,AD90] or linear-hybrid systems [ACHH93] are represented by
graphs whose nodes are connected by infinitely many edges. Another example
is the behavior of systems that should be monitored. Representing those be-
havior by graphs over a finite alphabet might be a limiting factor for describing
relevant system properties. When considering more general graph structures,
we are also interested in the question how the classes of alternating automata
over those extended graphs look like and how corresponding logics over those
graph structures can be defined in a reasonable way. For instance, it should be
possible to give an automata-theoretic framework for the logic and monitoring
technique presented in [HV09].
We have presented several complementation constructions for automata over

words and nested words and have provided upper bounds. However, for many
of these constructions, we do not provide tight lower bounds that would es-
tablish the optimality of our constructions.
We have introduced the temporal logic NWPSL and showed that it is more

expressive than NWLTL whereas formulas of size n in this logic can be trans-
lated into NWAs of size 2O(n). However, it is still unknown whether NWPSL
suffices to express all regular properties over nested words. If NWPSL cannot
describe all regular properties, we would like to know how to extend NWPSL
such that it becomes expressive enough while preserving the property that
formulas of size n can be translated into NWAs of size 2O(n).
Finally, we have proposed the temporal logic PPSL, which extends the IEEE

standard PSL with past operators. We analyzed its complexity and our re-
sults show that PPSL and PSL are similarly related as PLTL and LTL with
respect to expressiveness, succinctness, and the computational complexity of
the satisfiability and the model checking problems. It remains to be seen
whether the advantages of PPSL over PSL pay off in practice. The pre-
sented translation for PPSL into 1NBAs shows that the additional cost for
handling past operators is small and should not be a burden in implementing
PPSL in system verification. For using PPSL with the explicit model checker

124



SPIN [Hol04], techniques like formula rewriting and simulation-based reduc-
tions have to be implemented to optimize the sizes of the resulting 1NBAs,
see [CRT07, EWS05, FW05,EH00, SB00]. Our preliminary experience with a
prototype implementation for the symbolic model checker NuSMV are promis-
ing.
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poral logic using simulation relations for alternating büchi au-
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